
����������
�������

Citation: Schubotz, R.; Spieldenner,

T.; Chelli, M. stigLD: Stigmergic

Coordination in Linked Systems.

Mathematics 2022, 10, 1041.

https://doi.org/10.3390/

math10071041

Academic Editors: Linqiang Pan,

Zhihua Cui, Harish Garg, Thomas

Hanne and Gai-Ge Wang

Received: 31 January 2022

Accepted: 22 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

stigLDstigLDstigLD: Stigmergic Coordination in Linked Systems †

René Schubotz 1,*,‡ , Torsten Spieldenner 1,2,*,‡ and Melvin Chelli 1,*,‡

1 German Research Center for Artificial Intelligence, Saarland Informatics Campus D3 2,
66123 Saarbrücken, Germany

2 Saarbrücken Graduate School of Computer Science, Campus E1 3, 66123 Saarbrücken, Germany
* Correspondence: rene.schubotz@dfki.de (R.S.); torsten.spieldenner@dfki.de (T.S.);

melvin.chelli@dfki.de (M.C.)
† The original version of this paper was presented at the 16th International Conference on Bio-inspired

Computing: Theories and Applications (BIC-TA 2021), December 2021. This paper was recommended for
publication in revised form by the BIC-TA 2021 conference committees.

‡ These authors contributed equally to this work.

Abstract: While current Semantic Web technologies are well-suited for data publication and inte-
gration, the design and deployment of dynamic, autonomous and long-lived multi-agent systems
(MAS) on the Web is still in its infancy. Following the vision of hypermedia MAS and Linked Systems,
we propose to use a value-passing fragment of Milner’s Calculus to formally specify the generic
hypermedia-driven behaviour of Linked Data agents and the Web as their embedding environment.
We are specifically interested in agent coordination mechanisms based on stigmergic principles. When
considering transient marker-based stigmergy, we identify the necessity of generating server-side
effects during the handling of safe and idempotent agent-initiated resource requests. This design
choice is oftentimes contested with an imprecise interpretation of HTTP semantics, or with rejecting
environments as first-class abstractions in MAS. Based on our observations, we present a domain
model and a SPARQL function library facilitating the design and implementation of stigmergic
coordination between Linked Data agents on the Web. We demonstrate the efficacy our of modelling
approach in a Make-to-Order fulfilment scenario involving transient stigmergy and negative feed-
back as well as by solving a problem instance from the (time constrained) Trucks World domain as
presented in the fifth International Planning Competition.

Keywords: Linked Data; Semantic Web; multi-agent systems; stigmergy; nature inspired algorithm;
RDF; SPARQL; biologically inspired computing

MSC: 68Q07

1. Introduction

Hypermedia multi-agent systems [1,2], sometimes also referred to as Linked Sys-
tems [3], are receiving increasing research attention. The hypothesis is that the Web pro-
vides a scalable and distributed hypermedia environment that embedded agents can use to
uniformly discover and interact with other agents and artifacts. Following a set of design
principles closely aligned with REST and Linked Data best practices [4], the design and
deployment of world-wide and long-lived hypermedia MASs with enhanced scalability
and evolvability is aspired. In this context, we are specifically interested in stigmergic
coordination principles for hypermedia MASs. The concept of stigmergy [5,6] provides
an indirect and mediated feedback mechanism between agents, and enables complex,
coordinated activity without any need for planning and control, direct communication,
simultaneous presence or mutual awareness.

A crucial part of a stigmergic system is its stigmergic environment [7] given that “it
is its mediating function that underlies the power of stigmergy” [5]. Accounting for the
importance of distributed hypermedia environments as first-class abstractions in hyper-
media MASs and the environment’s pivotal role in stigmergic systems, we examine the

Mathematics 2022, 10, 1041. https://doi.org/10.3390/math10071041 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071041
https://doi.org/10.3390/math10071041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4336-9484
https://orcid.org/0000-0003-3034-9345
https://orcid.org/0000-0001-5260-9393
https://doi.org/10.3390/math10071041
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071041?type=check_update&version=2

Mathematics 2022, 10, 1041 2 of 21

use of hypermedia-enabled Linked Data as a general stigmergic environment. In this
context, we are in particular interested in how to employ Linked Data media to provide
environments with immanent dynamics, a core feature for stigmergic systems that dis-
play, for example, transient or diffusion-based marker behavior. By this, the interaction
between agents and environments should be described unambiguously, generically, and
implementation-agnostically to allow application of the found concepts in a variety of
system implementations. Towards this end, this paper makes the following contributions:

• A definition of Linked Data servers, Linked Data agents, and the interaction between
those using Milner’s Calculus of Communicating Systems (CCS).

• A definition of dynamic Linked Data Media servers to account for immanent dynamics
of stigmergic environments.

• An RDF domain model for dynamic stigmergic environments, along with a set of
SPARQL functions to implement transient and diffusion-based marker behavior.

• Examples of application of the presented concepts from the domains of shop-floor
logistics, and optimization.

The remainder of this chapter is structured as follows: We briefly present core concepts
and variations of stigmergic systems and summarise existing literature relevant to our work
in Section 2. Next in Section 3, we propose to use a value-passing fragment of Milner’s
Calculus to formally specify generic, hypermedia-driven Linked Data agents and the Web
as their embedding environment. We composed Linked Data agents and their environment
into a Linked System (or equivalently a hypermedia MAS). Based on this formalism, we
consider transient marker-based stigmergy as a coordination mechanism between Linked
Data agents in Section 4. We identify the necessity of generating server-side effects during
the handling of safe and idempotent agent-initiated requests, and present a domain model
and a SPARQL function library facilitating the design and implementation of stigmergic
environments on the Web. Section 5 illustrates and evaluates our approach in a Make-to-
Order fulfilment scenario involving transient stigmergy and negative feedback, in Section 6
we solve instances of the (time constrained) Trucks World domain as presented in the fifth
International Planning Competition (IPC-5) [8] and find our approach to be on-par with the
leading planners in this IPC-5 domain. We conclude and point out future work in Section 7.

2. Varieties of Stigmergy and Related Work

In collective stigmergic systems, groups of agents perform work by executing actions
within their environment [5]. An action is considered a causal process that produces
a change in the environment. Agents choose actions based on condition-action rules,
and perform an action as soon as their conditions are found to be met. Conditions are
typically based on environmental states as perceived by the agent. Examples from nature are
the presence of specific (food) resources, semiochemical traces, progress in building nest
structures, etc. Which actions an agent can perform, how the agent will perform them, and
which condition-action rules an agent will follow, is considered the agent’s competence [9].
The part of the environment that undergoes changes as a result of executing an action, and
the state of which is perceived to incite further actions, is called the medium. Each action
produces, either as a byproduct of an action, or the deliberate goal of the action itself, a
stigma in the medium. Consequently, the behaviour of agents in a collective stigmergic
system can be understood as a cycle of executing actions based on existing stigmata, and as
result, leaving stigmata that stimulate or inhibit future actions (see Figure 1).

produces

Action

stimulates
inhibits

Stigma

executes perceives

Agent

Figure 1. Stigmergic feedback loop.

Mathematics 2022, 10, 1041 3 of 21

In essence, stigmata work as an indirect communication mechanism between agents [10],
potentially leading to coordination between agents, and, ideally, a self-organising behaviour
of the entire system [5,6]. Based on these core concepts, i.e., action, medium and stigma,
stigmergic systems can be further classified as follows [5]. In sematectonic stigmergy, a
stigma is a perceivable modification of the environment as result of work that was carried
out by the agent, e.g., giving some new shape to a working material, or re-arranging
the order of objects in the world. In marker-based stigmergy, stigmata are markers, e.g.,
semiochemicals, that are specifically added to the environment as means for indirect
communication between agents. When perceiving stigmata, agents may choose their
actions based on the mere existence of a stigma in the medium (qualitative stigmergy), or also
take into account quantities, like semiochemcial concentration levels, number of stigmata
left, etc (quantitative stigmergy). Moreover, stigmata present in the medium may stay until
actively being removed by an agent (persistent stigmata) or until dissipated over time due to
agent-less processes (transient stigmata).

Since the concept of stigmergy was coined as inherent underlying principle of coordi-
nation found in nature, it has faced a history of thorough research [11]. There is a profound
understanding of the many variations of stigmergic systems, and how these are suited to
model and implement efficient, flexible, and scalable algorithms for AI-based coordination
and optimisation [5,6,12].

Stigmergy is recognised as a suitable underlying principle for multi-agent systems [10,13,14]
and is applied in a variety of practical domains, e.g., digital manufacturing [15], robotics [16,17] or
public transport [18,19].

Stigmergic systems can be considered a variation of situated agent systems, in which
the interaction of agents with their environment is reduced to direct reaction based on
perception, rather than complex knowledge processing and inference [20–22]. Principles
in these systems were also developed around an indirect, influence-based interaction
mechanism between agents and their environment as chosen for our proposed stigmergic
system [23].

