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Abstract: Distributed learning has received increasing attention in recent years and is a special need
for the era of big data. For a support vector machine (SVM), a powerful binary classification tool, we
proposed a novel efficient distributed sparse learning algorithm, the communication-efficient surro-
gate likelihood support vector machine (CSLSVM), in high-dimensions with convex or nonconvex
penalties, based on a communication-efficient surrogate likelihood (CSL) framework. We extended
the CSL for distributed SVMs without the need to smooth the hinge loss or the gradient of the loss.
For a CSLSVM with lasso penalty, we proved that its estimator could achieve a near-oracle property
for l1 penalized SVM estimators on whole datasets. For a CSLSVM with smoothly clipped absolute
deviation penalty, we showed that its estimator enjoyed the oracle property, and that it used local
linear approximation (LLA) to solve the optimization problem. Furthermore, we showed that the
LLA was guaranteed to converge to the oracle estimator, even in our distributed framework and
the ultrahigh-dimensional setting, if an appropriate initial estimator was available. The proposed
approach is highly competitive with the centralized method within a few rounds of communications.
Numerical experiments provided supportive evidence.

Keywords: distributed learning; support vector machine; communication efficiency; surrogate loss
function; LLA algorithm; oracle property

MSC: 62H30; 62J07; 68W15

1. Introduction

The support vector machine (SVM), originally introduced by [1], has been a great
success when applied to many classification problems. Owing to its high accuracy and
flexibility it has provided solid mathematical foundations in machine learning. It is one
of the most popular binary classification tools. The motivation of an SVM is to find a
maximum-margin hyperplane by a regularized functional optimization problem. In sta-
tistical machine learning, the penalized functional is a sum of the hinge loss plus l2-norm
regularization. The statistical properties of an SVM have been studied in a lot of works.
In this work, we focused on a distributed penalized linear SVM for datasets with large
sample sizes and large dimensions.

With the development of modern technology, the size of data has become incredibly
large, and, in some cases, cannot even be stored on a single machine. In real-world
applications, many datasets are stored locally on individual servers and individual’s
devices, such as mobile phones and computers. It is difficult to collect these local data
onto a single machine due to communication costs and privacy preservation. Thus, new
methods and theories in distributed learning are called for. Distributed learning has
attracted increasing attention in recent years, for example, see Refs. [2,3] for M-estimation,
Refs. [4–6] for quantile regression, Refs. [7,8] for nonparametric regression, Refs. [3,9] for
confidence intervals, and so on. These works focus on the simple setting of data parallelism
under which the dataset is partitioned and distributed on m worker machines that can
analyze data independently. Most methods suggest that in each round of communication,
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each worker machine estimates the parameters of the model locally, and then communicates
these local estimators to a master machine that averages these estimators to form a global
estimator. Although this divide-and-conquer approach is communication-efficient, it has
some restrictions: for achieving the minimax rate of convergence, the number of worker
machines cannot be too large and samples in each worker machine should be large enough,
these restrictions are highly restrictive. In addition, averaging can perform poorly if the
estimator is nonlinear.

Not only can the size of data be exceedingly large, but also many successful models
are heavily over-parameterized. These problems have been discussed widely. Zou [10]
proposed an improved l1 penalized SVM for simultaneous feature selection and classifica-
tion, and showed that the hybrid SVM not only often improved the classification accuracy,
but also enjoyed better feature-selection performance. Meinshausen and Buhlmann [11]
studied the problem of variable selection in high-dimensional graphs, and explained that
neighborhood selection with the lasso is a computationally attractive alternative to stan-
dard covariance selection for sparse high-dimensional graphs. Zhao and Yu [12] studied
almost necessary and sufficient conditions for lasso to select the true model when p < n
or p � n, where p was the dimension of the model parameters and n was the sample
size. Meinshausen and Yu [13] introduced sparse representations for high-dimensional
data and proved that the estimator was still consistent even though the lasso could not
recover the correct sparsity pattern. The adaptive lasso was proposed by Zou [14] and is a
new version of the lasso that enjoys oracle properties. In the high-dimensional problems,
the dimension p of the covariates was larger than the size of data, but there were only a
few covariates that were relevant to the response. As a concrete example, in a microarray
data set, which contains more than 10,000 genes, only several genes will make a differ-
ence to the result. Recently, the statistical inference for high-dimensional data has been
investigated; readers can refer to [15,16] for details. In high-dimensional surroundings,
a standard SVM can be easily affected by many redundant variables, so variable selection
is important for high-dimensional SVMs. Fan and Fan [17] has shown that it was as poor
as “tossing a coin” if all features were used in classification due to the accumulation of
noise in high-dimensional analysis. Many works have been proposed to handle such a
problem. Bradley and Mangasarian [18], Peng et al. [19], Zhu et al. [20] and Wegkamp and
Yuan [21] studied the l1 penalized SVM; Fan and Li [22] proposed an approach of variable
selection and the estimation of model simultaneously by using a smoothly clipped absolute
deviation penalty (SCAD) or minimax concave penalty (MCP), which are non-convex.
Becker et al. [23], Park et al. [24] and Zhang et al. [25] considered the SCAD penalized SVM.
Lian and Fan [26] gave the divide-and-conquer debiased estimator for an SVM, but such
simple averaging might result in high computational costs for the high-dimensional prob-
lem, although it could become a debiased estimator by the lasso penalty. Jordan et al. [3]
proposed the communication-efficient surrogate likelihood (CSL) framework for solving
distributed statistical inference problems, which could work for high-dimensional penal-
ized regression. As [27] stated, the CSL approach is different from distributed first-order
optimization methods, which leverage both global first-order information and local higher-
order information; yet, to the best of our knowledge, the distributed inference of variable
selection for high-dimensional SVM has not been studied in the CSL framework.

In this paper, we propose communication-efficient distributed learning for support
vector machines in high dimensions. Instead of using all the data to estimate the parameters,
our method only needed to solve a regularized optimization problem on the first machine
that was based on all gradients obtained from all worker machines. For the penalty function,
we considered the convex l1 and the non-convex SCAD penalty in a high-dimensional SVM,
which could achieve variable selection and estimation simultaneously. In the distributed
learning high-dimensional SVM, we did not need smooth assumptions to the loss or the
gradient of the loss. We give some theoretical results in the paper.

The reminder of this paper is organized as follows. In Section 2, we give the problem
formulation. Communication-efficient distributed estimation for an SVM is presented in
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Section 3. In Section 4, we provide simulation studies and real data examples and demon-
strate encouraging performances.

