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Abstract: Several characteristics of chess are investigated with methods of computability and number
theories. It is shown that for an unfinished game it is primitive recursively decidable whether
the game is winnable, drawable, or absolutely losable within a specified number of future moves
for the player whose turn it is to play on the last board of the game. It is also shown that there
exist primitive recursive procedures to compute optimal continuations of unfinished games within
specified numbers of future moves and that the set of chess games is recursive.
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1. Introduction

A deterministic two-player board game (D2PBG) is played by two players on a finite
board. The board is finite in the sense that it contains finitely many positions where each
player can make a move. The players take turns making moves on the board with exactly
one move per player per turn. The order of turns is pre-determined and cannot be changed
at any point during the game. At each turn, a move is chosen by a player out of finitely
many possible moves and uniquely determines the next board.

A D2PBG is a sequence of boards with a unique starting board. The last board (or
the end board) of any such sequence is reached from the starting board after finitely many
valid (i.e., allowed by the rules of the game) moves, and can be classified as a win for either
player, a draw, or an unfinished board in the sense that the game can continue from its end
board for a positive number of moves into the future. Examples of D2PBGs are Tic Tac
Toe [1] and numerous variants thereof (e.g., Qubic [2]), chess, and checkers.

We follow Kleene’s classification of computational methods into decision procedures
and calculation procedures (Chapter 6 in [3]). A decision procedure is a mechanical method
expressed in a symbolic formalism (e.g., λ-calculus [4] or the language L [5]) that returns,
in finitely many steps, a positive (e.g., 1) or negative (e.g., 0) answer to a class of problems.
We refer to such classes of problems as characteristics. Thus, the characteristic of relative
primality of two positive integers in number theory is decidable by a decision procedure
that uses Euclid’s algorithm to find their greatest common divisor, checks whether it is
equal to 1 and returns 1 (i.e., true) if it is, and 0 (i.e., false) if it is not. The characteristic of
winnability in the game of Tic Tac Toe is decidable by a decision procedure that for the end
board b of any unfinished Tic Tac Toe game returns 1 if it is winnable by either player (i.e., X
or O) whose turn it is to play on b within M moves where M is a positive integer [6] and
returns 0 if it is not winnable. As shown in this investigation, the characteristic of stalemate
for a chess game is decidable by a decision procedure that determines if the end board of
the game is a stalemate for the player whose turn it is to play on it. We refer to a feature of
a D2PBG as a decision characteristic if there exists a decision procedure to decide it.

A calculation procedure requires an effective (i.e., mechanical and deterministic)
construction, in finitely many steps, of a mathematical object (e.g., a sequence of instructions
in λ-calculus, a plot, a matrix, etc.) that satisfies specific properties. Euclid’s algorithm is
a calculation procedure for the characteristic of relatively primality, because it constructs
in finitely many steps the required object – the greatest common divisor of two numbers.
Similarly, a calculation procedure for the game of Tic Tac Toe takes any unfinished game
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and, if the latter is winnable within M moves by the player whose turn it is to play on its last
board, constructs a sequence of at most M moves that result in a win board for the player.
We call a feature of a D2PBG a calculation characteristic if there exists a calculation procedure
to produce required mathematical objects (e.g., boards or games) with specific properties.
The existence of a calculation procedure for a characteristic implies the existence of a
decision procedure for it that returns 1 if a required object is constructed and 0 otherwise.

We may require that a decision or calculation procedure itself satisfy certain properties.
In general, those properties can be either structural (e.g., a procedure must be primitive
recursive, computable, or partially computable) or algorithmic (e.g., the number of steps the
procedure takes to return a decision or construct an object must be the function of the size
of the input n such as O(n3) and must be known ahead of the calculation).

In this article, we focus on the structural (and, more specifically, primitive recursive)
characteristics of chess. In that, we follow a fundamental tenet of classical computability
theory, which, as formulated by Rogers [4], states that

‘‘[w]e thus require that a computation
terminate after some finite number
of steps; we do not insist on an a
priori ability to estimate this number.’’

We thus study the arithmetization of chess (and, by implication, of other D2PBGs)
to analyze the game’s characteristics with methods of number theory and classical com-
putability. If a decision characteristic of chess can be computed with a primitive recursive
predicate, we call the characteristic primitive recursively decidable or pr-decidable; if a calcula-
tion characteristic of chess can be computed with a primitive recursive function, we refer to
it as primitive recursively computable or pr-computable.

Unfortunately, the theory of recursive functions appears to lack a uniform, commonly
accepted formalism. The treatment of primitive recursive functions in this article is based
on the formalism by Davis et al. in [5], which, in turn, is based on Kleene’s formalism in
(Chapter 9 in [3]). Alternative treatments are given in [7], where primitive recursive functions
are formalized as loop programs consisting of assignment and iteration statements similar
to DO statements in FORTRAN, or in [4], where primitive recursive functions are described
with λ-calculus.

The words number or numbers in this article refer to a natural number or natural
numbers, respectively, where the set of natural number is defined as N = {0, 1, 2, . . .}. All
small letters (e.g., x, y, z, a, b, c, i, j, k, t, l, m, n, u, z, ζ, etc.) with appropriate numeric or
symbolic subscripts (when the latter are required by the context) are variables that denote
numbers. We sometimes use capital letters (e.g., M, Z) with suitable subscripts or no
subscripts to refer to numbers that we believe are significant for the current exposition.

In this article, all functions map Nj to Nk (i.e., Nj 7→ Nk), where j and k are positive
numbers. We use the symbol ≡ to define predicates (e.g., P(x1, x2) ≡ x1 < x2). We use the
capital letter P with prime superscripts (e.g., P′) or numeric subscripts to define predicates
and use the capital letter F with numeric subscripts to define functions. Number 0 when
referencing the value of a predicate means that the predicate is false; number 1 when
referencing the value of a predicate means that the predicate is true.

When the argument variables of a function or predicate are clear from the context, we
use the notation P(·) or F(·) for brevity. For example, P(·) instead of P(x1, x2) and F(·)
instead of F(x1, x2, x3).

When a variable occurs free in the definition of a predicate or a function it refers to
a number referenced in the immediate context. For example, let z = 10 and let P(d) ≡
2d|(z + 1). In this definition of P(·), z refers to number 10.

In defining some predicates, we occasionally abbreviate Boolean combinations of
numerical predicates. For example, i ≤ j ∧ j ≤ k is abbreviated as i ≤ j ≤ k; i ≥ j ∧ j ≥ k as
i ≥ j ≥ k; i = j ∧ j = k as i = j = k, etc.

The remainder of the article is organized as follows. In Section 2, several functions are
defined that are shown to be primitive recursive in [5]. In Section 3, we use the primitive
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recursive functions in Section 2 to define several primitive recursive functions to manipulate
Gödel numbers (G-numbers). We call these functions G-number operators and use them in
Section 4 to show several characteristics of chess and to be pr-decidable and pr-computable.
In Sections 6 and 7, we discuss and summarize our findings.

2. Preliminaries

Let f (x1, . . . , xk) be a function and g1, . . . , gk be functions, where each gi, 1 ≤ i ≤ k, is
a function of n arguments. Then h(x1, . . . , xn) is obtained by composition from f , g1, . . . , gk
if

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)). (1)

Let k ∈ N and φ(x, y) : N2 7→ N be total. Let f (x1, . . . , xn) : Nn 7→ N and g(x1, . . . , xn+2) :
Nn+2 7→ N be total. If h is obtained from φ by the recurrences in (2) or from f and g by the
recurrences in (3), then h is obtained from φ or from f and g by primitive recursion or, simply, by
recursion.

h(0) = k,
h(t + 1) = φ(t, h(t))

(2)

h(x1, . . . , xn, 0) = f (x1, . . . , xn),
h(x1, . . . , xn, t + 1) = g(t, h(x1, . . . , xn, t), x1, . . . , xn)

(3)

Let
s(x) = x + 1;
n(x) = 0;
un

i (x1, · · ·, xn) = xi, 1 ≤ i ≤ n,
(4)

be the three initial functions. A function is primitive recursive if it can be obtained from the
initial functions by a finite number of applications of composition or recursion as defined
in (1)–(3) [5].