Web technologies have been found to be a suitable basis for implementation of multi
agent systems [24–26]. Meanwhile, it came to attention that stigmergic principles are the un-
derlying concept of many applications in the World Wide Web [27] including coordination
in Web-based IoT systems [28].

Self-organising multi agent systems and agent systems that rely on stigmergy as
coordination mechanism have been exhaustively reviewed in [29]. This review concludes
that a common understanding of such systems is widely lacking, and suggests a generic
domain model to describe self-organising systems. From the reviewed literature, we
share this observation, and additionally identify a general lack of understanding of the
importance of a properly defined digital medium in multi-agent systems, in particular
in systems that implement stigmergic principles. The interaction between agents and
environment is often described only vaguely, and is generally under-specified.

As a solution, we provide in this paper a formal and generic specification of hyperme-
dia driven agents and the respective agent-server interaction for stigmergic systems.

3. Process Algebra, Agents and Linked Systems

In what follows, we recap the syntax and semantics of a value-passing fragment of
Milner’s Calculus of Communicating Systems (CCS) [30,31]. This process algebra allows us
to (i) specify the notion of Linked Data servers, (ii) formally model the generic hypermedia-
driven behaviour of Linked Data agents, and (iii) compose a collection of Linked Data agent
and server processes into a concurrent system that is denoted as a Linked System [3] or a
hypermedia MAS [1].

3.1. Theoretical Setting: CCS with Value-Passing

The Calculus of Communicating Systems (CCS) is a process calculus that models
indivisible communication between two participants as actions. The formal language

Mathematics 2022, 10, 1041 4 of 21

includes primitives for describing parallel composition, choice between actions and scope
restriction. CCS is useful for evaluating the qualitative correctness of system properties
such as deadlock or live-lock. For an in-depth exposition we refer the interested reader
to [30,31] and continue with a self-contained introduction to the core concepts necessary
for our means.

Let A be a set of channel names; Ā = {ā | a ∈ A} be the set of co-names;
Act = A∪ Ā ∪ {τ} be the set of actions where τ is the silent action; and K be a set of
process identifiers.

The set P of all process expressions is the set of all terms generated by the abstract syntax
given in Figure 2. Here, 0 is the atomic inactive process; K ∈ K is a process identifier;
α ∈ Act; ~x = (x1, . . . , xn) is a n-dimensional vector of variables; P1≤i≤2 ∈ P are process
expressions; and e is a Boolean expression.

P := 0 (inaction)

| K (process labelling)

| α.P (prefixing)

| α(~x).P (value passing)

| P1 + P2 (choice)

| P1 ‖ P2 (parallel composition)

| if e then P1 else P2 (conditional)

Figure 2. Abstract syntax of all CCS process expressions.

A process definition is an equation system of the form (K1≤i≤k = P1≤i≤k) where
P1≤i≤k ⊂ P is a set of process expression with process identifiers from K1≤i≤k ⊂ K.

Each process definition determines an Act-labelled transition system whose transi-
tions can be inferred from the Structural Operational Semantics rules given in Figure 3
where P, P′, Q, Q′ ∈ P are process expressions; K ∈ K is a process identifier; α ∈ Act;
~x = (x1, . . . , xn); a, ā ∈ A ∪ Ā; P[v/x] is the process expression obtained from P by substi-
tuting a data value v for all occurrences of x.

α.P α→ P

P α→ P′ (K = P)

K α→ P′
P α→ P′

(P + Q)
α→ P′

Q α→ Q′

(P + Q)
α→ Q′

P α→ P′

(P ‖ Q)
α→ (P′ ‖ Q)

Q α→ Q′

(P ‖ Q)
α→ (P ‖ Q′)

P a→ P′ Q ā→ Q′

(P ‖ Q)
τ→ (P′ ‖ Q′)

ā(~x).P
ā(~v)→ P a(~x).P

a(~v)→ P[v1/x1, . . . , vn/xn]

P
ā(~v)→ P′ Q

a(~v)→ Q′

(P ‖ Q)
τ→ (P′ ‖ Q′)

P α→ P′

if true then P else Q α→ P′
Q α→ Q′

if false then P else Q α→ Q′

Figure 3. Structural Operational Semantics rules.

3.2. Linked Data Servers, Agents and Linked Systems

Let I, L and B be pairwise disjoint sets of resource identifiers, literals and blank nodes,
respectively. The set of all RDF triples is T = (I ∪ B)× I× (I ∪ B ∪ L); a RDF graph G ⊂ T
is a finite set of RDF triples. Given a formal RDF query language Q, we define the query
answering functions ans : Q × 2T → 2T , ask : Q × 2T → B, sel : Q × 2T → 2I and
descr : I× 2T → 2T .

A resource structure is a tuple (I, R, η, OPS, RET) where I is given as above; R ⊂ I is
a finite set of root identifiers; η : I → N is a function that maps resource identifier i to
its origin server SERVERη(i); OPS = {GET, PUT, POST, DEL} is a set of method names; and
RET = {OK, ERR} is a set of return codes.

Mathematics 2022, 10, 1041 5 of 21

We now fix a set of channel names as A = {reqi, resi | i ∈ N}, and give CCS-style
process specifications of Linked Data servers as well as Linked Data agents defined over the
given resource structure (I, R, η, OPS, RET).

3.2.1. Linked Data Servers

We conceive a Linked Data server SERVERk as a reactive component that maintains an
RDF graph G. It receives requests to perform a CRUD operation op ∈ OPS on a resource i
via channel reqk

SERVERk(G) = reqk(op, i, G′).PROCk(op, i, G′, G) (1)

where G′ ⊂ T is a (potentially empty) request body. The server employs a constrained
set of operations to process client-initiated requests for access and manipulation of the
server-maintained RDF graph G

PROCk(GET, i, G′, G) = RESPk(OK, (∅, descr(i, G)), G) + RESPk(ERR, (∅, ∅), G) (2)

PROCk(PUT, i, G′, G) = RESPk(OK, (∅, ∅), (G \ descr(i, G)) ∪ G′) + RESPk(ERR, (∅, ∅), G) (3)

PROCk(POST, i, G′, G) = RESPk(OK, ({i′}, ∅), G ∪ G′) + RESPk(ERR, (∅, ∅), G) (4)

PROCk(DEL, i, G′, G) = RESPk(OK, ({i}, ∅), G \ descr(i, G)) + RESPk(ERR, (∅, ∅), G) (5)

where i′ ∈ I is a “fresh” IRI with η(i′) = k. The server responds to requests via channel resk

RESPk(rc, rval, G) = resk(rc, rval).SERVERk(G) (6)

with return code rc ∈ RET and with a linkset and response graph in rval ∈ (2I × 2T).

3.2.2. Tropistic Linked Data Agents

We specify a tropistic ([32], Section 13.1) Linked Data agent AGENTk as an active component

AGENTk = PERCk(i ∈ R, G = ∅, L = {i}) (7)

being initially situated at a resource i ∈ R without a-priori agent knowledge (G = ∅)
and a linkset L = {i} restricted to i. Our specification of AGENTk puts emphasis on a
direct response to its perceptions and favours to employ situated perceptions [33] of the
environment as the basis for deciding which action to perform next. We model situated
perception in CCS-style as

PERCk(i, G, L) =reqη(j)(GET, j, ∅).resη(j)(rc, (L′, G′)).(
PERCk(i, G′′, L′′) + REACTk(i, G′′, L′′)

) (8)

where AGENTk - while being situated at i - will at first issue a GET request for a resource j in
its current linkset L via channel reqη(j) and then awaits the server’s response via channel
resη(j) with return code rc ∈ RET, response linkset L′ ⊂ I and response graph in G′ ∈ T .
Subsequently, the agent executes (i) a perceptional query qPERCk over G′ in order to update its
situational knowledge to

G′′ = G ∪ ans(qPERCk , G′) (9)

as well as (ii) a navigational query qNAVk over its updated knowledge graph in order to update
its linkset to

L′′ = L ∪ L′ ∪ sel(qNAVk , G′′)) (10)

On the basis of G′′ and L′′, AGENTk chooses to either recurse into its situated perception
process PERCk(i, G′′, L′′) or to enter the process REACTk(i, G′′, L′′) in order to select an action

Mathematics 2022, 10, 1041 6 of 21

on the basis of a local, short-time view of its environment. An action selected only on the
basis of a situated perception is called a reaction.