2. Problem Formulation

In this section, we set up our learning problem formally. We considered a strategy,
which was empirical risk minimization, to obtain the optimal model. We considered
a distributed learning framework with m worker machines, in which the 1st machine
was regarded as the central machine. The 1st worker could aggregate information from
another m− 1 worker machines. In addition, every machine had n samples. So the size
of total samples was N = nm. For a standard binary classification problem, we denoted
X to be the input space and Y = {−1,+1} to be the output space. Random vectors
(X, Y) ∈ X × Y were drawn from an unknown joint distribution D on X × Y . Let the
parameters β =

(
β0, β1, . . . , βp

)T and the features xi =
(
1, xi1, . . . , xip

)T. Suppose that
training data points {(xi, yi)}N

i=1 are available from D. Let `(X, β) be a loss function and

β0 = arg min
β

E`(X, β),

where β0 =
(

β00, β01, . . . , β0p
)T is the true parameter. Let the i.i.d (independent identically

distributed) samples {(xi, yi)}N
i=1 be stored on m machines and use Ik to denote the indices

of samples on the kth machine with |Ik| = n = N/m for all k ∈ [m] and Ij ∩ Ik = ∅ for j 6=
k, j, k ∈ [m]. The empirical risk of the kth machine is defined by

L̂k(β) =
1
|Ik| ∑

i∈Ik

`(β; (xi, yi)),

the empirical risk based on all N samples is

L̂(β) =
1
m

m

∑
k=1

L̂k(β).

We used structural risk minimization strategy to learn β0, which is defined by

β̂ = argminβ{L̂(β) + g(β)},

where g(β) is the penalty term, such as l1, l2, SCAD and MCP.
In distributed statistical learning, Jordan et al. [3] proposed a distributed estimator

with statistical guarantee and communication efficiency. Given an appropriate initial
estimator β̃, we have

L̃(β) = L̂1(β)− βT
(
∇L̂1(β̃)−∇L̂(β̃)

)
.

By the above formula, we could introduce a communication-efficient distributed
learning algorithm: the first worker machine broadcasts the initial β̃ = β̂1 to the remaining
m− 1 machines and each machine computes the local gradient ∇L̂k(β̃). Then, these local
gradients are sent back to the first machine where the first worker carries out an SVM by
aggregating these local gradients. The communication-efficient estimator is given by

β̌ = argminβ{L̃(β) + g(β)},

with approximate loss L̃(β). The architecture of the distributed learning reduced the total
communication costs O((m− 1)np) to O((m− 1)p), where p is the dimension of β.
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3. Distributed Learning for an SVM

A standard non-separable SVM has the following form,

L̂(β) + g(β) =
1
N

N

∑
i=1

(
1− yixT

i β
)
+
+

λ

2
‖β∗‖2

2,

where (x)+ = max(x, 0) is the hinge loss function that is piecewise linear and is differen-

tiable except at point 0; β∗ =
(

β1, . . . , βp
)T is the unknown p-dimensional parameter; λ is

the regularization parameter, which determines the importance of penalty term. The true
parameter β0 is the minimum of the following population loss function

L(β) = E
[
1−YXTβ

]
+

.

We define
S(β) = −E

{
I
(

1−YXTβ > 0
)

YX
}

,

H(β) = E
{

δ
(

1−YXTβ
)

XXT
}

,

where I{·} is the indicator function and δ{·} is the Dirac delta function. The S(β) and
H(β) could be viewed as the gradient vector and Hessian matrix of L(β).

The empirical loss function of the kth worker machine is L̂k(β) =
1
|Ik| ∑i∈Ik

(
1− yixT

i β
)
+.

Given β̃ is an initial estimator of β0, we use L̃(β) := L̂1(β)− βT
(
∇L̂1(β̃)−∇L̂(β̃)

)
to

replace L̂(β) = 1
N ∑N

i=1
(
1− yixT

i β
)
+, and then obtain the distributed estimator

β̌ = arg min
β

L̃(β) + g(β). (1)

In this paper, we considered the l1 penalty and SCAD penalty, respectively. The l1
penalty is

g(β) = λ‖β‖1,

and the SCAD penalty is

g(β) =
p

∑
j=1

pλ

(∣∣β j
∣∣),

where

pλ(t) = λ|t|I(0 6 |t| < λ) +
aλ|t| −

(
t2 + λ2)/2

a− 1
I(λ 6 |t| 6 aλ)

+
(a + 1)λ2

2
I(|t| > aλ)

for some a > 2. Note that the SCAD penalty has the following properties:
Property 1: pλ(t) is symmetric and for t ∈ [0, ∞) is non-decreasing and concave,

with pλ(0) = 0.
Property 2: The derivative of pλ(t) is continuous on (0, ∞): for some a > 1,

limt→0+ p′λ(t) = λ, p′λ(t) > λ− t/a for 0 < t < a, and p′λ(t) = 0 for t > aλ.
In practice, we adopted the following CSL distributed learning for an SVM, which

is summarized in Algorithm 1. However, our theories were based on the distributed
estimator β̌ in (1).
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Algorithm 1: CSL distributed support vector machine (CSLSVM).

Input: Compute the initial estimator β(0) = β̃ on the first machine using l1
penalized SVM.

for t = 0, 1, · · · , T − 1 do
The 1st machine: broadcast the current iterate β(t) to other worker machines.
for all k ∈ {1, 2, · · · , m} parallel do

Worker machine k:
evaluate local gradient ∇L̂k(β(t))

send ∇L̂k(β(t)) to the 1st machine.
end
The 1st machine: aggregate gradients

∇L̂(β(t)) =
1
m

m

∑
k=1

L̂k(∇β(t)),

for SVM with l1 penalty (Call it L1SVM algorithm), compute

β(t+1) = arg min
β

L̂1(β)− βT
(
∇L̂1(β(t))−∇L̂(β(t))

)
+ λ‖β‖1;

for SVM with SCAD penalty (Call it SCADSVM algorithm), computes

β(t+1) = arg min
β

L̂1(β)− βT
(
∇L̂1(β(t))−∇L̂(β(t))

)
+ SCAD.

end
Output: β(T).

3.1. A Communication-Efficient Distributed SVM with Lasso Penalty

In this section, we establish the theoretical properties of the proposed estimator.
Despite the generality and elegance of [3]’s method, the approach uses only at least sec-
ond derivatives for smooth loss functions, such as cross-entropy loss, which can not
directly apply to the hinge loss of an SVM. Recall that surrogate loss L̃(β) := L̂1(β) −
βT
(
∇L̂1(β̃)−∇L̂(β̃)

)
. We only used first-order information, so if the gradient existed

almost everywhere, it was usable for the aforementioned method. For an SVM, the hinge
loss was differentiable except at point 0. We could use a subgradient function

∇L̂(β) = − 1
|Ik| ∑

i∈Ik

I
(

1− yixT
i β ≥ 0

)
yixi

in place of the gradient and, thus, the surrogate loss was directly usable.
Our main results were established under the following assumptions.
(A1) The conditional densities of XT β01 given Y = 1 and Y = −1 are denoted as f

and g, respectively. It is assumed that f is uniformly bounded away from 0 and ∞ in a
neighborhood of 1, and g is uniformly bounded away from 0 and ∞ in a neighborhood
of −1.