A total function P(x1, . . . , xn) is a predicate if for any n numbers y1, . . . , yn P(y1, . . . , yn) =
1 or P(y1, . . . , yn) = 0, where 1 designates true and 0 false. The expression (∃t)≤z is a bounded
existential quantifier so that if P(t, x1, . . . , xn) is a predicate, (∃t)≤zP(t, x1, . . . , xn) = 1, if
P(t, x1, . . . , xn) = 1, for at least one t such that 0 ≤ t ≤ z. The expression (∃t)≤zP(t, x1, . . . , xn)
is called the bounded existential quantification of P(·).

The expression (∀t)≤z is a bounded universal quantifier so that, if P(t, x1, . . . , xn) is a
predicate, then (∀t)≤zP(t, x1, . . . , xn) = 1, if P(t, x1, . . . , xn) = 1, for every t such that
0 ≤ t ≤ z. The expression (∀t)≤zP(t, x1, . . . , xn) is called the bounded universal quantification
of P(·).

If P(t, x1, . . . , xn) is a predicate and z is a number, then

y = min
t≤z

P(t, x1, . . . , xn)

is called the bounded minimalization of P(·) and defines the smallest number 0 ≤ t ≤ z for
which the predicate P(·) is true or 0 if there is no such number. If

min
t≤z

P(t, x1, . . . , xn) = 0

and P(0, x1, . . . , xn) = 1, then 0 returned by the bounded minimalization of P(·) is the
smallest number ≤ z for which P(·) holds. If P(0, x1, . . . , xn) = 0, then 0 returned by the
minimalization of P(·) means that there is no number 0 ≤ t ≤ z, for which P(t, x1, . . . , xn)
holds. If this additional check on 0 must be avoided in a given context, t in the minimalized
predicate P(·) must be required to be greater than 0 (e.g., P(t, x1, x2) ≡ t ≤ x1 · x2 ∧ t > 0),
in which case, 0 returned by the minimalization of P(·) means that there is no 0 ≤ t ≤ z for
which P(·) holds. The operator min is similar to Kleene’s operator µ [3]. If P(x1, . . . , xn) is
a n-ary predicate, we occasionally write P(x1, . . . , xn) to abbreviate P(x1, . . . , xn) = 1 and
write ¬P(x1, . . . , xn) to abbreviate P(x1, . . . , xn) = 0.
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It is shown in [5] that 1) the predicates x = y, x 6= y, x < y, x > y, x ≤ y, x ≥ y, and
x|y (x divides y or x is a divisor of y) are primitive recursive; 2) any Boolean combination of
primitive recursive predicates is primitive recursive; and 3) if a predicate P(·) is primitive
recursive, then so are its negation and its bounded minimalization and bounded universal
and existential quantifications. We will use the notation x - y to denote ¬{x|y} (i.e., x does
not divide y or x is not a divisor of y).

Let x .− y = x− y, if x ≥ 0, and x .− y = 0, if x < y. The function x .− y is shown to be
primitive recursive in [5]. Let the pairing of numbers x and y be defined as

〈x, y〉 = z, (5)

where
z = 2x(2y + 1) .− 1;

γ(d) ≡ {2d|(z + 1) ∧ (∀c)≤z+1{2c - (z + 1) ∨ c ≤ d}};

x = min
d≤z+1

γ(d);

y = 1
2

(
z+1
2x

.− 1
)

.

The minimalization of the primitive recursive predicate γ(·) above makes x the largest
number such that 2x|(z + 1). As shown in [5], for any number z, there are unique x and y
such that 〈x, y〉 = z and the pairing function 〈x, y〉 is primitive recursive. For example, if
z = 27, then

x = min
d≤28

γ(d) = 2;

y = 1
2

(
28
22

.− 1
)
= 3;

〈2, 3〉 = 22(2 · 3 + 1) .− 1 = 27.

Let the functions l(z) and r(z) in (6) return the left and right components of any
number z. Since the predicate z = 〈x, y〉 is primitive recursive, both

l(z) = min
x≤z
{(∃y)≤z{z = 〈x, y〉}}

r(z) = min
y≤z
{(∃x)≤z{z = 〈x, y〉}}

(6)

are primitive recursive, because they are bounded minimalizations of the bounded existen-
tial quanitifcations of primitive recursive predicates. Thus, if z = 27 = 〈2, 3〉, then l(z) = 2,
r(z) = 3, and, in general, 〈l(z), r(z)〉 = z for any number z.

Let pn be the n-th prime so that p1 = 2, p2 = 3, p3 = 5, etc. Let p0 = 0, by default.
In [5], pn is shown to be computed by a primitive recursive function, which we define as

π(i) = pi. (7)

Thus, π(0) = 0, π(1) = 2, π(2) = 3, π(3) = 5, π(4) = 7, π(5) = 11, etc.
Let (a1, . . . , an) be a sequence of numbers. The function in (8) computes the Gödel

number (G-number) of this sequence.

[a1, . . . , an] =
n

∏
i=1

π(i)ai (8)

The function [a1, . . . , an] is shown to be primitive recursive in [5], because x · y, xy,
π(i) are primitive recursive, and a finite product of primitive recursive functions is, by
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induction, primitive recursive. The G-number of the empty number sequence () is 1. Thus,
the G-number of (3, 101, 7891, 1, 43) is

[3, 101, 7891, 1, 43] = 23 · 3101 · 57891 · 71 · 1143.

Let x = [a1, . . . , an]. The accessor function (x)i = ai in (9), which returns the i-th
element of x, is shown to be primitive recursive in [5].

(x)i = min
t≤x
{π(i)t+1 - x} (9)

The function (x)i allows us to treat G-numbers as arrays (i.e., sequences of numbers).
Thus, if x = [1, 7, 13], then

(x)1 = 1;
(x)2 = 7;
(x)3 = 13;
(x)j = 0, if j > 3.

Since G-numbers are sequences, they have lengths. Thus, if x = [a1, a2, . . . , an], the
length of x is the position of the last non-zero prime power in x and is computed by the
primitive recursive function Lt(·) in (10). We note that Lt([a1, . . . , an]) = n if and only if
an 6= 0, and if Lt(x) = n, then [(x)1, . . . , (x)n] = x.

Lt(x) = min
i≤x
{(x)i 6= 0∧ (∀j)≤x{j ≤ i ∨ (x)j = 0}} (10)

Thus,

Lt(540) = Lt([2, 3, 1]) = 3.

The function bx/yc that returns the integer part of the quotient x/y is shown to be
primitive recursive in [5]. Thus, b7/2c = 3; b2/5c = 0; b8/5c = 1, and bx/0c = 0 for any
number x.

3. G-Number Operators

In this section, we define several primitive recursive functions on G-numbers. We
call these functions G-number operators and use them in Section 4 to show that several
characteristics of chess and are pr-decidable and pr-computable.

3.1. Assignment

Let
P0(i, b) ≡ 1 ≤ i ≤ Lt(b) ∧ b ≥ 1.

The function

set(b, i, v) =


⌊

b
π(i)(b)i

⌋
· π(i)v if P0(i, b),

0 otherwise

(11)

assigns the value of the i-th element of b to v. By Theorem 5.4 (the Definition by Cases
Theorem) of Chapter 3 in [5] (which we henceforth abbreviate as the DCT), set(·) in (11)
is primitive recursive, because P0(·) is primitive recursive. Thus, if b = [1, 2] = 2132 = 18,
i = 1, and v = 3, then

set([1, 2], 1, 3) =
⌊

b
π(1)(b)1

⌋
· π(1)3 =

⌊
[1, 2]

2([1,2])1

⌋
· 23 =

⌊
21 · 32

21

⌋
· 23 = [3, 2] = 72
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or, more succinctly,
set(18, 1, 3) = 72.

If b = 72, i = 2, and v = 4, then

set(72, 2, 4) = 648,

because
set(set(18, 1, 3), 2, 4) = set(72, 2, 4) =

⌊
72
32

⌋
· 34 = [3, 4] = 648.

If b = [2, 3, 5, 8, 13] i = 5, v = 21, then

set(b, 5, 21) =
⌊

b
1113

⌋
1121 = [2, 3, 5, 8, 21] =

14398076794131917643247179978712500

or, more succinctly,

set(67168090852890380796712500, 5, 21) =
14398076794131917643247179978712500.