We model the process of selecting reactions in the following way

REACTk(i, G, L) = PERCk(j ∈ L, ∅, {j}) +

∑
m∈OPS\{GET}

(
if ask(q̂mk , G, L) then mk(i, G, L) else REACTk(i, G, L)

)
(11)

In essence, an agent may choose to either

(i) re-situate and perform situated perception of resource j ∈ L, j 6= i with the implication
that its situational knowledge and linkset will be reset; hence it does neither maintain
a long-term internal model of its environment nor pursues explicit goals;

(ii) request the execution of operation m ∈ OPS \ {GET} against resource i given that the
conditional query q̂mk over its knowledge graph G holds; possible instantiations of
mk(i, , L) are given by

PUTk(i, G, L) = reqη(i)(PUT, i, ans(qPUTk , G)).resη(i)(rc, (∅, ∅)).REACTk(i, G, L) (12)

POSTk(i, G, L) = reqη(i)(POST, i, ans(qPOSTk , G)).resη(i)(rc, (L′, ∅)).REACTk(i, G, L ∪ L′) (13)

DELk(i, G, L) = reqη(i)(DEL, i, ∅).resη(i)(rc, (L′, ∅)).REACTk(j ∈ L \ L′, G, L \ L′) (14)

where ans(qmk , G) is the result graph of executing an effectual query qmk over the agent’s
knowledge graph G with m ∈ {PUT, POST}.
Given the formal notation of Linked Data servers and agents, we can now focus on

composing a collection of Linked Data agent and server processes into a concurrent system
that is denoted as a hypermedia MAS [1] or a Linked System [3].

3.2.3. Linked Systems

A Linked System [3] is the parallel composition

LINKED-SYSTEM = (AGENTS ‖ ENVIRONMENT) (15)

with AGENTS = (AGENT1 ‖ · · · ‖ AGENTm) and ENVIRONMENT = (SERVER1 ‖ · · · ‖ SERVERn)
for a collection of Linked Data agents AGENT1≤k≤m and Linked Data servers SERVER1≤k≤n
respectively. All direct interaction within LINKED-SYSTEM is between agent and server pro-
cesses.

The state space of LINKED-SYSTEM is given by the nodes of an Act-labelled transition
system whose transitions can be inferred from the Structural Operational Semantics rules
given in Section 3.1.

A computation is an alternating sequence of global states and actions, where an action
is either a communication between an agent and a server, or an internal process transition.
A computation of a Linked System induces an interaction sequence given by the sequence of
actions along that computation.

3.3. Synthesis

With the notions of Linked Data servers, tropistic Linked Data agents, and finally
Linked Systems as defined above, the resulting value-passing CCS fragment enables us to
formally specify the generic hypermedia-driven behaviour of tropistic Linked Data agents.
We would like to emphasise the fact that the general behaviours as described by the CCS
fragment are generic and independent of the scenarios in which they are applied. Domain-
or application-specific behaviours of agents and systems are entirely encoded in terms of
the queries that are evaluated as part of the different processes. For these, we identified
four different type of queries:

(i) Perceptional queries specify the subsets of the environment representation relevant to
the agent.

Mathematics 2022, 10, 1041 7 of 21

(ii) Navigational queries constrain the agent navigation with respect to such relevant subsets
of the environment.

(iii) Conditional queries guard the selection of particular reactions.
(iv) Effectual queries describe how the agent intends to manipulate a given resource.

The per se generic framework can be applied to different scenarios by supplying
respective specific queries. In the following section, we will extend Linked Systems to
support stigmergy by an additional class of queries: evolutional queries that drive the
dynamics of the underlying ENVIRONMENT.

4. Stigmergy in Linked Systems

A LINKED-SYSTEM as specified previously provides an indirect, mediated mechanism
of coordination between AGENTS. It therefore enables the realisation of sematectonic and
persistent marker-based stigmergy. However, when considering some of the prime exam-
ples of stigmergy, e.g., ant colony optimization [34–37] and termite colony optimisation
methods [38], it becomes apparent that a purely reactive ENVIRONMENT is insufficient for the
implementation of transient marker-based stigmergic mechanisms.

In fact, a stigmergic environment typically demonstrates some immanent dynamics
that may modify the environment’s state independent of any agent’s actions ([5], p. 24).
These endogenous dynamics, e.g., diffusion, evaporation, dissipation, atrophy or erosion
of stigmata, constitute a crucial component of transient marker-based stigmergic systems
([39], cf. Figure 4), and more importantly, they are not subjected to agent-driven processes.
We call the part of a stigmergic environment that, in addition to being malleable and
perceivable by all agents under coordination, actively drives the evolution of such agent-less
dynamic processes a stigmergic medium.

Environment

Agent

Agent
State

Agent
Dynamics

Medium
State

Medium
Dynamics

Figure 4. Stigmergic system components.

Taking into account the notion of a stigmergic medium, we define a stigmergic Linked
System as the parallel composition

STIGMERGIC-LINKED-SYSTEM = (AGENTS ‖ (MEDIUM ‖ ENVIRONMENT)) (16)

where the stigmergic MEDIUM = MEDIUM1 ‖ · · · ‖ MEDIUMl relates to the parallel composition
of a collection of extended LD server components.

A MEDIUMk component is a Linked Data server that offers a constrained set of opera-
tions to access and manipulate server-provided resource states, but in addition, generates
server-side side-effects (We emphasise that this conception is not in violation with HTTP
semantics ([40], Sections 4.2.1 and 4.2.2; [41])).

MEDIUMk(G) = req(op, i, G′).PROCk(op, i, G′, G)) (17)

RESPk(rc, rval, G) = res(rc, rval).MEDIUMk(G) (18)

PROCk(GET, i, G′, G) = EVOLVEk(i, G) (19)

as evolution EVOLVEk(i, G) of the environment during the handling of safe and idempotent
agent-initiated resource request. The generation of such side-effects is subjected to an
internal process

EVOLVEk(i, G) = RESP(OK, (∅, descr(i, G′)), G′′) + RESPk(ERR, (∅, ∅), G) (20)

Mathematics 2022, 10, 1041 8 of 21

where the result of executing an evolutional query qEVOk over a given RDF graph G is
given by G′ = ans(qEVOk , G) and the server state after an evolutional state update is
G′′ = G \ descr(i, G) ∪ descr(i, G′). Executing an evolutional query drives the endoge-
nous dynamics of MEDIUMk over time, e.g., diffusion and evaporation of semiochemicals,
irrespectively of agent-initiated requests for resource state change.

Next, we address the definition of evolutional queries; towards this end, we introduce
the stigLD domain model and the stigFN SPARQL function library.

4.1. stigLD: A Domain Model for Stigmergic Linked Systems

Our domain model (cf. Figure 5) defines four basic concepts: stig:Medium, stig:Law,
stig:Topos and stig:Stigma.

stig:topos

dct:spatial

dct:temporal

stig:Medium

stig:carries

stig:medium

dct:spatial
<perceives>
<influences>

stig:Topos

stig:adjacentTo

<stimulates>
<inhibits>

stig:Stigma

Action

stig:governs stig:Law stig:affects

geom:geometry

spatial:Feature

geom:Geometrytime:TRS <performs>

Agent

Figure 5. stigLD domain model.

A stig:Medium instance is a resource that allows for interaction between different
actions, and therefore, it enables the stigmergic coordination between agents performing
such actions. In order to fulfil its “mediating function that underlies the true power of
stigmergy” [5], a stig:Medium must be similarly perceivable and malleable by all agents
under stigmergic coordination. A stig:Medium is considered a part of a larger environment,
and it undergoes changes only through agents’ actions or through a set of stig:Law instances
governing its endogenous dynamics.

A stig:Medium may optionally detail on its spatio-temporal characteristics (for exam-
ple, via dct:spatial and dct:temporal links.), however, it must introduce a structure of
interconnected stig:Topos instances in which an agent navigates, experiences situated
perception and exerts situated behaviour.

A stig:Topos resource is the fundamental structural element of a stig:Medium and
carries a potentially empty set of stig:Stigma instances. It has a potentially empty set of
directed connections to other stig:Topos instances within the same stig:Medium instance.
Furthermore, a stig:Topos may be identified with any domain- or application-specific
resource using an owl:sameAs link and optionally detail on its spatial characteristics. An
agent situated in a specific stig:Topos partially perceives the medium state and may try to
influence the medium as a result of its action.

A stig:Stigma is a perceivable change made in a stig:Medium by an agent’s action. The
perception of a stig:Stigma may stimulate (or inhibit) the performance of a subsequent
action, i.e., the presence of a stig:Stigma makes the performance of this action more (or
less) likely. Hence, actions stimulate (or inhibit) their own continued execution via the
intermediary of stig:Stigma instances (cf. Figure 1).

A stig:Law describes the spatio-temporal evolution of stigmata within the medium.
For this, a stig:Law describes itself in terms of its specific effect, e.g., linear decay, to a set of
affected stig:Stigma sub classes. A stig:Law may link to an evolutional query which may
be used to calculate the evolution of the medium’s endogenous dynamics.

Mathematics 2022, 10, 1041 9 of 21

4.2. stigFN: SPARQL Functions for Stigmergic Linked Systems

In order to facilitate the implementation of transient marker-based stigmergic Linked
Systems, we supplement our domain model with the stigFN SPARQL function library. It
provides the fundamental operations required for implementing the endogenous dynamics
of a stigmergic medium:

1. Decay functions. Transient marker-based stigmergy may require certain stigmata to
be subjected to dissipation processes. We provide two standard decay models with
stigFN:linear_decay and stigFN:exponential_decay.

2. Diffusion functions. In diffusion processes, the intensity of a stigma does not decay
over time but rather spreads over a spatial dimension from the point of its deposition.
With stigFN:diffuse_1D, the 1D diffusion equation is made available.