(A2) β0 is a sparse and nonzero vector, and S denotes the support of β0.
(A3) x is a sub-Gaussian random vector. That is, for any η ∈ Rp,

E
[
exp

{
ηTx
}]
≤ exp

{
C‖η‖2

}
;

it is assumed that each component xij of feather xi is a random variable with a mean of
zero and variance 1.
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Denote X = (X1, X2, . . . , Xn)
T to be the feature design matrix and define restricted

eigenvalues as follows,

λmax = max
δ∈Rp+1 :‖δ‖0≤Cq

δTX TX δ

n‖δ‖2
2

,

and

λmin(H(β∗); q) = min
δ∈∆

δT H(β∗)δ

‖δ‖2
2

,

where ∆ is a restricted cone in Rp+1,

∆ =
{

γ ∈ Rp+1 :
∥∥γS+

∥∥
1 ≤ 3

∥∥∥γSc
+

∥∥∥
1

}
,

S+ = S ∪ {0}, S ⊂ {1, 2, . . . , p} and |S| ≤ q.
(A4) λmax and λmin are bounded away from zero.

(A5) The initial estimator β̃ is sparse and
∥∥∥β̃− β0

∥∥∥
1
≤ Cq

√
log p

n .

Remark 1. Under Assumption (A1), the Hessian matrix H(β) was well-defined and continuous in
β. (A1) ensured that we could obtain sufficient information around the non-differentiable point of the
hinge loss; see more details in [24,28]. (A2) is a common assumption in high-dimensional problems
and we knew |S| ≤ s for some s ≤ min{p, n}. In this paper, we used q as the number of nonzero
entries in β0. Using the sub-Gaussianity assumption (A3), we easily obtained maxi‖xi‖∞ ≤
C
√

log p with probability 1− p−C. Assumption (A4) is similar to Lemma 2 in [19]; we used these
to control the bounds of the empirical loss function of the SVM and it’s expectation. (A5) is an
assumption of the initial estimator for the iterative algorithm; Ref. [19] proved that the L1-norm
SVM coefficients satisfied such assumptions.

Our results were as follows.

Theorem 1. Assume that (A1)–(A5) above and that λ ≥ 2
∥∥∥∇L̃(β0)

∥∥∥
∞

, we have with probability

at least 1− n−C,

∥∥∥β̌− β0

∥∥∥ ≤ C

[
λ
√

q +
q3/2(log p)5/2

n
+

(q log p)1/2

n1/2 +
q3/2 log p

n3/4

]
.

Remark 2. Although N did not appear in the formula, in fact, the condition λ ≥ 2
∥∥∥∇L̃(β0)

∥∥∥
∞

implied that the convergence rate was dependent on N. If m was not too big, that is, n was not
too small, we chose λ '

√
log p/N. If q & n1/4/(log p)1/2 and q log p/n3/4 .

√
log p/N, the

convergence rate would be dominated by the first term λ
√

q. That is,

∥∥∥β̌− β0

∥∥∥ ≤ C

√
q log p

N
.

This was a near-oracle property for the l1 penalized SVM estimator based on the entirety of the
datasets [27].

Proof of Theorem 1. We prove the result by the following three steps in line with the proof
of [6].

Step 1. Let δ = β̌− β0. Since L̃(β) is convex in β, we have

L̃(β)− L̃(β0) ≥ ∇L̃(β0)(β− β0)
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for all β. In terms of L̃(β̌) + λ‖β̌‖1 ≤ L̃(β0) + λ‖β0‖1 and Hölder’s inequality, we obtain

−
∥∥∥∇L̃(β0)

∥∥∥
∞
‖δ‖1 ≤ L̃(β̌)− L̃(β0) ≤ λ‖β0‖1 − λ‖β0 + δ‖1.

Using λ ≥ 2
∥∥∥∇L̃(β0)

∥∥∥
∞

, we obtain

−λ

2
‖δ‖1 ≤ λ‖β0‖1 − λ‖β0 + δ‖1.

Writing ‖δ‖1 = ‖δS‖1 + ‖δSc‖1, ‖β0‖1 = ‖β0S‖1 and ‖β0 + δ‖1 = ‖β0S + δS‖1+
‖δSc‖1, we obtain

−λ

2
‖δS‖1 −

λ

2
‖δSc‖1 ≤ λ‖δS‖1 − λ‖δSc‖1.

After rearranging, we have

‖δSc‖1 ≤ 3‖δS‖1.

Step 2. We observe that

L̃(β0 + δ)− L̃(β0)− δT∇L̃(β0) = L̂1(β0 + δ)− L̂1(β0)− δT∇L̂1(β0)

=
1
n

n

∑
i=1

(
1− yixT

i (β0 + δ)
)

I
{

yixT
i (β0 + δ) ≤ 1

}
− 1

n

n

∑
i=1

(
1− yixT

i (β0)
)

I
{

yixT
i (β0) ≤ 1

}
− δT∇L̃(β0)

=
1
n

n

∑
i=1

(
I
{

yixT
i (β0 + δ) ≤ 1

}
− I
{

yixT
i (β0) ≤ 1

})
+

1
n

n

∑
i=1

yixT
i

[
(β0 + δ)I

{
yixT

i (β0 + δ) ≤ 1
}
− β0 I

{
yixT

i β0 ≤ 1
}]

−δT∇L̂1(β0)

= Q1n + Q2n + Q3n. (2)

With arguments basically the same as the proof of Proposition 3, we could prove that
for any δ

sup
‖δ‖≤t

|Q1n − E(Q1n)| = sup
‖δ‖≤t

O

(
‖x‖1/2

∞ q1/4‖δ‖1/2
√

q log p
n

+ ‖x‖∞
q log p

n

)

= Op

(
(q log p)3/4t1/2

√
n

+
q(log p)3/2

n

)
, (3)

sup
‖δ‖≤t

|Q2n − E(Q2n)| = sup
‖δ‖≤t

O

(
‖x‖3/2

∞ q1/4‖β0‖1‖δ‖
1/2
√

q log p
n

+ ‖x‖∞
q log p

n

)

= Op

(
q3/4(log p)5/4t1/2

√
n

+
q(log p)3/2

n

)
. (4)

By following Proposition 1, we have

sup
‖δ‖≤t

|Q3n| = O
(∥∥∥∇L̂1(β0)

∥∥∥
∞
‖δ‖1

)
= Op

([√
log p

n
+

q log p
n3/4 +

q(log p)3/2

n

]
√

qt

)
. (5)
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Based on (2)–(5), we have with probability 1− n−C

sup
‖δ‖≤t

| L̂1(β0 + δ)− L̂1(β0)− δT∇L̂1(β0)− EL̂1(β0 + δ) + EL̂1(β0) |

≤ C

{
q3/4(log p)5/4t1/2

√
n

+

[√
log p

n
+

q log p
n3/4 +

q(log p)3/2

n

]
√

qt

}
.

Step 3. Assume that ‖β̌− β‖ > t for some t > 0. By step 1, this implies

inf
‖δ‖≥t

‖δSc‖1≤3‖δS‖1

L̃(β0 + δ)− L̃(β0) + λ‖β0 + δ‖1 − λ‖β0‖1 ≤ 0.