3.2. Count

Let
cntx(x, y, 0) = 0,
cntx(x, y, t + 1) = F0(x, y, t, cntx(x, y, t)),

where

F0(x, y, t, c) =

{
1 + c if (y)s(t) = x,
c otherwise.

The function F0(·) is primitive recursive by the DCT. Therefore, the function cntx(·) is
primitive recursive, because it is obtained from s(x) and F0(·) by composition and recursion.
The function cnt(·) in (12) to compute the count of occurrences of x in y is also primitive,
because it is obtained by composition from cntx(·) and Lt(x).

cnt(x, y) = cntx(x, y, Lt(y)) (12)

Let y = 30,870 = [1, 2, 1, 3]. Then

cnt(1, y) = cntx(1, y, 4)
= F0(1, y, 3, cntx(1, y, 3));

cntx(1, y, 3) = F0(1, y, 2, cntx(1, y, 2));
cntx(1, y, 2) = F0(1, y, 1, cntx(1, y, 1));
cntx(1, y, 1) = F0(1, y, 0, cntx(1, y, 0));
cntx(1, y, 0) = 0;
F0(1, y, 0, 0) = 1, since (y)s(0) = 1;
cntx(1, y, 1) = F0(1, y, 0, 0) = 1;
F0(1, y, 1, 1) = 1, since (y)s(1) 6= 1;
cntx(1, y, 2) = F0(1, y, 1, 1) = 1;
F0(1, y, 2, 1) = 2, since (y)s(2) = 1;
cntx(1, y, 3) = F0(1, y, 2, 1) = 2;
F0(1, y, 3, 2) = 2, since (y)s(3) 6= 1;
cntx(1, y, 4) = F0(1, y, 3, 2) = 2;
count(1, y) = 2.
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Analogously,

cnt(2, y) = cnt(3, y) = 1;
cnt(10, y) = 0.

Let
in(x, y) ≡ cnt(x, y) 6= 0 ≡ x ∈ y. (13)

Thus,
1 ∈ 30870;
2 ∈ 30870;
3 ∈ 30870;
10 6∈ 30870.

Let k ∈ y and let P(x1, . . . , xn), n ≥ 1, be an n-ary predicate. We will adopt the
following notational conventions for bounded quantifiers:

(∀k ∈ y)P(k, . . . , xn) ≡ (∀t)≤Lt(y){t < 1∨ P((y)t, . . . , xn)};

(∃k ∈ y)P(k, . . . , xn) ≡ (∃t)≤Lt(y){t > 0∧ P((y)t, . . . , xn)}.
(14)

Thus, if y = [1, 2, 3, 4] and P(x1, x2) ≡ x1 < x2, then

(∀k ∈ y){P(k, 5)} = (∃k ∈ y){P(k, 2)} = 1,

whereas

(∀k ∈ y){P(k, 3)} = (∃k ∈ y){P(k, 1)} = 0.

3.3. Append

The function

rap(x, y) =

{
[x] if Lt(y) = 0,
y · π(Lt(y) + 1)x otherwise

(15)

appends x to the right of the rightmost element of y. By the DCT, the function rap(·) in (15)
is primitive recursive, because x · y, Lt(y), xy, π(x), and xy are. Thus,

rap(1, 0) = rap(1, 1) = π(1) = [1];
rap(1, [1]) = rap(1, 2) = 2 · π(Lt(2) + 1)1 = 2 · π(2)1 = 2 · 31 = 6 = [1, 1];
rap(8, [2, 3, 5]) = [2, 3, 5] · π(4)8 = [2, 3, 5, 8];
rap(5, set([0, 3], 1, 2)) = [2, 3, 5].

More succinctly,

rap(1, 0) = rap(1, 1) = 2;
rap(1, 2) = 6;
rap(8, 337500) = 1945620337500;
rap(5, set(27, 1, 2)) = rap(5, 108) = 337500.

3.4. Concatenation

Let
lc(x1, x2, 0) = x2,
lc(x1, x2, t + 1) = F1(x1, t, lc(x1, x2, t)),

where
F1(x, t, y) = rap((x)s(t), y).

The function lc(·) is primitive recursive by definition. The function
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x1 ⊗l x2 = lc(x1, x2, Lt(x1)), (16)

which is also primitive recursive by definition, places all numbers in x2, in order, to the
left of the first number, if there is one, in x1. We refer to the binary function in (16) as left
concatenation. Thus,

0⊗l x = 1⊗l x = x.

If x1 = 2 = [1] and x2 = 4 = [2], then

2⊗l 4 = [1]⊗l [2] = [2, 1] = 12,

because

[1]⊗l [2] = lc([1], [2], Lt([1]))
= lc([1], [2], 1)
= F1([1], 0, lc([1], [2], 0))
= F1([1], 0, [2]))
= rap(([1])s(0), [2])
= rap(([1])1, [2])
= rap(1, [2])
= [2, 1].

We also have

[2, 3]⊗l [1] = [1, 2, 3].

To compute [3, 4, 5]⊗l [1, 2], we compute

lc([3, 4, 5], [1, 2], 1) =
F1([3, 4, 5], 0, lc([3, 4, 5], [1, 2], 0) =
F1([3, 4, 5], 0, [1, 2]) =
rap(([3, 4, 5])s(0), [1, 2]) = [1, 2, 3]

and, hence,

lc([3, 4, 5], [1, 2], 2) =
F1([3, 4, 5], 1, lc([3, 4, 5], [1, 2], 1) =
F1([3, 4, 5], 1, [1, 2, 3]) =
rap(([3, 4, 5])s(1), [1, 2, 3]) = [1, 2, 3, 4],

which gives us

[3, 4, 5]⊗l [1, 2] = lc([3, 4, 5], [1, 2], Lt([3, 4, 5]))
= lc([3, 4, 5], [1, 2], 3)
= F1([3, 4, 5], 2, lc([3, 4, 5], [1, 2], 2))
= F1([3, 4, 5], 2, [1, 2, 3, 4])
= rap(([3, 4, 5])s(2), [1, 2, 3, 4])
= [1, 2, 3, 4, 5]

or, more succinctly,

2025000⊗l 18 = 870037764750.

Let

F2(x) =


0 if Lt(x) = 0,
[(x)1] if Lt(x) = 1,
F3(x, Lt(x) .− 2) if Lt(x) > 1,
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where
F3(x, 0) = (x)Lt(x) .−1 ⊗l (x)Lt(x),
F3(x, t + 1) = (x)s(t) ⊗l F3(x, t).

Since F3(·) is primitive recursive by definition and F2(·) is primitive recursive by the
DCT, the left concatenation of x1, . . . , xk, k ≥ 1, in (17) is primitive recursive.

⊗l |ki=1xi = F2([x1, . . . , xk]) (17)

Thus, if x1 = [3, 4, 5], x2 = [1, 2], x3 = [10, 11], then

⊗l |3i=1xi = F2([x1, x2, x3])
= F3([x1, x2, x3], 1)
= x1 ⊗l F3([x1, x2, x3], 0)
= x1 ⊗l (x2 ⊗l x3)
= x1 ⊗l [10, 11, 1, 2]
= [10, 11, 1, 2, 3, 4, 5]
= 2398810352874712857400320.

In general,

⊗l |ki=1xi = x1 ⊗l x2 ⊗l . . .⊗l xk =
(. . . ((x1 ⊗l x2)⊗l . . .⊗l xk) . . .) =
(. . . (x1 ⊗l (x2 ⊗l (. . .⊗l (xk−1 ⊗l xk) . . .))) . . .).

(18)

The primitive recursive function to do the right concatenation of x1 and x2 (i.e., the
operation of placing all numbers of x2, in order, to the right of the rightmost number in x1)
is defined in (19).

x1 ⊗r x2 = x2 ⊗l x1 (19)

Thus,
[1]⊗r [2] = [2]⊗l [1] = [1, 2];
[2, 3]⊗r [1] = [1]⊗l [2, 3] = [2, 3, 1];
[3, 4, 5]⊗r [1, 2] = [1, 2]⊗l [3, 4, 5] = [3, 4, 5, 1, 2].

The right concatenation of any numbers x1, . . . , xk in (20) is primitive recursive, be-
cause it is a composition of two primitive recursive functions.