3. Handling temporal and spatial values. Decay and diffusion functions require arithmetic
operations on temporal data, e.g., xsd:duration, xsd:dateTime or xsd:time. Due to
lack of built-in support in SPARQL and XPATH, we provide stigFN:duration_secs
and stigFN:duration_msecs for conversions of xsd:duration datatype values. Ad-
ditionally, stigFN:dist_manhattan is provided as a means to find the Manhattan
distance between topoi when the medium is discretised into grids.

We implemented stigFN using SPARQL user-defined functions (https://jena.apache.
org/documentation/query/writing_functions.html, accessed on 21 March 2022) in Apache
Jena (https://jena.apache.org/, accessed on 21 March 2022). Documentation and source
code (https://github.com/BMBF-MOSAIK/StigLD-Demo, accessed on 21 March 2022) is
publicly available; we intend to extend stigFN with additional decay and diffusion models
as well as auxiliary functions.

5. Use Case: Make-to-Order Fulfilment

We apply the previously established concepts to a Make-to-Order (MTO) fulfilment
process from the production domain. MTO is a production approach in which manufactur-
ing starts only after a customer’s order is received.

Let us consider a shop floor area that is represented by a discrete grid; in each grid cell
is a shop floor location and can accommodate a single production resource. We distinguish
between three types of production resources: machines, output slots assigned to individual
machines and transporters.

Machines produce a product of an unspecified kind in response to a confirmed order
received for it from a final customer. Whenever a machine finishes production of a product,
the product is placed into an output slot awaiting pickup by a transporter unit. Output
slots have limited capacity. If any of the output slots are full, the associated machine cannot
produce any new products until the output slot is emptied by the transporters. Transporters
are initially situated in idle locations spread throughout the grid; they can move to any
unoccupied location within their respective Manhattan distance neighbourhood. Their task
is to pick up finished products from the output slots of machines, so that production can go
on without significant interruptions.

The shop floor will continuously receive new customer orders; we aim to coordinate
the MTO fulfilment process such that customer orders should be assigned to machines
in such a way that the overall machine work load is balanced, and make-shift times
of individual products—the time from start of production to delivery of the finished
product—should be minimized. More specifically, we are interested in improving the
following metrics

(i) average number of steps moved by the transporters
(ii) average maximum and minimum machine loads
(iii) deviation in maximum load experienced by machines
(iv) average time between start of production of a product until pickup by a transport

unit (mean time to deliver)

https://jena.apache.org/documentation/query/writing_functions.html
https://jena.apache.org/documentation/query/writing_functions.html
https://jena.apache.org/
https://github.com/BMBF-MOSAIK/StigLD-Demo

Mathematics 2022, 10, 1041 10 of 21

All material needed to set up and run the example are provided online (https://github.
com/BMBF-MOSAIK/StigLD-Demo, accessed on 21 March 2022) along with an interactive
demo instance (https://mosaik.dfki.de, accessed on 21 March 2022).

5.1. Shop Floor Representation in StigLD

In our example, the stig:Medium represents the overall shop floor area as a 10×10 grid
of stig:Topos instances. Neighborhood relations depend on the type of agent that is ex-
ploring the medium (see also Section 5.2): For transporter agents that navigate the shopfloor,
each stig:Topos links via stig:adjacentTo predicates to the stig:Topos instances in its
Manhattan distance neighborhood. Order assignment agents ignore spatial information,
and consider all topoi that carry a machine unit as mutually connected. Production re-
sources are assigned to their individual stig:Topos instances using stig:locatedAt link
predicates; the Transporters’ idle locations—the grid cells to which they return after having
finished a pickup—are given by ex:idlePosition link predicates.

5.2. Agent Models

We employ marker-based stigmergy with transient semio-chemical marker models to
achieve the desired coordination. For this, we employ two types of agents: one type assigns
open orders to available machines on the shop floor, the other controls transport units.

5.2.1. Order Assignment Agents: Transient Stigmergy Based on Linear Decay

For an open order, an order assignment agent OAA = PERC(i, G = ∅, L = ∅) is placed
on a randomly chosen topos i that is accommodating a machine; the agent performs situated
perception as specified in Equation (8) with

(G′′ = ans(qPERC, G′)) ≡
(
∀t ∈ G′ ⇒ t ∈ G′′

)
(21)

(L′′ = sel(qNAV, G′′)) ≡ (L′′ = {j | argmin
j

<j> stig:carries [stig:level ?val;
a ex:NFMarker];

ˆ(stig:locatedAt) [a ex:Machine].

}) (22)

When selecting its reaction (cf. Equation (11))

REACT(i, G, L) = if i /∈ L then PERC(j ∈ L, ∅, ∅) else MARK(i, G, L) (23)

the agent OAA will either (i) re-situate to a topos with lower concentration of negative
feedback or (ii) leave a negative feedback marker(as well as a production task into the
respective machine’s task queue) on its current topos:

MARK(i, G, L) = reqη(i)(PUT, i, ans(qPUT, G)).resη(i)(rc, (∅, ∅)).0 (24)

ans(qPUT, G) ≡ descr(i, G) ∪ {<i> stig:carries [a ex:NFMarker; stig:level 1.0].} (25)

Negative feedback markers will decay linearly over time; the system’s endogenous
dynamics with respect to negative feedback markers is given by Equation (20) with

qEVO ≡

?i stig:carries [a ex:NFMarker; stig:level ?c; stig:decayRate ?d].
⇓

?i stig:carries [stig:level stigFN:linear_decay(∆t, ?d, ?c)].

 (26)

Leaving a negative feedback marker inhibits future selection of a machine, and in-
creases the likelihood of balancing machine workloads during the MTO process.

5.2.2. Transporter Agents: Transient Stigmergy Based on Diffusion

Whenever a new finished product is put into a machine’s output slot, transportation
markers (ex:TMarker) are added to the topos containing the respective slot. These markers
do not decay linearly in-place, but diffuse and spread over the entire shop floor.

https://github.com/BMBF-MOSAIK/StigLD-Demo
https://github.com/BMBF-MOSAIK/StigLD-Demo
https://mosaik.dfki.de

Mathematics 2022, 10, 1041 11 of 21

A transporter agent TA = PERC(s, G = ∅, L = ∅) is initially situated in its idle location
s; the agent performs situated perception as specified in Equation (8) with

(G′′ = ans(qPERC, G′)) ≡
(
∀t ∈ G′ ⇒ t ∈ G′′

)
(27)

(L′′ = sel(qNAV, G′′)) ≡ (L′′ = {?l | argmax
?c

(
?l stig:carries [stig:level ?c;

a ex:TMarker].

)
}) (28)

When selecting its reaction (cf. Equation (11))

REACT(i, G, L) = if i /∈ L then PERC(j ∈ L, ∅, ∅) else PICKUP(i, G, L) (29)

PICKUP(i, G, L) = if ∃p : (<p> a ex:Product; stig:locatedAt <i>) ∈ G

then DEL(p, ∅, ∅).MOVE(s, p).PERC(s, ∅, ∅)

else PERC(j ∈ L, ∅, ∅)

(30)

the agent TA will either (i) re-situate to a neighboring topos with higher concentration of
ex:TMarker and hence climb the diffusion gradient, or (ii) attempt to pickup and move a
product from its current location to its idle location.

As described in Section 4, any GET request as part of a TA agent’s situated perception
(cf. Equation (8)) will trigger a diffusion update

qEVO ≡

?i stig:carries [a ex:TMarker; stig:level ?c;].
⇓

?j stig:carries [a ex:TMarker;
stig:level stigFN:diffuse1D(
?i, stigFN:dist_manhattan(?i, ?j), ?c, ∆t
)].

 (31)

and drive the evolution of the system’s transportation markers.

5.3. Evaluation

We evaluated the above scenario with fifty orders for products to be produced and
picked up by the transporters from output slots. The shop floor contains five production
machines and four transporter artefacts. For the sake of uniformity while running these
simulations, all machines have output slots with a capacity of holding five finished products.

We employ the agent models as described in the previous section and benchmark
against a simplified transporter agent model that only scans for finished products in its
surroundings to initiate pick up, but otherwise move around randomly, i.e., not following
any marker trace.

We compare the total number of updates required in each instance to complete produc-
ing fifty orders, as well as emptying them from the output slots. In addition, we compare
the average number of steps moved by the transporters, the deviation in maximum load
experienced by machines in each simulation and the average time that a finished product
spends in an output slot before being picked up by transporters. These results can be seen
in Table 1.

Mathematics 2022, 10, 1041 12 of 21

Table 1. Results of simulations.

Random Walk Stigmergic Coordination

Avg. number of updates 85 58
Avg. transporter steps 262 132
Mean time to deliver 112 s 67 s

Avg. max machine load 13 12
Avg. min machine load 6 8

The stigmergic coordination based shop floor simulation requires around 30% less
updates in order to complete the simulation run of producing fifty orders and transporting
them away from the output slots of machines. Also, it takes half as many movements by
transporters compared to randomly moving transporters. Moreover, the average time it
takes from a product from beginning of production to pickup by a transporter (mean time
to deliver) is reduced by 40% in the stigmergy based simulation.