By the triangle inequality, we have ‖β0 + δ‖1 − ‖β0‖1 ≥ −‖δS‖1 ≥ −
√

q‖δS‖ ≥
−√qt. Using the result from Step 2 and the lower bound for E

[
L̂1(β0 + δ)

]
− E

[
L̂1(β0)

]
,

similar to Lemma 4 of [29], we have

L̃(β0 + δ)− L̃(β0)

≥ E
[

L̂1(β0 + δ)
]
− E

[
L̂1(β0)

]
− ‖δ‖1

∥∥∥∇L̃(β0)
∥∥∥

∞

− C

{
q3/4(log p)5/4t1/2

√
n

+

[√
log p

n
+

q log p
n3/4 +

q(log p)3/2

n

]
√

qt

}

≥ −C

{
q3/4(log p)5/4t1/2

√
n

+

[√
log p

n
+

q log p
n3/4 +

q(log p)3/2

n

]
√

qt

}
+ C(t2 ∧ t)− Cλ

√
qt.

Thus, we have

C(t2 ∧ t)− Cλ
√

qt− C

{
q3/4(log p)5/4t1/2

√
n

+

[√
log p

n
+

q log p
n3/4 +

q(log p)3/2

n

]
√

qt

}
≤ 0.

Some algebra shows that

t ≤ C

[
λ
√

q +
q3/2(log p)5/2

n
+

√
q log p

n
+

q3/2 log p
n3/4

]
.

Proposition 1. Under the same assumptions as Theorem 1 with probability at least 1− p−C

∥∥∥∇L̃(β0)
∥∥∥

∞
≤ C

(√
log p

N
+

q log p
n3/4 +

q(log p)3/2

n

)
.

Proof of Proposition 1. By the definition of L̃, we have ∇L̃(β0) = ∇L̂1(β0)− ∇L̂1(β̃) +

∇L̂(β̃) and thus∥∥∥∇L̃(β0)
∥∥∥

∞
≤
∥∥∥∇L̂1(β0)−∇L̂1(β̃)−∇L̂(β0) +∇L̂(β̃)

∥∥∥
∞
+
∥∥∥∇L̂(β0)

∥∥∥
∞

.

The last term above is the same as that dealt with in Lemma 1 in [19], which shows
that with probability at least 1− p−C,∥∥∥∇L̂(β0)

∥∥∥
∞
≤ C

√
log p/N.
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In Proposition 2, we show that with probability 1− p−C∥∥∥∥∥ 1
n ∑

i
yixi

(
I
{

yixT
i β̃ ≤ 1

}
− I
{

yixT
i β0 ≤ 1

})
− Eyx

(
I
{

yxTβ̃ ≤ 1
}
− I
{

yxTβ0 ≤ 1
})∥∥∥∥∥

∞

≤ C

(
q log p
n3/4 +

q(log p)3/2

n

)
.

Similarly,∥∥∥∥∥ 1
N ∑

i
yixi

(
I
{

yixT
i β̃ ≤ 1

}
− I
{

yixT
i β0 ≤ 1

})
− Eyx

(
I
{

yxTβ̃ ≤ 1
}
− I
{

yxTβ0 ≤ 1
})∥∥∥∥∥

∞

≤ C

(
q log p
N3/4 +

q(log p)3/2

N

)
≤ C

(
q log p
n3/4 +

q(log p)3/2

n

)
.

Thus, we have

∥∥∥∇L̂1(β0)−∇L̂1(β̃)−∇L̂(β0) +∇L̂(β̃)
∥∥∥

∞
≤ C

(
q log p
n3/4 +

q(log p)3/2

n

)
.

Then we can obtain∥∥∥∇L̃(β0)
∥∥∥

∞
≤ C

(√
log p

N
+

q log p
n3/4 +

q(log p)3/2

n

)
.

Proposition 2. Under the same assumptions as Theorem 1, with probability at least 1− p−C,
we have∥∥∥∥∥ 1

N ∑
i

yixi

(
I
{

yixT
i β̃ ≤ 1

}
− I
{

yixT
i β0 ≤ 1

})
− Eyx

(
I
{

yxTβ̃ ≤ 1
}
− I
{

yxTβ0 ≤ 1
})∥∥∥∥∥

∞

≤ C

(
q log p
N3/4 +

q(log p)3/2

N

)
.

Proof of Proposition 2. We take Ω =
{

β ∈ Rp : ‖β‖0 ≤ q, ‖β− β0‖1 ≤ Cq
√

log p/N
}

.
Define the class of functions

Gj =
{

yxj

(
I
{

yxTβ ≤ 1
}
− I
{

yxTβ0 ≤ 1
})

: β ∈ Ω
}

with squared integrable envelope function F(x, y) =
∣∣xj
∣∣. We decompose Ω as

Ω = ∪T⊂{1,...,p},|T|≤KΩ(T) with Ω(T) = {β : support of β ⊂ T} ∩ Ω. We also define
Gj(T) =

{
yxj
(

I
{

yxTβ ≤ 1
}
− I
{

yxTβ0 ≤ 1
})

: β ∈ Ω(T)
}

. By Lemma 2.6.15, Lemma 2.6.18
(vi) and (viii) in [30], for each fixed T ⊂ {1, . . . , p} with |T| ≤ Cq, Gj(T) is a VC-subgraph
with index bounded by Cq and by Theorem 2.6.7 of [30], we have

N
(
ε,Gj(T), L2(Pn)

)
≤
(

C‖F‖L2(Pn)

ε

)Cq

≤
(

C
ε

)Cq
.
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Since there are at most
(

p
Cq

)
≤ (ep/Cq)Cq different such T, we have

N
(
ε,Gj, L2(Pn)

)
≤
(

C
ε

)Cq( ep
Cq

)Cq
≤
(

Cp
ε

)Cq

and thus

N
(

ε,∪p
j=1Gj, L2(Pn)

)
≤ p

(
Cp
ε

)Cq
.

Let σ2 = sup f∈∪jGj
P f 2. Then by Theorem 3.12 of [31], we have

E‖Rn‖∪jGj
≤ C

(
σ

√
q log p

N
+

q
√

log p log p
N

)
,

where ‖Rn‖∪jGj
= sup f∈∪jGj

N−1 ∑N
i=1 εi f (xi, yi) with εi being i.i.d. Rademacher ran-

dom variables. Using the symmetrization inequality, which states that E‖Pn − P‖∪jGj
≤

2E‖Rn‖∪jGj
, where ‖Pn − P‖∪jGj

= sup f∈∪jGj
N−1 ∑i f (xi, yi) − E f (x, y), Talagrand’s in-

equality (page 24 of [31]) gives

P

(
‖Pn − P‖∪jGj

≥ C

(
σ

√
q log p

N
+

q
√

log p log p
N

+

√
σ2t
N

+

√
log pt
N

))
≤ e−t,

that is, with probability at least 1− p−C,∥∥∥∥∥ 1
N ∑

i
yixi

(
I
{

yixT
i β̃ ≤ 1

}
− I
{

yixT
i β0 ≤ 1

})
− Eyx

(
I
{

yxTβ̃ ≤ 1
}
− I
{

yxTβ0 ≤ 1
})∥∥∥∥∥

∞

≤ C

(
σ

√
q log p

N
+
√

log p
q log p

N

)
.