⊗r |ki=1xi = F2([xk, . . . , x1]) (20)

Let x1 = [3, 4, 5], x2 = [1, 2], x3 = [10, 11]. Then

⊗r|3i=1xi = F2([x3, x2, x1])
= F3([x3, x2, x1], 1)
= x3 ⊗l F3([x3, x2, x1], 0)
= x3 ⊗l (x2 ⊗l x1)
= x3 ⊗l [3, 4, 5, 1, 2]
= [3, 4, 5, 1, 2, 10, 11].

In general,

⊗r|ki=1xi = x1 ⊗r x2 ⊗r . . .⊗r xk =
(. . . ((x1 ⊗r x2)⊗r . . .⊗r xk) . . .) =
(. . . (x1 ⊗r (x2 ⊗r (. . .⊗r (xk−1 ⊗r xk) . . .))) . . .).

(21)
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We will use the notation ⊗r|i∈g, for G-number g, to denote the right concatenation
of the elements indexed from (g)1 to (g)Lt(g) in increments of 1. Thus, if g = [1, 2, 3] and
x1 = [3, 4, 5], x2 = [1, 2], x3 = [10, 11], then

⊗l |i∈gxi = ⊗l |3i=1xi = [10, 11, 1, 2, 3, 4, 5];

⊗r|i∈gxi = ⊗r|3i=1xi = [3, 4, 5, 1, 2, 10, 11].

3.5. G-Number Generator

Let
gnx(l, u, k, 0) = [l],
gnx(l, u, k, t + 1) = gnnx(l, u, k, gnx(l, u, k, t), t),

where

gnnx(l, u, k, z, t) =

{
z⊗r [l + s(t)k] if l + s(t)k ≤ u,
z otherwise.

Since gnnx(·) is primitive recursive by the DCT, so is gnx(·). Let

ggn(l, u, k) =

{
gnx(l, u, k, s(u .− l)) if k > 0∧ l ≤ u,
0 otherwise.

(22)

The function ggn(·) is primitive recursive by the DCT. Thus, if we want to generate
the G-number whose elements are in the range from 5 to 7 and the range is iterated through
in increments of 1, we have

ggn(5, 7, 1) = gnx(5, 7, 1, 3)
= gnnx(5, 7, 1, gnx(5, 7, 1, 2), 2);

gnx(5, 7, 1, 2) = gnnx(5, 7, 1, gnx(5, 7, 1, 1), 1);
gnx(5, 7, 1, 1) = gnnx(5, 7, 1, gnx(5, 7, 1, 0), 0);
gnx(5, 7, 1, 0) = [5];
gnnx(5, 7, 1, gnx(5, 7, 1, 0), 0) = gnnx(5, 7, 1, [5], 0)

= [5]⊗r [5 + 1 · 1]
= [5]⊗r [6] = [5, 6];

gnx(5, 7, 1, 1) = [5, 6];
gnx(5, 7, 1, 2) = gnnx(5, 7, 1, [5, 6], 1)

= [5, 6]⊗r [5 + 2 · 1]
= [5, 6]⊗r [7]
= [5, 6, 7];

gnnx(5, 7, 1, [5, 6, 7], 2) = [5, 6, 7];
gnx(5, 7, 1, 3) = [5, 6, 7];
ggn(5, 7, 1) = [5, 6, 7].

If we want to generate the G-number whose elements are in the range from 5 to 7
iterated through in increments of 2, we have
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ggn(5, 7, 2) = gnx(5, 7, 2, 3)
= gnnx(5, 7, 2, gnx(5, 7, 2, 2), 2);

gnx(5, 7, 2, 2) = gnnx(5, 7, 2, gnx(5, 7, 2, 1), 1);
gnx(5, 7, 2, 1) = gnnx(5, 7, 2, gnx(5, 7, 2, 0), 0);
gnx(5, 7, 2, 0) = [5];
gnnx(5, 7, 2, gnx(5, 7, 2, 0), 0) = gnnx(5, 7, 2, [5], 0)

= [5]⊗r [5 + 1 · 2]
= [5]⊗r [7] = [5, 7];

gnx(5, 7, 2, 1) = [5, 7];
gnx(5, 7, 2, 2) = gnnx(5, 7, 2, [5, 7], 1)

= [5, 7];
gnnx(5, 7, 2, [5, 7], 2) = [5, 7];
gnx(5, 7, 2, 3) = [5, 7];
ggn(5, 7, 2) = [5, 7].

We observe that ggn(5, 7, k) = 0 for any k > 2. If u = l and k > 0, then ggn(l, u, k) = [l].

3.6. Subsequence

The function ssq(·) in (23) returns the subsequence of G-number z specified by its
start and end positions i and j in z.

ssq(z, i, j) =


j

∏
k=i

π(k)(z)k if 0 < i ≤ j ≤ Lt(z),

0 otherwise.

(23)

Thus, if z = [1, 2, 3, 4, 5], then

ssq(z, 1, 3) =
3

∏
k=1

π(k)(z)k = [1, 2, 3]

and

ssq(z, 4, 5) =
5

∏
k=4

π(k)(z)k = [4, 5].

3.7. Removal

Let
rmx(x, y, 0) = [ ],
rmx(x, y, t + 1) = F4(x, y, rmx(x, y, t), s(t)),

where

F4(x, y, z, i) =

{
z if (y)i = x,
[(y)i]⊗l z otherwise.

Since F4(·) is primitive by the DCT, rmx(·) is also primitive recursive. The primitive
recursive function rm(x, y) in (24) removes all occurrences of x from y.

rm(x, y) = rmx(x, y, Lt(y)) (24)

Let y = [2, 3, 1]. Then
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rm(1, y) = rmx(1, y, 3)
= F4(1, y, rmx(1, y, 2), 3)
= F4(1, y, F4(1, y, rmx(1, y, 1), 2), 3)
= F4(1, y, F4(1, y, F4(1, y, rmx(1, y, 0), 1), 2), 3)
= F4(1, y, F4(1, y, F4(1, y, [ ], 1), 2), 3)
= F4(1, y, F4(1, y, [2], 2), 3)
= F4(1, y, [2, 3], 3)
= [2, 3].

Let y = [5, 1, 2, 3, 2]. Then rm(2, y) = [5, 1, 3].
Sometimes it is required to remove all duplicate elements from a G-number. Let

rmdx(y, 0) = [ ],
rmdx(y, t + 1) = F5(y, rmdx(y, t), s(t)),

where

F5(y, z, i) =

{
z⊗r [(y)i] if (y)i 6∈ z,
z otherwise.

Since F5(·) is primitive recursive by the DCT, so is rmdx(·). The primitive recursive
function rmd(x, y) in (25) removes all duplicates from y.

rmd(y) = rmdx(y, Lt(y)) (25)

Let y = [5, 3, 5]. Then

rmd(y) = rmdx(y, 3)
= F5(y, rmdx(y, 2), 3)
= F5(y, F5(y, rmdx(y, 1), 2), 3)
= F5(y, F5(y, F5(y, rmdx(y, 0), 1), 2), 3)
= F5(y, F5(y, F5(y, [ ], 1), 2), 3)
= F5(y, F5(y, [5], 2), 3)
= F5(y, [5, 3], 3)
= [5, 3].

3.8. Predicate Mapping

We define a function that takes a unary primitive recursive predicate P(x) and G-
number y and returns another G-number y′ such that the elements of y′ are the elements of
y that satisfy the predicate. Let P(x) be a primitive recursive predicate and let

mapxP(y, 0) = [ ],
mapxP(y, t + 1) = F6(y, mapxP(y, t), s(t)),

where

F6(y, z, i) =

{
z if ¬P((y)i),
[(y)i]⊗l z if P((y)i),

and let
mapP(y) = mapxP(y, Lt(y)). (26)

Since P(x) is primitive recursive, F6(·) is primitive recursive by the DCT. Thus, mapP(·)
is primitive recursive by definition for any unary primitive recursive predicate P(x).

Let
prime(x) ≡ x > 1 ∧ (∀t)≤x{t = 1∨ t = x ∨ t - x}, (27)

which is shown to be primitive recursive in [5]. Let P(x) ≡ prime(x) and y = [5, 6, 7]. Then
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mapP(y) = mapxP(y, Lt(y))
= mapxP(y, 3)
= F6(y, mapxP(y, 2), 3)
= F6(y, F6(y, mapxP(y, 1), 2), 3)
= F6(y, F6(y, F6(y, mapxP(y, 0), 1), 2), 3)
= F6(y, F6(y, F6(y, [ ], 1), 2), 3)
= F6(y, F6(y, [5], 2), 3)
= F6(y, [5], 3)
= [5, 7].