Average maximum and minimum machine loads are comparable in both cases, but
slightly worse in the random walk simulations. Ideally, given that we have five machines
and fifty orders, the average number of orders at each machine should be ten. But, since
the randomly moving transporters often take longer to empty some output slots, the
corresponding machines are loaded less relative to the other machines. Each update query
(which includes the implicit diffusion and linear decay of stigmergic markers) takes an
average of 500 ms to complete.

6. Use Case: IPC Trucks

In this section, we demonstrate how to achieve self-optimising behavior by application
of dynamic stigmergic markers, and the stigLD domain model. For this, we implement
a stigmergic agent system to solve the (time constrained) trucks problem as presented in the
fifth International Planning Competition (IPC-5) [8]. The International Planning Compe-
tition is an annual contest to evaluate various planners on pre-defined sets of problems.
Evaluating our stigmergic approach against problems from these competitions thus allows
us to compare the performance of our system against a set of established and publicly
available benchmarks.

The chosen trucks world problem consists of a number of mutually connected locations.
Initially, any of the locations may carry a number of packages. Locations moreover may
serve as destinations for packages, as determined by a set of orders. The objective is for a
truck to pick up packages and deliver them to their final location in minimal time.

Travelling from one location to another takes the truck a certain amount of time,
depending on the distance between two locations, as set by the specific scenario. The
truck’s loading capacity is limited, and divided into a set of areas that can carry one package
each. The truck’s loading bay needs to be loaded and unloaded in a last in, first out manner,
i.e., packages closer to the end of the truck block the unloading of packages farther inside
the truck. Loading packages to, unloading from, and finally delivering packages at the
destination, each take an action with a fixed time span considerably shorter than the driving
times between locations.

Figure 6 shows a simple instance of the trucks world problem that consists of three
locations and two packages, and the respective optimal plan for the displayed problem.

Mathematics 2022, 10, 1041 13 of 21

Figure 6. Schematic picture of the trucks world problem, and a Gantt diagram of a respective plan
satisfying the problem constraints.

The IPC-5 trucks world problem comes with a series of variants each of which intro-
duces additional constrains to be considered during planning. We evaluated our system
against the time constrained trucks world problem. In this variant, each delivery order comes
with a deadline by which a package has to be delivered. If the truck fails to deliver any
package within its specified deadline, the problem is considered as not solved.

This IPC-5 time constrained trucks world problem is particularly challenging to solve
for self-coordinating systems, as the presented tropistic agents (cf. Section 3.2.2) do not
maintain long-term internal models of the environment nor have capabilities to look ahead
in time, trace back sequences of actions to find the most optimal out of a number of explored
solutions, or explore several potential solutions in parallel.

The time constrained trucks world problem moreover allows us to judge the efficacy
of our system w.r.t to self-coordination by solely observing if it manages to keep the
given deadlines or not, without necessarily aiming for the shortest, (self-)optimised time
of completion.

All material needed to replicate the presented experiments and reported results is avail-
able online (https://github.com/dfki-asr/stigld-trucks-world, accessed on 21 March 2022).

6.1. Trucks World Representation in StigLD

We represent the locations of a trucks world problem instance as both a stig:Topos
instance (We use stig: as the predefined namespace prefix for the stigLD vocabulary.)
and trucks:Location (We introduce trucks: as a namespace prefix for a IPC-5 trucks
world domain vocabulary.) instance. Locations are mutually linked by the predicate
stig:adjacentTo, and moreover specify the distance to other locations by triples that are
linked via the predicate trucks:driveTime (see also Listing 1). Trucks are linked to their
current location by the stig:locatedAt predicate.

Listing 1: A location in the trucks world domain, represented in the stigLD domain model.
1 :loc1 a stig:Topos , trucks:Location ;
2 stig:adjacentTo :loc2 , :loc3;
3 trucks:driveTime [trucks:destination :loc2;
4 rdf:value "406.3"^^ xsd:double];
5 trucks:driveTime [trucks:destination :loc3;
6 rdf:value "73.1"^^ xsd:double].

The truck’s loading bay areas are represented as both trucks:Area and stig:Topos
instances, and denote their position in the truck via the predicate trucks:position, linking
to an integer value. Areas are sorted from the front to the back of the truck by increasing
trucks:position values, as also shown in Figure 6. Packages are represented as both
trucks:Package and stig:Topos instances as they may carry stigmergic markers as result
of MEDIUM’s evolution (cf. Section 6.2). Packages are assigned to their current location
via the predicate stig:adjacentTo, i.e., the triple (<p> stig:adjacentTo <l>) denotes

https://github.com/dfki-asr/stigld-trucks-world

Mathematics 2022, 10, 1041 14 of 21

that a package p is currently located at a location l. Delivery orders are represented as
trucks:Goal instances that specify the package to be delivered via a trucks:payload pred-
icate, the target location using a trucks:destination predicate, and potential deadlines
through the trucks:deadline predicates.

A given trucks world problem instance is translated into an RDF graph G representa-
tion and maintained by a MEDIUM server. The MEDIUM offers a constrained set of operations
to access and manipulate artefacts of the trucks world problem instance, and will generate
server-side side-effects that we detail in the following.

6.2. Marker Model

We employ markers to signify packages requiring urgent pickup or delivery, i.e., for
which time runs short to meet the deadline. In essence, each package marker is assigned a
concentration level from the unit interval as soon as the remaining time buffer for successful
deliver falls below the confidently estimated delivery time.

The concentration ci(t) of an individual package marker i is a function of the current
simulation time t

ci(t) =

{
1

1−ri
iff ri < (δi

p + δi
d) ∗ γ

0 otherwise
(32)

where the term δi
p denotes the truck’s drive time from its current location to the pickup

location of package i, the term δi
d denotes the truck’s drive time from the respective pickup

to the destination of package i, γ is a configurable confidence parameter (In our evaluations
we have chosen γ = 1.5. The value was determined empirically.), di is the package’s
deadline, and ri = min(0, di − t− (δi

p + δi
d)) is the remaining time buffer for successful

package deliver.
The RDF graph G encoding of the problem instance is maintained by the stigmergic

system’s MEDIUM component. As described in Section 4, any GET request as part of a TRUCK
agent’s situated perception (cf. Equation (8)) will trigger the following server-side updates

qEVO ≡

 ?i a trucks:Package, stig:Topos .
⇓

?i stig:carries [a stig:Stigma; stig:level ci(t)].

 (33)

and drive the evolution of the system’s package markers.

6.3. Truck Agent Model

A truck agent TRUCK = PERC(u, G = ∅, L = ∅) is initially situated in a location i,
specified by the scenario description. Situatedness of the agent on a resource i is expressed
by a triple (:truck stig:locatedAt <i>). The agent performs situated perception as
specified in Equation (8) with

(G′′ = ans(qPERC, G′)) ≡
(
∀t ∈ G′ ⇒ t ∈ G′′

)
(34)

Let i be the resource the agent is currently situated on, and :trucks denote the resource
representing the TRUCKS agent. When selecting its reaction (cf. Equation (11)), the agent may
perform a PICKUP, if situated on a resource representing a package, or DROP and DELIVER a
package from its bay, if situated on a location that receives a package, with:

REACT(i, G, L) =if i /∈ L then PERC(j ∈ L, ∅, ∅)

elseif (< i > a trucks : Location) ∈ G then DROP(i, G).DELIVER(i, G)

elseif (< i > a trucks : Package) ∈ G then PICKUP(i, G)

(35)

Mathematics 2022, 10, 1041 15 of 21

PICKUP(i, G) = MOVE(:truck, l) ; (<i> stig:adjacentTo <l>) ∈ G (36)

MOVE(i, a) ; a = argmax<a>
?p

<a> a trucks:Area;
trucks:position ?p ;
trucks:status trucks:empty .

 (37)

DELIVER(i, G) =if
(
<p> a trucks:Package ;

stig:adjacentTo <i> .

)
,

<g> a trucks:Goal ;
trucks:payload <p>;
trucks:destination <i> .

 ∈ G

then DEL(i, ∅, ∅)

(38)

DROP(i, G) =if

<p> a trucks:Package ;
stig:adjacentTo <a> .

<a> a trucks:Area .

 ,

<g> a trucks:Goal ;
trucks:payload <p>;
trucks:destination <i> .

 ∈ G

or if

<p> a trucks:Package ;

stig:adjacentTo <i> ;
stig:carries [a stig:Stigma ;

stig:level ?cp] .

 ∈ G , ?cp > 0,

and

<q> a trucks:Package ;

stig:adjacentTo [a trucks:Area] ;
stig:carries [a stig:Stigma ;

stig:level ?cq] .

 ∈ G , ?cq = 0,

and
∣∣∣∣(<a> a trucks:Area ;

trucks:status :empty .