Finally, we need to decide the size of σ2. For β ∈ Ω, we have that

E
[(

I
{

xTβ ≤ 1
}
− I
{

xTβ0 ≤ 1
})2
| y = 1

]
≤ P

(
xTβ ≤ 1, xTβ0 ≥ 1 | y = 1

)
+ P

(
xTβ ≥ 1, xTβ0 ≤ 1 | y = 1

)
≤ C|xT(β− β0)|
≤ C

√
log pq

√
log p/N.

Thus, with probability at least 1− p−C,∥∥∥∥∥ 1
N ∑

i
yixi

(
I
{

yixT
i β̃ ≤ 1

}
− I
{

yixT
i β0 ≤ 1

})
− Eyx

(
I
{

yxTβ̃ ≤ 1
}
− I
{

yxTβ0 ≤ 1
})∥∥∥∥∥

∞

≤ C

(
q log p
N3/4 +

q(log p)3/2

N

)
.

Proposition 3. Under the same assumptions as Theorem 1, with probability at least 1− p−C,
we have
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∥∥∥∥∥ 1
N ∑

i
yixi

(
βI
{

yixT
i β ≤ 1

}
− β0 I

{
yixT

i β0 ≤ 1
})
− Eyx

(
βI
{

yxTβ̃ ≤ 1
}
− β0 I

{
yxTβ0 ≤ 1

})∥∥∥∥∥
∞

≤ C

(
q5/4(log p)3/2

n3/4 +
q2(log p)3/2

n

)
.

Proof of Proposition 3. The proof is similar to the proof of Proposition 2. We take
Ω =

{
β ∈ Rp : ‖β‖0 ≤ q, ‖β− β0‖1 ≤ Cq

√
log p/N

}
. Define the class of functions

Gj =
{

yxj

(
βI
{

yxTβ ≤ 1
}
− β0 I

{
yxTβ0 ≤ 1

})
: β ∈ Ω

}
with squared integrable envelope function F(x, y) = C

∣∣xj
∣∣. With probability at least 1− p−C,

we have∥∥∥∥∥ 1
N ∑

i
yixi

(
βI
{

yixT
i β̂ ≤ 1

}
− β0 I

{
yixT

i β0 ≤ 1
})
− Eyx

(
βI
{

yxTβ̂ ≤ 1
}
− β0 I

{
yxTβ0 ≤ 1

})∥∥∥∥∥
∞

≤ C

(
σ

√
q log p

N
+
√

log p
q log p

N

)
,

where σ2 = sup f∈Gj
P f 2. Next, we need to decide the order of σ2. For β ∈ Ω, using basic

inequality 2ab ≤ a2 + b2, we have that

E
[(

yxT
(

βI
{

xTβ ≤ 1
}
− β0 I

{
xTβ0 ≤ 1

}))2
| y = 1, x

]
≤E
[(

xT β0

(
I
{

xTβ ≤ 1
}
− I
{

xTβ0 ≤ 1
})

+
(

xT(β− β0)I
{

xTβ ≤ 1
}))2

| x
]

≤2E
[
(xT β0)

2
(

I
{

xTβ ≤ 1
}
− I
{

xTβ0 ≤ 1
})2
| | x

]
+ 2E

[([
xT(β− β0)

]2
I
{

xTβ ≤ 1
})
| x
]

≤2‖x‖2
∞‖β0‖

2
1

∣∣∣xT(β− β0)
∣∣∣+ 2

∣∣∣xT(β− β0)
∣∣∣2

≤2
√

q‖β0‖
2
1‖x‖

3
∞‖β− β0‖+ 2q‖x‖2

∞‖β− β0‖
2

=Op

(
q3/2(log p)2
√

n
+

q3(log p)2

n

)
.

Therefore, σ2 = O

(
q3/2(log p)2
√

n
+

q3(log p)2

n

)
. Thus, we complete the proof of

Proposition 3.

3.2. A Communication-Efficient SVM with SCAD Penalty

In this section, we further discuss the advantage of a distributed non-convex penalized
SVM in ultra-high dimension. Similarly, the oracle property of distributed non-convex
penalized SVM coefficients are be investigated.

Our main results were established under the following assumptions.
(C1) The densities of X given Y = 1 and Y = −1 are continuous and have common

support in Rq.
(C2) The densities of X given Y = 1 and Y = −1 have finite second moments.
(C3) The true model dimension q = O(Nc1) for some 0 6 c1 < 1

2 .

(C4) λmax

(
N−1XT

AX A

)
6 M1 for a constant M1 > 0, where λmax denotes the largest

eigenvalue and X A is the first qN + 1 columns of the design matrix.
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(C5) λmin{H(β01)} > M2 for some constant M2 > 0, where λmin denotes the small-
est eigenvalue.

(C6) There exist constants M3 > 0 and 2c1 < c2 6 1 such that N(1−c2)/2 min16j6qN

∣∣β0j
∣∣

> M3.
(C7) f is uniformly bounded away from 0 and ∞ in a neighborhood of 1, and g is

uniformly bounded away from 0 and ∞ in a neighborhood of −1, where f and g are the
conditional densities of XT β01 given Y = 1 and Y = −1, respectively.

Remark 3. Assumptions (C1)–(C2) and (C4)–(C5) are similar to the assumptions in Section 3.1,
which have been used by [25]. Assumption (C3) controled the divergence rate of the number of
nonzero coefficients, which could not be faster than

√
N. In addition, see Remark 2. Assumption

(C6) simply required that the signals could not decay too quickly, which implied that the relevant
signals were not too small so that it could be identified, which is common in the literature of
high-dimensional problems. Assumption (C7) was trivially held by the unbounded support of the
conditional distribution of X A given Y. See Remark 1 in [25].

First, we introduced the oracle estimator β̇ =
(

β̂1, 0
)

, where β̂1 was estimated by

covariates associated with the true model, and
∥∥∥β̂1 − β01

∥∥∥ = Op
{√

qN/N
}

when N → ∞
(based on all dataset) in [25].

In the non-convex penalty, there might be multiple local minimums. We used BN(λ)
to denote the set of local minimums. T he non-convex problem could be written as the dif-
ference of two convex functions, and then presented as a sufficient local optimal condition.

Let

f (β) = L̂1(β)− βT
(
∇L̂1(β̃)−∇L̂(β̃)

)
+

p

∑
j=1

pλ

(∣∣β j
∣∣).

Although f (β) is non-convex, we can write it as

f (β) = g(β)− h(β),

where

g(β) = n−1
n

∑
i=1

(
1−YiXT

i β
)
+
+ λ

p

∑
j=1

∣∣β j
∣∣− βT∇L̂1(β̃)

and

h(β) = λ
p

∑
j=1

∣∣β j
∣∣− p

∑
j=1

pλ

(∣∣β j
∣∣)− βT∇L̂N(β̃).