As a notational shortcut, we will occasionally write the actual predicate in the subscript
to map(·) (e.g., mapprime(x)(y)). Thus, we can summarize the above example as

mapP(y) = mapprime(x)(y) = [5, 7].

Similarly,
mapx>5(y) = [6, 7].

If P(x) is a primitive recursive predicate, then so is ¬P(x). Consequently, map¬P(y) is
the G-number that consists of all numbers x of y for which ¬P(x) is true. Then the primitive
recursive function

rmpP(y) = map¬P(y) (28)

removes from G-number y all elements x ∈ y for which P(x) holds. Thus, if P(x) ≡
prime(x) and y = [3, 5, 6, 7], then

rmpP(y) = map¬prime(y) = [6]

and

rmpx≥5(y) = mapx<5(y) = [3].

3.9. Position

Let
psx(x, y, 0) = [ ],
psx(x, y, t + 1) = F7(x, y, psx(x, y, t), s(t)),

where

F7(x, y, z, i) =

{
[i]⊗l z if (y)i = x,
z otherwise.

Since (y)i is primitive recursive, F7(·) is primitive recursive by the DCT. Thus, psx(·)
is primitive recursive by definition. The primitive recursive function

psn(x, y) = psx(x, y, Lt(y)) (29)

computes the G-number of all positions of x in y. Let x = 1, y = [1, 3, 1]. Then

psn(1, y) = psx(1, y, Lt(y))
= psx(1, y, 3)
= F7(1, y, psx(1, y, 2), 3)
= F7(1, y, F7(1, y, psx(1, y, 1), 2), 3)
= F7(1, y, F7(1, y, F7(1, y, psx(1, y, 0), 1), 2), 3)
= F7(1, y, F7(1, y, F7(1, y, [ ], 1), 2), 3)
= F7(1, y, F7(1, y, [1], 2), 3)
= F7(1, y, [1], 3)
= [1, 3].
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In general,
(∀t ∈ psn(x, y)){(y)t = x}.

3.10. Association

Let the primitive recursive function

asx(x, y) = min
t≤Lt(y)

{t > 0∧ x = l((y)t)} (30)

return the smallest index t of 〈i, j〉 ∈ y such that x = i. Thus, if

y = [〈10, 100〉, 〈20, 200〉, 〈30, 300〉],

then
asx(10, y) = 1;
asx(20, y) = 2;
asx(30, y) = 3.

We define the primitive recursive function

asc(x, y) = (y)asx(x,y) (31)

to return the pair from y at the index t returned by asx(·). Thus, if

y = [〈10, 100〉, 〈20, 200〉, 〈30, 300〉],

then
asc(10, y) = (y)asx(10,y) = (y)1 = 〈10, 100〉;
asc(20, y) = (y)asx(20,y) = (y)2 = 〈20, 200〉;
asc(30, y) = (y)asx(30,y) = (y)3 = 〈30, 200〉;
asc(13, y) = (y)asx(13,y) = (y)0 = 0.

4. Chess
4.1. Boards

Figure 1 shows the starting board of any chess game. It consists of 64 cells where
each of the two players (the white and the black), has 16 pieces. We encode this board as
G-number b of 64 numbers, each of which encodes the contents of the corresponding cell.
This number b can, when convenient for visualization, be construed as a matrix shown
below the board picture in Figure 1.

An empty cell is encoded as 1. A white piece on the starting board is encoded as a
number from 2 up to 17. Thus, west to east, the white pawns are encoded as 2, 3, 4, 5, 6, 7, 8,
9, the white rooks as 10 (west) and 17 (east), the white knights as 11 (west) and 16 (east), the
white bishops as 12 (west or dark-colored) and 15 (east or light-colored), the white queen
as 13, and the white king as 14.
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26 27 28 29 30 31 32 33
18 19 20 21 22 23 24 25
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17

Figure 1. Starting chess board (above) encoded as G-number b (below).

A black piece on the starting board is encoded as a number from 18 up to 33. Thus,
west to east, the black pawns are encoded as 18, 19, 20, 21, 22, 23, 24, 25, the black rooks as
26 (west) and 33 (east), the black knights as 27 (west) and 32 (east), the black bishops as 28
(west or light-colored) and 31 (east or dark-colored), the black queen as 29, and the black
king as 30.

Each cell on board b has a unique position shown in Figure 2. Let

ζps = ggn(1, 64, 1) (32)

denote the G-number of all positions from 1 to 64. A position k is a valid position if k ∈ ζps.
Thus, if b is the board in Figure 1, then

(b)1 = 26;
(b)2 = 27;
(b)63 = 16;
(b)64 = 17;
(b)i = 0, i < 1 or i > 64;

and
(∀i ∈ ggn(17, 48)){(b)i = 1}.

Since there are exactly 32 empty cells, we have

cnt(1, b) = 32.

The position of the black and white kings on any valid board b (valid boards are
defined below) are

(psn(14, b))1;
(psn(30, b))1.

Thus, for b in Figure 1, we have

(psn(14, b))1 = 61;
(psn(30, b))1 = 5.

Figure 3 shows board b′ that is the result of two moves made by each player on b in
Figure 1. Thus, the following predicates are true:
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(b)53 = 6 ∧ (b)37 = 1 ∧ (b′)53 = 1 ∧ (b′)37 = 6;
(b)63 = 16 ∧ (b)46 = 1 ∧ (b′)63 = 1 ∧ (b′)46 = 16;
(b)13 = 22 ∧ (b)29 = 1 ∧ (b′)13 = 1 ∧ (b′)29 = 22;
(b)7 = 32 ∧ (b)22 = 1 ∧ (b′)7 = 1 ∧ (b′)22 = 32.

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

Figure 2. Positions in chess board b.

4.2. Pawn Metamorphosis

If a pawn reaches the first row on the opposite side of the board, it transforms into a
queen, a rook, a bishop, or a king of the same color. We call these positions metamorphic
positions and give them in Table 1.

Let 2 ≤ j ≤ 8 be a white pawn and let k be one of its metamorphic positions. If j
becomes a queen, the new white queen is encoded as 〈〈j, k〉, 37〉; if j becomes a rook, the
new white rook is encoded as 〈〈j, k〉, 41〉; if j becomes a bishop, the new white bishop is
encoded as 〈〈j, k〉, 43〉; if j becomes a knight, the new white knight is encoded as 〈〈j, k〉, 47〉.

Let 18 ≤ j ≤ 25 be a black pawn and let k be one of its metamorphic positions. If j
becomes a queen, the new black queen is encoded as 〈〈j, k〉, 53〉; if j becomes a rook, the
new black rook is encoded as 〈〈j, k〉, 59〉; if j becomes a bishop, the new black bishop is
encoded as 〈〈j, k〉, 61〉; if j becomes a knight, the new black knight is encoded as 〈〈j, k〉, 67〉.

26 27 28 29 30 31 1 33
18 19 20 21 1 23 24 25
1 1 1 1 1 32 1 1
1 1 1 1 22 1 1 1
1 1 1 1 6 1 1 1
1 1 1 1 1 16 1 1
2 3 4 5 1 7 8 9
10 11 12 13 14 15 1 17

Figure 3. Board b′ after two moves (i.e., (1) e4 e5 and (2) Kf3 Kf6) by each player on b in Figure 1.
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Table 1. Metamorphic positions for the white and black pawns encoded as G-numbers and the
symbols that denote the G-numbers.