)
∈ G

∣∣∣∣ < |<p>|,
then MOVE(k, i) ; k = argmin<k>

?pos

<k> a truck:Package ;

stig:adjacentTo <a> .
<a> a trucks:Area ;

trucks:position ?pos

(39)

During PICKUP, the truck agent will move the package, on which it is currently situated,
from its current location to the furthest back free loading area in the bay, i.e., insert a triple
(<i> stig:adjacentTo <a>), and subsequently relocate the truck to the location from
which it picked up the package.

Conversely, DROP will move the front-most package from the loading bay to the
location on which the truck is currently located. The truck will also DROP the front-most
package as long as there are more urgent packages located on i, than the truck can currently
accommodate, but the space in the truck is occupied with non urgent packages. If the
location i on which the truck is situated is destination to any of the packages located on
i, they are DELIVERed, i.e., removed from the scenario, and the respective delivery goal
is marked as completed. Note that whenever the truck reaches a location to which a
package needs to be delivered, the truck prioritises unloading and delivering over any
pickup action.

PICKUP, DROP and DELIVER increase the simulation time clock by the duration for these
action as defined by the scenario. (In the evaluated use cases, PICKUP, DROP and DELIVER
take 1 time step each.)

If none of the conditions above apply, the truck will update its linkset and relocate to
another resource (cf. Equation (10)):

Let (L′′ = sel(qNAV, G′′)) ≡ L′′ = n(◦) denote the evaluation of the navigational
query, then as a result of perceiving i, and neighbouring locations j, the agent may further
decide to navigate to another location as follows:

Mathematics 2022, 10, 1041 16 of 21

1. If (<p> stig:adjacentTo <i>) ∈ G , i.e, if there is any package on the trucks current
location, then:

n(◦) = argmax<p>
?dist

{argmax<p>|a|
?c

{p |

<i> a trucks:Location ;
trucks:driveTime [trucks:destination ?q ;

rdf:value ?dist] .
<p> stig:adjacentTo <i> ;

stig:carries [a stig:Stigma ;
stig:level ?c] .

<a> a trucks:Area ;
trucks:status :empty .

<g> a trucks:Goal ;
trucks:destination <d> ;
trucks:payload <p> .

∈ G}} (40)

Consequently, out of the |a| most urgent packages, with |a| being the number of
free loading bay areas in the truck, the truck moves to the package with the farthest
distance to its destination, leading to loading urgent parcels with nearby delivery
destinations last.

2. If above condition is not satisfied, i.e., there are no packages on i or the loading bay is
full, then if for any package p with (<p> stig:adjacentTo [a trucks:Area]) ∈ G
there is (<p> stig:carries a stig:Stigma ; stig:level ?c]) ∈ G with c > 0,
i.e., any package within the truck’s loading bay has exceeded it’s delivery confi-
dence value:

n(◦) = argmaxl
?c

{l |

<p> a trucks:Package ;
stig:carries [a stig:Stigma ;

stig:level ?c] .
<g> a stig:Goal ;

trucks:destination <l> ;
trucks:payload <p> .

 ∈ G, c > 0}} (41)

Consequently, the truck moves to the next location l to which a package needs to be
delivered most urgently.

3. If none of the packages needs to be delivered urgently, then:

n(◦) = argmax<l>
?c

{l |

<l> a stig:Location .
<p> a trucks:Package ;

stig:adjacentTo <l> ;
stig:carries [a stig:Stigma ;

stig:level ?c] .

 ∈ G, c > 0} (42)

Consequently, the truck moves to the location with the package with the highest
marker concentration c.

4. If for none of the packages it holds that marker concentration c > 0, move to the
location where the package in the front of the loading bay, i.e., the package that would
be unloaded next, needs to be delivered:

n(◦) = argmin<l>
?pos

{l |

<p> stig:adjacentTo <a> .
<a> a trucks:Area;

trucks:position ?pos .
<g> a trucks:Goal ;

trucks:payload <p> ;
trucks:destination <l> .

 ∈ G} (43)

Mathematics 2022, 10, 1041 17 of 21

5. Finally, if the truck is empty and none of the packages in any location carries a marker
with marker concentration c > 0:

n(◦) = argmax<l>
|p|

{l |

<l> a trucks:Location .
<p> a trucks:Package ;

stig:adjacentTo <l> .

 (44)

By the behaviour as defined above, TRUCK agents react to the stigmata generated and
updated during evolution of the environment, as described in Section 6.2, or the relation
between package resources, and other Topoi. With marker concentrations being calculated
before queries by the truck agent are evaluated against the environment state, as it is
defined for environment evolution in Equation (20), the truck agent always perceives the
accurate marker concentrations, at the relevant topoi, at time of perception.

6.4. Evaluation

We evaluate above agents against Problems 1 through 5 of the time constrained trucks
world challenge of the IPC-5 (The original problem definitions are available for download
from https://lpg.unibs.it/ipc-5/, accessed on 21 March 2022, under “Resources”). These
problems each provide scenarios with a single truck agent. An extension of our trucks
world model to scenarios with a number of trucks operating simultaneously is ongoing, and
publication of the results is subject to future work. To show the adaptability of the system
and the chosen agent model, we use the same agent model and implementation throughout
every problem instance, without further adaption towards individual challenges.

Table 2 shows the problem dimensions of the different problem instances: Each of
the problems accommodates a set of 3 interconnected locations each, with an increasing
number of packages that need to be delivered. In all but the second problem instance, 3 of
the delivery instructions are constrained by a deadline, with the second problem specifying
only one deadline.

Table 2. Problem sizes of the Trucks World single agent problem instances.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

locations 3 3 3 3 3
Packages 3 4 5 6 7
Deadlines 3 1 3 3 3

The results of the evaluation are shown in Tables 3 and 4. Table 3 shows the deadlines
defined by the individual problem instances, and the time by which the respective packages
were delivered to the defined target destinations. Clearly, the agent manages to coordinate
the pickup and delivery runs in every problem to meet each given deadline.

Table 3. Deadlines and times of deliveries per package in the different problem instances: the truck
agent manages to meet all deadlines in all problems.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Pack. 1 Deadline 919.7 842.7 616.7 537.3 992.8
Delivered 432.9 769.1 569.6 491.4 729.2

Pack. 2 Deadline 919.7 N/A 925.1 1026.9 1866.7
Delivered 842.2 N/A 283.3 942.5 292.6

Pack. 3 Deadline 1813.7 N/A 925.1 2878.2 2878.0
Delivered 844.2 N/A 285.3 1737.2 2255.8

https://lpg.unibs.it/ipc-5/

Mathematics 2022, 10, 1041 18 of 21

Table 4. Number of steps and make span taken until the last package was delivered by the compared
approaches.

MIPS-XXL SGPLAN stigLD

Problem 1 Steps 12 14 12
MakeSpan 845.32 845.23 844.20

Problem 2 Steps 17 17 17
MakeSpan 1714.57 1711.44 1713.4

Problem 3 Steps 19 19 19
MakeSpan 1474.29 1470.14 1473.1

Problem 4 Steps 23 23 23
MakeSpan 2634.63 2629.45 2676.7

Problem 5 Steps N/A 28 29
MakeSpan N/A 1870.06 2255.8

Table 4 compares the performance of our approach to the two planners that solved
the time constraint trucks world problem in the IPC-5 (Results are available for download
from https://lpg.unibs.it/ipc-5/, accessed on 21 March 2022, under “Resources”), MIPS-
XXL [42] and SGPLAN [43]. This comparison shows that our solution does not only find
valid solutions in every problem instance w.r.t. deadlines, but also performs in the range
of efficiency as the reference planners. In all of the problems, we find solutions in at most
as many steps as the reference planners, while delivering all packages in the same time
ranges as the reference planners. Only in Problem 5, our solution takes one step more than
the only other competitor that solved the problem, SGPLAN, whereas MIPS-XXL did not
provide a solution at all.

Time Constraint Trucks World with Disturbances

A main feature of stigmergy-based systems is their robustness against disturbances
in the environment [5]. In order to demonstrate that by employing the methods and
technologies from this paper, a robust, adaptive agent behaviour emerges, we further
extended the original IPC trucks challenge.

In our extension, after a given time, new packages are created at a given locations,
and with given deadlines. Deadlines of packages that had not been delivered at the time of
disturbance are increased (coloured blue in Table 5) to keep the problem satisfiable, even if
the truck has to pick up newly created packages before those originally in the problem. We
omitted problems 1 and 2, as the low number of packages in the original problems did not
leave much of a margin to introduce disturbances that would actually disturb the original
problem execution.