Obviously, h(β) and g(β) are convex.
To present our main results, we need a sufficient local optimal condition based on

subgradient estimation as described below.

Lemma 1. (Sufficient local optimal condition) if there is a neighbourhood U around the point x∗

such that ∂h(x) ∩ ∂g(x∗) 6= ∅, ∀x ∈ U ∩ dom(g), then x∗ is a local minimum of g(x)− h(x).

Lemma 1 has been stated as Corollary 1 in [32]. The main results are summarized in
the following theorem.

Theorem 2. Assume that assumptions (C1)–(C7) hold, the oracle estimator satisfies

P
{

β̇ ∈ BN(λ)
}
→ 1,

when N → ∞, λ = o
(

N−(1−c2)/2
)

and q log p log(N)N−1/2 = o(λ).
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Remark 4. From Theorem 2, we could see that the oracle estimator held when taking λ = N−1/2+δ

for some c1 < δ < c2/2 even for p = o
(

exp(N(δ−c1)/2)
)

. So, the local oracle property held for a
non-convex distributed penalized SVM even when the number of features, p, grew exponentially
with the sample size, N, of the whole dataset.

Proof of Theorem 2. We sketch our proof as follows:
Step 1. From Theorem 1 in [25], we obtain some properties about sj(β̇) and β̂ j,

with probability approaching 1,

sj(β̇) = 0, j = 0, 1, . . . , q,

∣∣β̂ j
∣∣ > (a +

1
2

)
λ, j = 1, . . . , q,∣∣sj(β̇)

∣∣ 6 λ,
∣∣β̂ j
∣∣ = 0, j = q + 1, . . . , p.

Step 2. By Proposition 1, we have with probability approaching 1− p−c,

∥∥∥∇L̂1(β̃)−∇L̂(β̃)
∥∥∥

∞
≤ C

(√
log p

N
+

√
log p

n
+

q log p
n3/4 +

q(log p)3/2

n

)
,

so that when n→ ∞, we obtain P
{∥∥∥∇L̂1(β̃)−∇L̂(β̃)

∥∥∥
∞
< δ

}
→ 1 for some δ > 0.

Step 3. Let
G =

{
ξ =

(
ξ0, . . . , ξp

)}
,

where
ξ0 = ∇L̂1(β̃)0,

ξ j = λ sgn(β̇)j +∇L̂1(β̃)j, j = 1, . . . , q,

ξ j = sj(β) +∇L̂1(β̃)j + λlj, j = q + 1, . . . , p,

lj ∈ [−1, 1], j = q + 1, . . . , p.

By Step 1, we obtain P{G ⊆ ∂g(β̇)} → 1. Then we show that there exist ξ∗ ∈ G such
that P

{
ξ∗j = ∂h(β)/∂β j

}
→ 1 as n→ ∞ for any β in Rp+1 with center β̇ and radius λ/2.

Since ∂h(β)/∂β0 = ∇L̂(β̃)0, by Step 2 we have ξ∗0 = ∂h(β)/∂β0.

For j = 1, . . . , q, we have min16j6q
∣∣β j
∣∣ > min16j6q

∣∣β̂ j
∣∣−max16j6q

∣∣β̂ j − β j
∣∣ > (a + 1

2

)
λ− λ/2 = aλ with probability 1 by Step 1. Therefore, by Property 2 of the class of penalties
P
{

∂h(β)/∂β j = ξ j = λ sgn(β j) +∇L̂N(β̃)j

}
→ 1 for j = 1, . . . , q. For sufficiently large

n, sgn
(

β j
)
= sgn(β̇ j), ∇L̂N(β̃)j = ∇L̂1(β̃)j. Thus we have P

{
ξ∗j = ∂h(β)/∂β j

}
→ 1 as

n→ ∞ for j = 1, . . . , q.
For j = q + 1, . . . , p, we have P

{∣∣β j
∣∣ 6 ∣∣β̂ j

∣∣+ ∣∣β j − β̂ j
∣∣ 6 λ

}
→ 1 by Step 1 . Therefore

P
{

∂h(β)/∂β j = 0
}
→ 1 for SCAD. By Property 2, P

{∣∣∂h(β)/∂β j
∣∣ 6 λ

}
→ 1 for the class

of penalties. By lemma 1, we have P
{∣∣sj(β̂ j)

∣∣ 6 λ
}
→ 1 for j = q + 1, . . . , p. We can always

find lj ∈ [−1, 1] such that P
{

ξ∗j = sj(β̇) + λlj +∇L̂1(β̃)j = ∂h(β)∂β j

}
→ 1 for j = 1, . . . , q. This completes the proof.

In this paper, we did not need to assume that the solution of the minimum problem was
unique. By some numerical algorithms, which solve the non-convex penalized SCADSVM,
we could identify the oracle estimator. Ref. [33] introduced the LLA algorithm to obtain
the sparse estimator in non-convex penalized likelihood models. We applied the LLA
algorithm to our SCADSVM approach. Now, we flesh out the problem.
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Let β̃
(0)

=
(

β̃
(0)
0 , . . . , β̃

(0)
p

)T
. We update β̃

(t)
by solving

min
β

{
L̂1(β)− βT

(
∇L̂1(β̃

(t−1)
)−∇L̂(β̃

(t−1)
)

)
+

p

∑
j=1

p′λ
(∣∣∣β̃(t−1)

j

∣∣∣)∣∣β j
∣∣}.

Consider the following events:

(a) Fn1 =
{∣∣∣β̃(0)

j − β0j

∣∣∣ > λ, f or 1 6 j 6 p
}

;

(b) Fn2 =
{∣∣β0j

∣∣ < (a + 1)λ, f or 1 6 j 6 q
}

;
(c) Fn3 = { for all subgradients s(β̇),

∣∣sj(β̇)
∣∣ > (1− 1/a)λ for some q + 1 6 j 6 p or∣∣sj(β̇)

∣∣ 6= 0 for some 0 6 j 6 q};
(d) Fn4 =

{∣∣β̂ j
∣∣ < aλ, f or 1 6 j 6 q

}
.

(e) Fn5 =
{∣∣∣∇L̂1(β̃)j −∇L̂(β̃)j

∣∣∣ > δ, f or 1 6 j 6 q
}

.

The first four events are similar to [25]. Denote Pni = P(Fni), then we have the
following Theorem 3.

Theorem 3. Using LLA algorithm initiated by β̃
(0)

, we can obtain the oracle estimator after two
iterations with probability at least 1− Pn1 − Pn2 − Pn3 − Pn4 − Pn5.

Remark 5. Theorem 3 gave a non-asymptotic lower bounded probability, which implied the oracle
estimator could be obtained by the LAA algorithm. That is, the LAA algorithm could identify the
oracle estimator in two iterations.