Pawn Metamorphic Positions

2 [1, 2, 3, 4, 5, 6, 7]

3 [1, 2, 3, 4, 5, 6, 7, 8]

4 [1, 2, 3, 4, 5, 6, 7, 8]

5 [1, 2, 3, 4, 5, 6, 7, 8]

6 [1, 2, 3, 4, 5, 6, 7, 8]

7 [1, 2, 3, 4, 5, 6, 7, 8]

8 [1, 2, 3, 4, 5, 6, 7, 8]

9 [2, 3, 4, 5, 6, 7, 8]

18 [57, 58, 59, 60, 61, 62, 63]

19 [57, 58, 59, 60, 61, 62, 63, 64]

20 [57, 58, 59, 60, 61, 62, 63, 64]

21 [57, 58, 59, 60, 61, 62, 63, 64]

22 [57, 58, 59, 60, 61, 62, 63, 64]

23 [57, 58, 59, 60, 61, 62, 63, 64]

24 [57, 58, 59, 60, 61, 62, 63, 64]

25 [58, 59, 60, 61, 62, 63, 64]

Thus, if white pawn 2 becomes a queen at position 7, the new white queen is 〈〈2, 7〉, 37〉;
if 2 becomes a rook at position 7, the new white rook is 〈〈2, 7〉, 41〉; if 2 becomes a bishop at
position 7, the new white bishop is 〈〈2, 7〉, 43〉; if 2 becomes a knight, the new white knight
is 〈〈2, 7〉, 47〉.

Similarly, if black pawn 19 becomes a queen at position 59, the new black queen is
〈〈19, 59〉, 53〉; if 19 becomes a rook at position 59, the new black rook is 〈〈19, 59〉, 59〉; if
19 becomes a bishop at position 59, the new black bishop is 〈〈19, 59〉, 61〉; if 19 becomes a
knight at position 59, the new black knight is 〈〈19, 59〉, 67〉.

Since for any z, z = 〈x, y〉, where x and y are unique (See Equation (5)), this encoding
scheme for pawn metamorphosis ensures that every new piece is encoded as a unique
number. Each player can obtain at most eight new pieces through pawn metamorphosis.
The supplementary materials contain the encoding tables for all pieces that can be obtained
through pawn metamorphosis.

We call the pieces into which the pawns transform at the metamorphic positions
metamorphic pieces and refer to the pieces on the original board as regular pieces. Formally, j
is a regular white piece if j ∈ ggn(2, 17, 1), is a regular black piece if j ∈ ggn(18, 33, 1), and
is a regular piece if j is a regular white or black piece.

Tables S1 and S2 in the Supplementary Materials contain all unique numbers of the
white and black pieces under this encoding scheme that can be obtained through pawn
metamorphosis with the primitive recursive pairing function. Let

ζw
µ = [〈〈2, 1〉, 37〉, . . . , 〈〈9, 8〉, 47〉];

ζb
µ = [〈〈18, 57〉, 53〉, . . . , 〈〈25, 64〉, 67〉] (33)

be the G-numbers of the white, black, and all metamorphic pieces.

4.3. Valid Pieces and Boards

Let the primitive recursive predicates
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wp(j) ≡ {2 ≤ j ≤ 17} ∨ {j ∈ ζw
µ };

bp(j) ≡ {18 ≤ j ≤ 33} ∨ {j ∈ ζb
µ}

(34)

hold when j is a valid white or black piece, respectively. A chess piece j is valid if and only
if the primitive recursive predicate

vlp(j) ≡ wp(j) ∨ bp(j).

holds (i.e., vlp(j) = 1). Let

ζwp = ggn(2, 17, 1)⊗r ζw
µ ;

ζbp = ggn(18, 33, 1)⊗r ζb
µ;

ζcp = ζwp ⊗r ζbp

(35)

denote the G-numbers of the white pieces (ζwp), the black pieces (ζbp), and all chess
pieces (ζcp).

Let us consider if the valid chess board characteristic is pr-decidable. If b is a valid chess
board, it must contain exactly one white king (14) and exactly one black king (30). The
primitive recursive predicate

P1(b) ≡ cnt(14, b) = cnt(30, b) = 1

holds when b has this characteristic.
Board b is valid if the number of occurrences of each regular or metamorphic piece on

b, with the exception of the two kings, is 0 (if the piece is captured) or exactly 1 (if the piece
is not captured). The primitive recursive predicate

P2(b) ≡ (∀i ∈ ζcp){{i = 14∨ i = 30} ∨ cnt(i, b) ≤ 1}

ensures that the number of occurrences for each piece on b, regular or metamorphic, so
long as that piece is not a king, is 0 or 1.

If b is valid, then the count of the empty cells on it is at least 32 (i.e., b is the starting
board) and at most 62 (i.e., when only the kings are present). The primitive recursive predicate

P3(b) ≡ 32 ≤ cnt(1, b) ≤ 62

holds when the count of the empty cells on b is between 32 and 62.
If board b is valid, then the regular and metamorphic black and white bishops,

when present on b, must be in the appropriate light-colored and dark-colored positions.
Tables S3–S6 in the Supplementary Materials contain the encoding tables for all metamor-
phic light-colored and dark-colored bishops.

Let ζ lc,wb
µ denote the G-number of the numbers of the metamorphic light-colored white

bishops in Table S3, ζdc,wb
µ —the G-number of the numbers of the metamorphic dark-colored

white bishops in Table S4, ζ lc,bb
µ —the G-number of the numbers of the metamorphic light-

colored black bishops in Table S5, ζdc,bb
µ —the G-number of the numbers of the metamorphic

dark-colored black bishops in Table S6. Let

ζ lcb
µ = ζ lc,wb

µ ⊕r ζ lc,bb
µ ;

ζdcb
µ = ζdc,wb

µ ⊕r ζdc,bb
µ

(36)

be the G-numbers of the light-colored and dark-colored metamorphic bishops.
The primitive recursive predicates
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wkµ(j) ≡ j ∈ ζw
µ ∧ r(j) = 47;

bkµ(j) ≡ j ∈ ζb
µ ∧ r(j) = 67

(37)

hold if j is a metamorphic white or black knight, respectively. The primitive recursive
predicates

wlbµ(j) ≡ j ∈ ζ lcb
µ ∧ r(j) = 43;

blbµ(j) ≡ j ∈ ζ lcb
µ ∧ r(j) = 61

(38)

hold if j is a metamorphic white or black light-colored bishop, respectively. The primitive
recursive predicates

wdbµ(j) ≡ j ∈ ζdcb
µ ∧ r(j) = 43;

bdbµ(j) ≡ j ∈ ζdcb
µ ∧ r(j) = 61;

(39)

hold if j is a metamorphic white or black dark-colored knight, respectively. The primitive
recursive predicates

knµ(j) ≡ wkµ(j) ∨ bkµ(j);

bhµ(j) ≡ wdbµ(j) ∨ bdbµ(j)
(40)

hold if j is a metamorphic knight or bishop, respectively.
If board b is valid, then the regular light-colored bishops 15 and 28 and any metamor-

phic light-colored bishops, when present, must be located on the light-colored positions
and the regular dark-color bishops 12 and 31 and any metamorphic dark-colored bishops,
when present, must be located on the dark-colored positions. Let

ζlps = [1, 3, 5, 7, 10, 12, 14, 16, 17, 19, 21, 23, 26, 28, 30, 32, 33,
35, 37, 39, 42, 44, 46, 48, 49, 51, 53, 55, 58, 60, 62, 64]

(41)

be the G-number of all light-colored positions on b (See Figure 4) and let

ζdps = [2, 4, 6, 8, 9, 11, 13, 15, 18, 20, 22, 24, 25, 27, 29, 31, 34,
36, 38, 40, 41, 43, 45, 47, 50, 52, 54, 56, 57, 59, 61, 63]

(42)

be the G-number of all dark-colored positions on b (See Figure 5). The primitive recur-
sive predicate

P4(b) ≡ {(∀j ∈ [15, 28]⊕r ζ lcb
µ ){j 6∈ b ∨ (psn(j, b))1 ∈ ζlps}∧

{(∀j ∈ [12, 31]⊕r ζdcb
µ ){j 6∈ b ∨ (psn(j, b))1 ∈ ζdps}

holds of b when all bishops, if present, are in the positions of the appropriate color.

1 0 3 0 5 0 7 0
0 10 0 12 0 14 0 16
17 0 19 0 21 0 23 0
0 26 0 28 0 30 0 32
33 0 35 0 37 0 39 0
0 42 0 44 0 46 0 48
49 0 51 0 53 0 55 0
0 58 0 60 0 62 0 64

Figure 4. Light-colored positions (bolded) on valid board b (See Figure 2 for all board position
numbers).
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0 2 0 4 0 6 7 8
9 0 11 0 13 0 15 0
0 18 0 20 0 22 0 24
25 0 27 0 29 0 31 0
0 34 0 36 0 38 0 40
41 0 43 0 45 0 47 0
0 50 0 52 0 54 0 56
57 0 59 0 61 0 63 0

Figure 5. Dark-colored positions (bolded) on valid board b (See Figure 2 for all board position
numbers).