Table 5. Adapted deadlines and time of completion for packages after introduced disturbance at time
t. Red: Newly added packages with deadlines, Blue: Deadlines changed from the original problem.

t Pack 1 Pack 2 Pack 3 Pack 4 Pack 5

Problem 3 300 925.1 925.1 1792.58 1744.48 1744.48 Deadline
283.3 285.3 569.6 1136.2 1721.2 Delivered

Problem 4 950 537.3 1026.9 3629.56 4224.76 4224.76 Deadline
491.4 942.5 1737.2 2979.0 4221.8 Delivered

Problem 5 500 1866.7 1877.32 3762.52 1393.42 1393.42 Deadline
292.6 1783.8 2692.4 822.4 1349.2 Delivered

Time of disturbances and new deadlines are chosen such that the disturbance happens
before the plan for the original problem has finished, i.e., the truck agent will have to react
to the newly created package delivery orders before finishing delivery of the packages that
were originally in the problem.

https://lpg.unibs.it/ipc-5/

Mathematics 2022, 10, 1041 19 of 21

New packages are created on the same location, but are to be delivered to different
destinations. We calculated the new deadlines such that while the truck may take one
connection between locations twice to deliver each of the packages to a different destination,
it is left only one movement to a neighbouring location, leading to that the truck will have
to combine deliveries to make the new deadlines. Remaining deadlines after the newly
introduced deadlines are shifted accordingly.

The results of our experiments with induced disturbances is shown in Table 5. Despite
constraints changing while the simulation is already running, the truck manages to meet
any given deadline, old ones as well as new ones. In Problem 5, the new deadlines were
created after the truck has already delivered the first package, thus deadline and delivery
time of that package did not change compared to the original problem. However, as
soon as new deadlines are generated, the truck prefers the newly created packages with
stricter deadlines over the originally placed ones (see Problem 5). Given that none of the
agents maintain memory or plans, we can by this show that the presented system is able to
react dynamically to changes in the environment, and without (re-)planning, manages to
generate valid solutions in dynamic environments.

7. Conclusions and Future Work

We proposed to use a value-passing fragment of Milner’s Calculus to formally specify
the generic hypermedia-driven behaviour of Linked Data agents and the Web as their
embedding environment. Based on this formalism, agents and their environment can
be composed into a concurrent Linked System with declarative queries serving as an
extension mechanism for specifying the domain-specific hypermedia-driven behaviour of
Linked Data agents.

Thereafter, we investigated stigmergic coordination principles, and their implemen-
tation within such Linked Systems. When considering some of the prime examples of
stigmergy, however, (e.g., ant or termite colony optimisation methods [37,38]), it became
apparent that a purely reactive Linked Data environment is insufficient for the implemen-
tation of transient marker-based stigmergic systems. In fact, the environments of such
stigmergic systems typically demonstrate some endogenous dynamics, e.g., diffusion, evap-
oration, or atrophy, and - in addition to being malleable and perceivable by all agents under
coordination—actively drive the evolution of such agent-less dynamic processes. Based on
this observation, we developed stigLD (https://github.com/dfki-asr/stigLD, accessed on
21 March 2022), a Linked Data framework for facilitating the design and declarative imple-
mentation of sematectonic, persistent marker-based and transient marker-based stigmergic
mechanisms within a hypermedia MAS.

We demonstrated the genericity and effectiveness of our modelling approach by
two evaluation scenarios. First, in a make-to-order (MTO) scenario from the production
domain, we demonstrated how to employ the stigLD concepts and domain model in order
to achieve self-coordination in a multi agent system using two transient semio-chemical
marker models. Our implementation displayed emergence of self-organised coordination
from simple agent behaviour and compared favourably against a random walk baseline
strategy. Second, we implemented a stigmergic agent system to solve instances of the (time
constrained) Trucks World domain as presented in the International Planning Competition
5 (IPC-5) [8]. Despite its simplicity, our implementation solved all problem instances
without constraint violations and is on-par with the leading planners in IPC-5.

The current state of the presented work requires to transfer the agent programs from
CCS specifications to an executable form, as CCS itself is not directly executable. We
are for this evaluating Behavior Trees [44,45] as semantically equivalent, but executable
representation of CCS expressions.

In ongoing research, we are concerned with bench-marking against more problems
from the International Planning Competition [8] and investigate evolutionary approaches
for automating the design of stigmergic hypermedia MASs.

https://github.com/dfki-asr/stigLD

Mathematics 2022, 10, 1041 20 of 21

Author Contributions: Conceptualization, R.S., T.S. and M.C.; Formal analysis, R.S. and T.S.; Funding
acquisition, R.S.; Investigation, R.S., T.S. and M.C.; Methodology, R.S., T.S. and M.C.; Software, T.S.
and M.C.; Supervision, R.S.; Validation, T.S. and M.C.; Visualization, M.C.; Writing—original draft,
R.S., T.S. and M.C.; Writing—review & editing, R.S., T.S. and M.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This work has been supported by the German Federal Ministry for Education and Research
(BMBF) as part of the MOSAIK project (grant no. 01IS18070-C).

Data Availability Statement: The data presented in this study are openly available in Github at
https://github.com/dfki-asr/BMBF-MOSAIK, accessed on 21 March 2022.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Ciortea, A.; Mayer, S.; Gandon, F.; Boissier, O.; Ricci, A.; Zimmermann, A. A Decade in Hindsight: The Missing Bridge Between

Multi-Agent Systems and the World Wide Web. In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems, Auckland, New Zealand, 9–13 May 2019.

2. Ciortea, A.; Boissier, O.; Ricci, A. Engineering World-Wide Multi-Agent Systems with Hypermedia; Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2019; Volume 11375 LNAI, pp. 285–301. [CrossRef]

3. Harth, A.; Käfer, T. Towards Specification and Execution of Linked Systems. In Proceedings of the 28th GI-Workshop Grundlagen
von Datenbanken (GvD), Nörten-Hardenberg, Germany, 24–27 May 2016; pp. 62–67.

4. Bizer, C.; Heath, T.; Idehen, K.; Berners-Lee, T. Linked data on the web (LDOW2008). In Proceedings of the 17th international
conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2008; pp. 1265–1266.

5. Heylighen, F. Stigmergy as a universal coordination mechanism I: Definition and components. Cogn. Syst. Res. 2016, 38, 4–13.
[CrossRef]

6. Heylighen, F. Stigmergy as a universal coordination mechanism II: Varieties and evolution. Cogn. Syst. Res. 2016, 38, 50–59.
[CrossRef]

7. Spieldenner., T.; Chelli., M. Linked Data as Stigmergic Medium for Decentralized Coordination. In Proceedings of the 16th
International Conference on Software Technologies—ICSOFT, Online Streaming, 6–8 July 2021; pp. 347–357. [CrossRef]

8. Gerevini, A.E.; Haslum, P.; Long, D.; Saetti, A.; Dimopoulos, Y. Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners. Artif. Intell. 2009, 173, 619–668. [CrossRef]

9. Heylighen, F.; Vidal, C. Getting things done: The science behind stress-free productivity. Long Range Plan. 2008, 41, 585–605.
[CrossRef]

10. Tummolini, L.; Castelfranchi, C. Trace Signals: The Meanings of Stigmergy; Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2007;
Volume 4389, pp. 141–156. [CrossRef]

11. Theraulaz, G.; Bonabeau, E. A brief history of stigmergy. Artif. Life 1999, 5, 97–116. [CrossRef] [PubMed]
12. Dipple, A.; Raymond, K.; Docherty, M. General Theory of Stigmergy: Modelling Stigma Semantics; Elsevier: Amsterdam, The

Netherlands, 2014. [CrossRef]
13. Hadeli, K.; Valckenaers, P.; Zamfirescu, C.; Van Brussel, H.; Saint Germain, B.; Hoelvoet, T.; Steegmans, E. Self-organising in multi-

agent coordination and control using stigmergy. In Proceedings of the International Workshop on Engineering Self-Organising
Applications, Melbourne, Australia, 15 July 2003; pp. 105–123.

14. Hadeli, K.; Valckenaers, P.; Kollingbaum, M.; Van Brussel, H. Multi-agent coordination and control using stigmergy. Comput. Ind.
2004, 53, 75–96. [CrossRef]

15. Valckenaers, P.; Van Brussel, H.; Kollingbaum, M.; Bochmann, O. Multi-agent Coordination and Control Using Stigmergy
Applied to Manufacturing Control. In Multi-Agent Systems and Applications, Proceedings of the 9th ECCAI Advanced Course, ACAI
2001 and Agent Link’s 3rd European Agent Systems Summer School, EASSS 2001, Prague, Czech Republic, 2–13 July 2001; Selected
Tutorial Papers; Luck, M.; Mařík, V., Štěpánková, O., Trappl, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 317–334.
[CrossRef]

16. Krieger, M.J.; Billeter, J.B.; Keller, L. Ant-like task allocation and recruitment in cooperative robots. Nature 2000, 406, 992–995.
[CrossRef] [PubMed]

17. Jevtić, A.; Gutierrez, Á.; Andina, D.; Jamshidi, M. Distributed bees algorithm for task allocation in swarm of robots. IEEE Syst. J.
2012, 6, 296–304. [CrossRef]