Proof of Theorem 3. Assume that none of the events Fni is true, for i = 1, . . . , 5. The prob-
ability that none of these event is true is at least 1− Pn1 − Pn2 − Pn3 − Pn4 − Pn5. Then
we have ∣∣∣β̃(0)

j

∣∣∣ = ∣∣∣β̃(0)
j − β0j

∣∣∣ 6 λ, q + 1 6 j 6 p,∣∣∣β̃(0)
j

∣∣∣ > ∣∣β0j
∣∣− ∣∣∣β̃(0)

j − β0j

∣∣∣ > aλ, 1 6 j 6 q.

By properties of the class of non-convex penalties, we have p′λ
(∣∣∣β̃(0)

j

∣∣∣) = 0 for

1 6 j 6 q. Therefore, the solution of the next iteration of β̃
(1)

is the solution to the
convex optimization

β̃
(1)

= arg min
β

L̂1(β)− βT
(
∇L̂1(β̃

(0)
)−∇L̂(β̃

(0)
)

)
+

p

∑
j=q+1

p′λ
(∣∣∣β̃(0)

j

∣∣∣)∣∣β j
∣∣.

By the fact that Fn3 is not true, there are some subgradients of oracle estimator s(β̇)
such that sj(β̇) = 0 for 0 6 j 6 q and

∣∣sj(β̇)
∣∣ < (1− 1/a)λ for q + 1 6 j 6 p. By the

definition of subgradient, we have

L̂1(β) ≥ L̂1(β̇) + ∑
06j≤p

sj(β̇)
(

β j − β̂ j
)

= L̂1(β̇) + ∑
q+16j6p

sj(β̂)
(

β j − β̂ j
)
.
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Then we have for any β{
L̂1(β)− βT

(
∇L̂1(β̃

(0)
)−∇L̂(β̃

(0)
)

)
+

p

∑
j=q+1

p′λ
(∣∣∣β̃(0)

j

∣∣∣)∣∣β j
∣∣}

−
{

L̂1(β̇)− β̇
T
(
∇L̂1(β̃

(0)
)−∇L̂(β̃

(0)
)

)
+

p

∑
j=q+1

p′λ
(∣∣∣β̃(0)

j

∣∣∣)∣∣β̂ j
∣∣}

≥ ∑
q+16j6p

{
p′λ
(∣∣∣β̃(0)

j

∣∣∣)− sj(β̂) sgn
(

β j
)}∣∣β j

∣∣− (β− β̇)T
(
∇L̂1(β̃

(0)
)−∇L̂(β̃

(0)
)

)
≥ ∑

q+16j6p

{
(1− 1/a)λ− sj(β̂) sgn

(
β j
)}∣∣β j

∣∣− (β− β̇)T
(
∇L̂1(β̃

(0)
)−∇L̂(β̃

(0)
)

)
≥ 0 .

So we can obtain β̃
(1)

= β̇. This proves that the LLA algorithm finds the oracle
estimator after one iteration.

If Fn2 is not true, one obtains
∣∣β̂ j
∣∣ > aλ for all 1 6 j 6 q. So we have p′λ

(∣∣β̂ j
∣∣) = 0 for

all 1 6 j 6 q and p′λ
(∣∣β̂ j

∣∣) = p′λ(0) = λ for all q + 1 6 j 6 p by Property 2 of the class of
penalties. At iteration 1, when the LLA algorithm has found β̂, the solution to the next LLA

iteration β̃
(2) is the minimum of the convex optimization problem

β̃
(2)

= arg min
β

L̂1(β)− βT
(
∇L̂1(β̃

(1)
)−∇L̂(β̃

(1)
)

)
+ ∑

q+16j6p
λ
∣∣β j
∣∣.

Then we have for any β{
L̂1(β)− βT

(
∇L̂1(β̃

(1)
)−∇L̂(β̃

(1)
)

)
+ ∑

q+16j6p
λ
∣∣β j
∣∣}

−
{

L̂1(β̇)− β̇
T
(
∇L̂1(β̃

(1)
)−∇L̂(β̃

(1)
)

)
+ ∑

q+16j6p
λ
∣∣β j
∣∣}

≥ ∑
q+16j6p

{
λ− sj(β̇) sgn

(
β j
)}∣∣β j

∣∣− (β− β̇)T
(
∇L̂1(β̃

(0)
)−∇L̂(β̃

(0)
)

)
≥ 0.

Hence, the iteration 2 finds an oracle estimator β̃
(2)

= β̇ again and the algorithm stops.

4. Numerical Experiments
4.1. Simulation Experiments

We considered four models to evaluate the finite sample performance of the distributed
SVM. The first and the second models were similar to models 1 and 2 of [27], respectively.
The first model was essentially a standard linear discriminant analysis which was used
in [19,24,25]. The other three models were probit regression under a different setting.
In numerical simulation experiments, we generated the data in R, and used CPLEX solver
to solve the optimization problem in AMPL for model 1. In addition, we used Python for
the other models.

Model 1: Pr(Y = 1) = Pr(Y = −1) = 0.5, X∗|(Y = 1) ∼ MN(µ, Σ), X∗|(Y = −1) ∼
MN(−µ, Σ), q = 5, µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T ∈ Rp, Σ =

(
σij
)

with non-zero
elements σii = 1 for i = 1, 2, . . . , p and σij = ρ = −0.2 for 1 6 i 6= j 6 q. The Bayes rule is
sgn(2.67X1 + 2.83X2 + 3X3 + 3.17X4 + 3.33X5) with Bayes error 6.3%.
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Model 2: X∗ ∼ MN(0, Σ), Σ =
(
σij
)

and σij = 0.4|i−j| for 1 6 i 6= j 6 p, σij = 1 for

i = j, Pr(Y = 1 | X∗) = Φ
{
(X∗)Tβ∗

}
, where Φ(·) is the cumulative density function of the

standard normal distribution. The Bayes rule is sgn(1X1 + 1X2 + 1X3 + 1X4) with Bayes
error 10.4%.

Model 3: X ij ∼ MN(0, Σ), Σ =
(
σij
)

and σij = 0.5|i−j| for 1 6 i 6 n, 1 6 j 6 m,

Pr(Y = 1 | X∗) = Φ
{
(X∗)Tβ∗

}
where Φ(·) is the cumulative density function of the stan-

dard normal distribution. The true parameter β0 is set to be sparse and it’s first q entries
are uniformly distributed i.i.d. random variables from [0, 1].

Model 4: X ij ∼ MN(0, Σ), Σ =
(
σij
)

and σij = 0.5|i−j|/5 for 1 6 i 6 n, 1 6 j 6 m,

Pr(Y = 1 | X∗) = Φ
{
(X∗)Tβ∗

}
, where Φ(·) is the cumulative density function of the

standard normal distribution. The true parameter β0 is set to be sparse and it’s first q entries
are uniformly distributed i.i.d. random variables from [0, 1].This is an ill-conditioned case
for model 3.

For model 1, we used the dimension p = 500 and p = 1000, local sample size n = 200
and 500 , number of machines m = 5, 10, 15, 20. For models 2–4, the dimension p = 1000,
number of machines m = 5, 10, 20, and total sample size N = nm = 10,000.