If b is valid, then the regular white pawns 2–9 or the regular black pawns 18–25 cannot
be in the metamorphic positions 1–8 and 57–64 (See Figures 1 and 2). Let

ρµ = ggn(1, 8, 1)⊗r ggn(57, 64, 1)

be the G-number of positions 1–8 and 57–64. The primitive recursive predicate

P5(b) ≡ {(∀j ∈ ggn(2, 9, 1)){j 6∈ b ∨ (psn(j, b))1 6∈ ρµ}∧
{(∀j ∈ ggn(18, 25, 1)){j 6∈ b ∨ (psn(j, b))1 6∈ ρµ}}

holds of b when the regular white and black pawns do not occupy the positions they cannot
occupy either because they cannot move backward to reach those positions or because they
undergo metamorphosis on those positions. In summary, the primitive recursive predicate

vld(b) ≡ Lt(b) = 64∧ P1(b) ∧ P2(b) ∧ P3(b) ∧ P4(b) ∧ P5(b) (43)

holds if b is a valid 64-cell chess board. Thus, if b1 and b2 are the boards in Figures 1 and 3,
respectively, then vld(b1) = vld(b2) = 1.

4.4. Diagonals, Rows, Columns

A position 1 ≤ k ≤ 64 on valid b is a member of at most two diagonals. Let k′ ∈ {1, 2}
and dk,k′ be the diagonals (if k′ = 2) or the diagonal that include k. For example, k = 62
is a member of two diagonals: d62,1 = [48, 55, 62] and d62,2 = [17, 26, 35, 44, 53, 62] (See
Figure 2); and k = 1 is a member of the diagonal d1,1 = [1, 10, 19, 28, 37, 46, 55, 64] (i.e., the
first main diagonal).

Let
D = [〈1, [d1,1]〉, 〈2, [d2,1, d2,2]〉, 〈3, [d3,1, d3,2], 〉, . . . , 〈64, [d64,1]〉]

be the G-number that pairs each position k with the diagonals that contain it.
Since each position is a member of exactly one row and exactly one column, we

define G-numbers R and C to pack all rows and columns. For example, 7 is in the row
[1, 2, 3, 4, 5, 6, 7, 8] and the column [7, 15, 23, 31, 39, 47, 55, 63].

Let
F8(0) = 1
F8(t + 1) = F8(t) + 8

and

F9(r) =

{
ggn(F8(r

.− 1), F8(r
.− 1) + 7, 1) if 1 ≤ r ≤ 8,

0 otherwise.

Since F8(·) is primitive recursive by definition, F9(·) is primitive recursive by the DCT.
Thus,
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F9(1) = ggn(F8(0), F8(0) + 7, 1) = ∏8
j=1 π(j)j;

F9(2) = ggn(F8(1), F8(1) + 7, 1) = ∏16
j=9 π(j)j;

F9(8) = ggn(F8(7), F8(7) + 7, 1) = ∏64
j=57 π(j)j.

We place all row numbers on valid b into G-number R to pair each row number with
the G-number of all positions in that row:

R = ∏8
r=1〈r, F9(r)〉.

For each 1 ≤ i ≤ 8, we define eight primitive recursive functions (one for each column)

κi(0) = i,
κi(t + 1) = κi(t) + 8

and let

ci =
κi(7)

∏
j=κi(0)

π(j)j.

We place all column numbers into the G-number C that pairs each column number
with the G-number of all positions in the column:

C = ∏8
i=1〈i, ci〉.

The primitive recursive functions in (44)–(46) return the G-number of the diagonals,
rows, and columns, respectively, for a valid position k on b.

dgs(k) = r((D)asc(k,D)) (44)

rws(k) = r((R)asc(k,R)) (45)

cls(k) = r((C)asc(k,C)) (46)

Thus,
dgs(62) = [d62,1, d62,2]

= [[48, 55, 62], [17, 26, 35, 44, 53, 62]];
(dgs(62))1 = d62,1;
(dgs(62))2 = d62,2;
rws(62) = [57, 58, 59, 60, 61, 62, 63, 64];
cls(62) = [6, 14, 22, 30, 38, 46, 54, 62].

Given positions k1 and k2, let

zd = dgs(k1)⊗r dgs(k2)

and

F10(k1, k2) = min
t≤Lt(zd)

{k1 ∈ (zd)t ∧ k2 ∈ (zd)t}.

The primitive recursive function dg(k1, k2) returns diagonal d that contains both k1
and k2 if d exists.

dg(k1, k2) = (zd)F10(k1,k2)
(47)

Let zr = [rws(k1)]⊗r [rws(k2)] and

F11(k1, k2) = min
t≤Lt(zr)

{k1 ∈ (zr)t ∧ k2 ∈ (zr)t}.
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The primitive recursive function rw(k1, k2) returns row r that contains both k1 and k2
if r exists.

rw(k1, k2) = (zr)F11(k1,k2)
(48)

Let zc = [cls(k1)]⊗r [cls(k2)] and

F12(k1, k2) = min
t≤Lt(zc)

{k1 ∈ (zc)t ∧ k2 ∈ (zc)t}.

The primitive recursive function cl(k1, k2) returns column c that contains both k1 and
k2 if c exists.

cl(k1, k2) = (zc)F12(k1,k2)
(49)

4.5. Potentially Reachable Positions

The primitive recursive predicate

oc(x, y) ≡ {wp(x) ∧ bp(y)} ∨ {wp(y) ∧ bp(x)} (50)

holds for valid pieces x and y of the opposite colors.
Let j, k, and b denote a valid piece, a valid position, and a valid board, respectively.

Position k′ 6= k on b is potentially reachable for j from k if j can move from k to k′ on b.
Position k′ can be empty or occupied by a different piece.

Let Lk
j be the G-number of the positions potentially reachable by j from k on b. For

example, L1
15 is the G-number of the positions potentially reachable by bishop 15 from

position 1. The G-numbers Lk
15, k ∈ [10, 19, 28, 37, 46, 55, 64], denote the positions potentially

reachable by 15 from the other positions of the first main diagonal. We note that Lk
j is

defined regardless of any b in the sense that whether k′ is potentially reachable for j from k
depends only on the move rules for j and not on the positions of the other pieces on b.

Thus, for bishop 15 positioned anywhere on the first main diagonal, we have

L1
15 = 〈1, [10, 19, 28, 37, 46, 55, 64]〉;

L10
15 = 〈10, [1, 3, 17, 19, 28, 37, 46, 55, 64]〉;

L19
15 = 〈19, [1, 10, 5, 12, 26, 33, 28, 37, 46, 55, 64]〉;

L28
15 = 〈28, [1, 10, 19, 7, 14, 21, 35, 42, 49, 37, 46, 55, 64]〉;

L37
15 = 〈37, [1, 10, 19, 28, 16, 23, 30, 44, 51, 58, 46, 55, 64]〉;

L46
15 = 〈46, [1, 10, 19, 28, 37, 32, 39, 53, 60, 55, 64]〉;

L55
15 = 〈55, [1, 10, 19, 28, 37, 46, 48, 62, 64]〉;

L64
15 = 〈64, [1, 10, 19, 28, 37, 46, 55]〉.

We recall that ζlps in (41) is the G-number of the light-colored positions on b. Since 15
is light-colored, the G-number

L15 = ⊗r|k∈ζlps

[
Lk

15

]
contains all positions potentially reachable by 15. We observe that if j is another real or
metamorphic light-colored black bishop (e.g., j = 28), then

Lj = L15.

For the dark-colored real bishops 12 and 31 (or any dark-colored metamorphic bishop
j), we can analogously define L12 = L31 = Lj using ζd in (42) (i.e., the G-number of the
dark-colored positions on valid b).

In general, for each valid piece j we define the G-number of all potentially reachable
positions on b and place all such G-numbers into L in (51) of the pairs 〈j, Lj〉, where Lj is
the G-number of all reachable positions for j on b.
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L =

(
⊗r

∣∣∣33

j=2
[〈j, Lj〉]

)
⊗r

(
⊗r

∣∣∣
j∈ζw

µ⊗rζb
µ

[〈j, Lj〉]
)

(51)

The function

rp(j, k, b) =

{
r(asc(k, r(asc(j, L)))) if vlp(j) ∧ vld(b)
0 otherwise

(52)

returns the G-number of all potentially reachable positions for j from k on b. The function
rp(·) is primitive recursive by the DCT.