18. Kanamori, R.; Takahashi, J.; Ito, T. Evaluation of traffic management strategies with anticipatory stigmergy. J. Inf. Process. 2014,
22, 228–234. [CrossRef]

https://github.com/dfki-asr/BMBF-MOSAIK
http://doi.org/10.1007/978-3-030-25693-7_15
http://dx.doi.org/10.1016/j.cogsys.2015.12.002
http://dx.doi.org/10.1016/j.cogsys.2015.12.007
http://dx.doi.org/10.5220/0010518003470357.
http://dx.doi.org/10.1016/j.artint.2008.10.012
http://dx.doi.org/10.1016/j.lrp.2008.09.004
http://dx.doi.org/10.1007/978-3-540-71103-2_8
http://dx.doi.org/10.1162/106454699568700
http://www.ncbi.nlm.nih.gov/pubmed/10633572
http://dx.doi.org/10.1016/j.cogsys.2014.02.002
http://dx.doi.org/10.1016/S0166-3615(03)00123-4
http://dx.doi.org/10.1007/3-540-47745-4_15
http://dx.doi.org/10.1038/35023164
http://www.ncbi.nlm.nih.gov/pubmed/10984052
http://dx.doi.org/10.1109/JSYST.2011.2167820
http://dx.doi.org/10.2197/ipsjjip.22.228

Mathematics 2022, 10, 1041 21 of 21

19. Alfeo, A.L.; Cimino, M.G.; Egidi, S.; Lepri, B.; Vaglini, G. A Stigmergy-Based Analysis of City Hotspots to Discover Trends and
Anomalies in Urban Transportation Usage. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2258–2267. [CrossRef]

20. Weyns, D.; Holvoet, T. Model for Simultaneous Actions in Situated Multi-Agent Systems; Lecture Notes in Artificial Intelligence
(Subseries of Lecture Notes in Computer Science); Springer: Berlin/Heidelberg, Germany, 2003; Volume 2831, pp. 105–118.
[CrossRef]

21. Weyns, D.; Holvoet, T. A formal model for situated multi-agent systems. Fundam. Inform. 2004, 63, 125–158.
22. Weyns, D.; Omicini, A.; Odell, J.; Weyns, D.; Omicini, A.; Odell, J. Environment as a first class abstraction in multiagent systems

model of the environment. Auton. Agents-Multi-Agent Syst. 2007, 14, 5–30. [CrossRef]
23. Ferber, J.; Müller, J.P. Influences and Reaction: A Model of Situated Multiagent Systems. In Proceedings of the 2nd International

Conference on Multi-Agent Systems (ICMAS-96), Kyoto, Japan, 10–13 December 1996; pp. 72–79.
24. Ciortea, A.; Mayer, S.; Boissier, O.; Gandon, F. Exploiting Interaction Affordances: On Engineering Autonomous Systems for

the Web of Things. In Proceedings of the Second W3C Workshop on the Web of Things: The Open Web to Challenge IoT
Fragmentation, Munich, Germany, 3—5 June 2019.

25. Hunt, E.R.; Jones, S.; Hauert, S. Testing the limits of pheromone stigmergy in high-density robot swarms. R. Soc. Open Sci. 2019,
6, 190225. [CrossRef] [PubMed]

26. Jochum, B.; Nürnberg, L.; Aßfalg, N.; Käfer, T. Data-Driven Workflows for Specifying and Executing Agents in an Environment of
Reasoning and RESTful Systems; Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg, Germany, 2019;
Volume 362, pp. 93–105. [CrossRef]

27. Dipple, A.C. Standing on the Shoulders of Ants: Stigmergy in the Web. In Proceedings of the 20th International Conference
Companion on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 355–360.

28. Privat, G. Phenotropic and stigmergic webs: The new reach of networks. Univers. Access Inf. Soc. 2012, 11, 323–335. [CrossRef]
29. Charpenay, V.; Schraudner, D.; Seidelmann, T.; Spieldenner, T.; Weise, J.; Schubotz, R.; Mostaghim, S.; Harth, A. MOSAIK: A

Formal Model for Self-Organizing Manufacturing Systems. IEEE Pervasive Comput. 2020, 20, 9–19. [CrossRef]
30. Milner, R. A Calculus of Communicating Systems; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1980;

Volume 92. [CrossRef]
31. Milner, R. Communication and Concurrency; PHI Series in Computer Science; Prentice Hall: Hoboken , NJ, USA, 1989.
32. Genesereth, M.R.; Nilsson, N.J. Logical Foundations of Artificial Intelligence; Morgan Kaufmann: Burlington, MA, USA, 2012.
33. Smith, G.J.; Gero, J.S. What does an artificial design agent mean by being ‘situated’? Des. Stud. 2005, 26, 535–561. [CrossRef]
34. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.

Part B Cybern. 1996, 26, 29–41. [CrossRef] [PubMed]
35. Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation, Washington, DC, USA, 6–9 July 1999; Volume 2, pp. 1470–1477. [CrossRef]
36. Dorigo, M.; Bonabeau, E.; Theraulaz, G. Ant algorithms and stigmergy. Future Gener. Comput. Syst. 2000, 16, 851–871. [CrossRef]
37. Dorigo, M.; Stützle, T. Ant colony optimization: Overview and recent advances. In International Series in Operations Research and

Management Science; Springer: New York, NY, USA, 2019; Volume 272, pp. 311–351. [CrossRef]
38. Hedayatzadeh, R.; Akhavan Salmassi, F.; Keshtgari, M.; Akbari, R.; Ziarati, K. Termite colony optimization: A novel approach for

optimizing continuous problems. In Proceedings of the 2010 18th Iranian Conference on Electrical Engineering, Isfahan, Iran,
11–13 May 2010; pp. 553–558. [CrossRef]

39. Van Dyke Parunak, H. A Survey of Environments and Mechanisms for Human-Human Stigmergy. In Environments for Multi-Agent
Systems II; Weyns, D., Van Dyke Parunak, H., Michel, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 163–186.

40. Fielding, R.T.; Reschke, J. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC 7231. 2014. Available online:
https://www.rfc-editor.org/info/rfc7231 (accessed on 21 March 2022).

41. Fielding, R. Re: Draft Findings on Unsafe Methods (whenToUseGet-7). 2002. Online. Available online: https://lists.w3.org/
Archives/Public/www-tag/2002Apr/0150.html (accessed on 21 March 2022).

42. Edelkamp, S.; Jabbar, S.; Nazih, M. Large-scale optimal PDDL3 planning with MIPS-XXL. In Proceedings of the 5th International
Planning Competition Booklet (IPC-2006), Hakodate, Japan, 8 May 2006; pp. 28–30.

43. Chen, Y.; Hsu, C.W.; Wah, B.W. SGPlan: Subgoal partitioning and resolution in planning. In Proceedings of the 4th International
Planning Competition (IPC4), Hosted at the International Conference on Automated Planning and Scheduling, ICAPS’04,
Whistler, BC, Canada, 3–7 June 2004 ; pp. 30–33 .

44. Colledanchise, M.; Ögren, P. Behavior Trees in Robotics and AI: An Introduction; CRC Press: Boca Raton, FL, USA, 2018.
45. Shoulson, A.; Garcia, F.M.; Jones, M.; Mead, R.; Badler, N.I. Parameterizing behavior trees. In Proceedings of the International

Conference on Motion in Games, Edinburgh, UK, 13–15 November 2011; pp. 144–155.

http://dx.doi.org/10.1109/TITS.2018.2817558
http://dx.doi.org/10.1007/978-3-540-39869-1_10
http://dx.doi.org/10.1007/s10458-006-0012-0
http://dx.doi.org/10.1098/rsos.190225
http://www.ncbi.nlm.nih.gov/pubmed/31827817
http://dx.doi.org/10.1007/978-3-030-37453-2_9
http://dx.doi.org/10.1007/s10209-011-0240-1
http://dx.doi.org/10.1109/MPRV.2020.3035837
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1016/j.destud.2005.01.001
http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://dx.doi.org/10.1109/CEC.1999.782657
http://dx.doi.org/10.1016/S0167-739X(00)00042-X
http://dx.doi.org/10.1007/978-3-319-91086-4_10
http://dx.doi.org/10.1109/IRANIANCEE.2010.5507009
https://www.rfc-editor.org/info/rfc7231
https://lists.w3.org/Archives/Public/www-tag/2002Apr/0150.html
https://lists.w3.org/Archives/Public/www-tag/2002Apr/0150.html

	Introduction
	Varieties of Stigmergy and Related Work
	Process Algebra, Agents and Linked Systems
	Theoretical Setting: CCS with Value-Passing
	Linked Data Servers, Agents and Linked Systems
	Linked Data Servers
	Tropistic Linked Data Agents
	Linked Systems

	Synthesis

	Stigmergy in Linked Systems
	stigLD: A Domain Model for Stigmergic Linked Systems
	stigFN: SPARQL Functions for Stigmergic Linked Systems

	Use Case: Make-to-Order Fulfilment
	Shop Floor Representation in StigLD
	Agent Models
	Order Assignment Agents: Transient Stigmergy Based on Linear Decay
	Transporter Agents: Transient Stigmergy Based on Diffusion

	Evaluation

	Use Case: IPC Trucks
	Trucks World Representation in StigLD
	Marker Model
	Truck Agent Model
	Evaluation

	Conclusions and Future Work
	References