We compared the finite sample performances of the following four estimators:

• L1SVM algorithm: the proposed communication-efficient estimator β̌
L1

;

• SCADSVM algorithm: the proposed communication-efficient estimator β̌
SCAD

;

• Cen algorithm: the central estimator β̂
Cen

, which computes the l1-regularized estima-
tor using all of the dataset;

• Sub algorithm: the sub-data estimator β̂
Sub

, which computes the l1-regularized esti-
mator using data only on the first machine.

We use the first model to compare the performance of variable selection among the
above four algorithms, which are listed in Table 1; and use the other models to evaluate the
estimation errors of parameters of algorithms via MSE, which are presented Figures 1–3.

The numbers in Table 1 are the number of zero coefficients incorrectly estimated to be
nonzero. The number of nonzero coefficients incorrectly estimated is zero, which meant
all of the four algorithms could find the relevant variables; hence, they are not listed.
From Table 1, we observed that:

(i) The centralized algorithm was the best among these algorithms because it used the
information of the whole dataset.

(ii) The sub algorithm was bad because it only used the information of the data on the
first machine.

(iii) Our proposed L1SVM and SCADSVM could both select relevant variables, and the
SCADSVM had a better performance than L1SVEM. This implied the non-convex
SCADSVM algorithm was more robust than convex L1SVEM, especially for the com-
plex models and massive datasets.

(iv) When N = mn was large, our two proposed distributed SVM algorithms were as good
as the centralized algorithm.

We gave the prediction error analysis for models 2–4, see Figures 1–3. From Figures 1–3,
we have the following observations:

(i) The central algorithm was still the best classifier, but had the highest communication
cost and risk of privacy leakage.There was a big gap between the sub estimator and
the centralized estimator.

(ii) Our two proposed communication-efficient estimators could match the central estima-
tor with a few rounds of communication. The prediction errors of SCADSVM were
lower than that of L1SVM, and it was more robust than L1SVM.
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Table 1. Variable selection results for Model 1.

n = 200, p = 500

m Sub L1SVM SCADSVM Cen

5 21 2 1 0
10 22 3 4 0
15 28 0 1 0
20 24 0 0 0

n = 200, p = 1000

m Sub L1SVM SCADSVM Cen

5 49 8 7 0
10 39 2 0 0
15 42 1 0 0
20 42 1 1 0

n = 400, p = 500

m Sub L1SVM SCADSVM Cen

5 4 4 0 0
10 3 0 0 0
15 5 0 0 0
20 1 0 0 0

n = 400, p = 1000

m Sub L1SVM SCADSVM Cen

5 6 0 0 0
10 7 0 0 0
15 4 0 0 0
20 4 0 0 0

p = 1000, q = 5, x ∼ N (0, Σ), σij = 0.4|i−j|

Figure 1. Prediction error analysis vs. rounds of communication when m = 5, 10, and 20 for model 2.

p = 1000, q = 5, x ∼ N (0, Σ), σij = 0.5|i−j|

Figure 2. Prediction error analysis vs. rounds of communication when m = 5, 10, and 20 for model 3.
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p = 1000, q = 5, x ∼ N (0, Σ), σij = 0.5|i−j|/5

Figure 3. Prediction error analysis vs. rounds of communication when m = 5, 10, and 20 for model 4.

4.2. Real Data

In this subsection, we verify the performance of the CSLSVM algorithm (L1SVM and
SCADSVM) using three real datasets. We use ‘a9a’, ‘w8a’, and ‘phishing’ datasets from the
LIBSVM website (https://www.csie.ntu.edu.tw/∼cjlin/libsvm/ accessed on 12 February
2022). These real datasets are listed Table 2. The ‘a9a’ dataset was an adult dataset from the
1994 Census database. The prediction task was to determine whether a person makes over
50K a year or not. The ‘w8a’ dataset was also based on the Census database, but it had more
features than ‘a9a’. The phishing dataset aimed to predict phishing websites. Phishing
is the process by which a fraudster impersonates a legitimate person by simulating the
same or similar web pages or websites to steal personal or private information for illegal
political and economic gain. As phishing is becoming more and more serious, phishing
web detection is gaining attention as an anti-phishing measure and technique.

Approximately 80% of the data was used to train the model and the remaining was
applied to test the model. In distributed learning, we used the number of worker machines
m = 5, 10, and 20, respectively. The results of classification errors for the three datasets are
provided in Figures 4–6. From Figures 4–6, we found the following:

(i) Since these datasets had no well-specified model, the curves behaved quite differently
on these datasets. However, overall there was a large gap between the sub algorithm
and centralized solution.

(ii) In most of the cases, the distributed L1SVM algorithm still converged quite slowly.
(iii) The proposed distributed SCADSVM could obtain a solution that was highly competi-

tive with the centralized model within a few rounds of communications, and was more
robust than the distributed L1SVM.

The experimental results on simulated and real datasets verified that the proposed
distributed SCADSVM/L1SVM algorithms were two effective procedures for distributed
sparse learning on classification via the SVM technique, which maintained efficiency in
both communication and computation.

Table 2. Real data used in the experiments.

Data Name Number of Data Features Task

a9a 48,842 123 Classification
w8a 64,700 301 Classification
phishing 11,055 68 Classification
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Figure 4. Classification error vs. rounds of communications for ’a9a’ data.

Figure 5. Classification error vs. rounds of communications for ’w8a’ data.

In the computational effort of the four methods, by numerical experiments, we also
observed the following. For the central algorithm, the whole dataset was used to train the
model, so it was the most accurate estimation, but had the highest computational cost and
had a risk of privacy leakage. The sub-data estimation algorithm had the least compu-
tational cost because of the small amount of data, and no communication was required;
however, it had the largest estimation error. Our proposed L1SVM and SCADSVM algo-
rithms were communication efficient and computational efficient using the CSL framework,
and could match the central estimator.

Figure 6. Classification error vs rounds of communications for ’phishing’ data.

5. Conclusions

In the paper, we proposed a novel distributed CSLSVM learning algorithm with
convex (l1)/nonconvex (SCAD) penalties based on a communication-efficient surrogate
likelihood (CSL) framework, which wads efficient in both communication and computa-
tion. For CSLSVM with l1 penalty, we proved that the estimator of L1SVM could achieve
a near-oracle property for an l1 penalized SVM estimator based on the whole datasets.
For CSLSVM with SCAD penalty, we showed that the estimator of SCADSVM enjoyed the
oracle property, i.e., one of the local minimums of the distributed non-convex penalized
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SVM behaved similarly to the oracle estimator based on the whole dataset, as if the true
sparsity was known in advance and only the relevant features were found to form the
decision boundary. We also showed that, as long as the initial estimator was appropri-
ate, the oracle estimator could be identified with a probability tending to 1. Extensive
experiments on both simulated and real data illustrated that the proposed SCLSVM algo-
rithm improved the performance of the work on the first worker machine and matched
the centralized method. In addition, the proposed distributed SCADSVM could obtain a
solution that was highly competitive with the centralized model within a few rounds of
communication, and was more robust than the distributed L1SVM.
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