Thus, if b and b′ are boards in Figures 1 and 3, respectively, then (See Figures 6 and 7)

rp(16, 63, b) = [53, 46, 48];

rp(16, 46, b′) = [61, 52, 36, 29, 31, 40, 56, 63].

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

Figure 6. rp(16, 63, b) = [53, 46, 48], where b is the board in Figure 1.

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

Figure 7. rp(16, 46, b′) = [61, 52, 36, 29, 31, 40, 56, 63]; b′ is in Figure 3.

4.6. Actual Reachability for Bishop 15

If k′ ∈ rp(j, k, b), it may be occupied by j′ 6= j of the same color. For example, although
52 ∈ rp(16, 46, b′), (b′)52 = 5 6= 1, i.e., it is occupied by pawn 5 of the same color as knight
16 and, consequently, 16 cannot move from 46 to 52 on b′. To put it differently, 52 is not
actually reachable for 16 from 46 on b′.

The characteristics of potential reachability and actual reachability, while conceptually
related by the rules of chess, are different in that the potential reachability of k′ for j from k
holds on any valid b whereas the actual reachability of k′ for j from k depends not only on
whether k′ ∈ rp(j, k, b) but also on (b)k′ .

As an extended example, let us consider the characteristic of actual reachability for
bishop 15 to determine if this characteristic is pr-computable. For any valid position k of 15
on b, the positions in the G-number of actually reachable positions for 15 from k depend on
the light-colored bishop move rules and require us to take into account the positions of the
other pieces of the same color on b.

Let the primitive recursive function

cpsn(j, b) =

{
(psn(j, b))1 if vlp(j) ∧ vld(b),
0 otherwise

(53)
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return the current position of valid piece j on valid board b so that if j ∈ b, then

(b)cpsn(j,b) = j.

Let cpsn(15, b) = k15. We seek to compute the G-number of actually reachable posi-
tions for 15 from k15 on b. Let k 6= k15 be a valid position. Then dg(k15, k) in (49) returns
diagonal d that contains both k15 and k. If d does not exist (i.e., d = 0), then k is not actually
reachable for 15 from k15 on b. If d exists, we need to ensure that either k is empty on b (i.e.,
(b)k = 1) or is occupied by a piece of the opposite color oc((b)k, 15) = 1 and 15 can capture
(b)k. Furthermore, if d exists, we need to ensure that there is no piece either of the same or
opposite color between k15 and k on d. The primitive recursive predicate

P6(k, k15, b) ≡ vld(b)
∧ k 6= k15
∧ k ∈ rp(15, k15, b)
∧ dg(k15, k) 6= 0
∧ (∀k′ ∈ dg(k15, k)){
{k′ = k ∨ k′ = k15} ∨ (b)k′ = 1}

∧ {(b)k = 1∨ oc(15, (b)k)}

holds on b if k is potentially reachable for 15 from k15 and is on the same diagonal with
k15 and every position k′ between k and k15 on the diagonal is empty and k itself is either
empty or occupied by a black piece. The primitive recursive predicate

arp15(k, k15, b) ≡ P6(k, k15, b)

holds when k is actually reachable for 15 from k15 on valid b.
Let b′ be the board in Figure 3. Then

arp15(48, 62, b′) = 0,

because dg(62, 48) = d62,1 = [48, 55, 62], but pawn 8 in position 55 is of the same color with
15, which makes P6(48, 62, b′) false. On the other hand,

arp15(k, 62, b′) = 1,

for any k ∈ {17, 26, 35, 44, 53}. Let b be a board and let

arp′15(k) ≡ arp15(k, k15, b).

Then for any k15 on b,

maparp′15(k)
(ζlps)

computes in a primitive recursive fashion the G-number of all positions actually reachable
for 15 from k15 on b (See Equation (41) for ζlps), which furnishes us the following lemma.

Lemma 1. Actual reachability for bishop 15 is pr-decidable and pr-computable.

4.7. Actual Reachability

Let j be a valid piece on valid b. Let j = (b)kj
, where

k j = cpsn(j, b) (54)

is the pr-computable position of j on b. Thus, k30 is the position of the black king on b and
k14 is the position of the white king on b.

Let k ∈ rp(j, k j, b). By the rules of chess, j can actually reach finitely many positions
from k j. Consequently, whether k is actually reachable for j from k j on b can be decided
in a primitive recursive fashion with the functions and predicates in Sections 2 and 3 and
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oc(·), vld(·), dg(·), rw(·), cl(·), psn(·), rp()̇ through appropriate Boolean combinations of
primitive recursive predicates and applications of the DCT in the way similar to the one
constructed for bishop 15 in the previous section. Hence, we have the following lemma.

Lemma 2. Let vlp(j) = vld(b) = 1 and k ∈ rp(j, k j, b). Then arpj(k, k j, b) is primitive
recursive.

Since there are finitely many regular and metamorphic pieces, there are finitely many
predicates arpj(·). Let z = rp(j, k j, b). The function

arx(z, j, k j, b, 0) = [ ],
arx(z, j, k j, b, t + 1) = F13(z, j, k j, b,

arx(z, j, k j, b, t),
s(t)),

where

F13(z, j, k j, b, y, i) =

{
y if (z)i 6∈ arpj(j, k j, b),
[(z)i]⊗l y if (z)i ∈ arpj(j, k j, b)

returns the G-number of all positions in z that are actually reachable for j from k j on b. The
function F13(·) is primitive recursive by Lemma 1 and the DCT, which makes arx(·) also
primitive recursive.

The function arps(·) in (55) returns the G-number of actually reachable positions for j
from k j on b. This function is primitive recursive, because it is composed from primitive
recursive functions.

arps(j, k j, b) = arx(rp(j, k j, b), j, k j, b, Lt(rp(j, k j, b))) (55)

Thus, if b and b′ are the boards in Figures 1 and 3, respectively, then

arps(15, 62, b) = [ ];
arps(16, 63, b) = [46, 48];
arps(15, 62, b′) = [17, 26, 35, 44, 53];
arps(16, 46, b′) = [29, 31, 36, 40, 63].

We have the following lemma.

Lemma 3. Actual reachability for valid piece j on valid board b is pr-decidable and pr-computable.

4.8. Checks, Mates, and Stalemates

Black king 30 on valid b is checked when there is a white piece j 6= 14 (i.e., different
from white king 14), for which k30 (See Equation (54)) is actually reachable. The primitive
recursive predicate

bkc(b) ≡ (∃j ∈ ζwp){j 6= 14∧ k30 ∈ arps(j, k j, b)} (56)

holds of b when king 30 is checked on it (See Equation (35) for ζwp). King 30 is mated if,
when checked, it cannot move to any position that is not actually reachable by some white
piece j from the latter’s current position. The primitive recursive predicate

bkm(b) ≡ bkc(b) ∧ (∀k ∈ ζps){k 6∈ arps(30, k, b) ∨ (∃j ∈ ζwp){k ∈ arps(j, k j, b)}} (57)

holds of b when king 30 is mated on it (See Equation (32) for ζps). The primitive recur-
sive predicate

wkc(b) ≡ (∃j ∈ ζbp){j 6= 30∧ k14 ∈ arps(j, k j, b)} (58)
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holds of b when white king 14 is checked on it (See Equation (35) for ζwp); and the primitive
recursive predicate

wkm(b) ≡ wkc(b) ∧ (∀k ∈ ζps){k 6∈ arps(14, k, b) ∨ (∃j ∈ ζbp){k ∈ arps(j, k j, b)}} (59)

holds of b when 14 is mated on it.
A stalemate occurs when the player whose turn it is to make a move on b is not in

check, yet has no legal move to make. In other words, all the player’s pieces have no
actually reachable positions. The primitive recursive predicate

bsm(b) ≡ ¬bck(b) ∧ (∀j ∈ ζbp){Lt(arps(j, k j, b)) = 0} (60)

holds if b is the black stalemate; and the primitive recursive predicate

wsm(b) ≡ ¬wck(b) ∧ (∀j ∈ ζwp){Lt(arps(j, k j, b)) = 0} (61)

holds if b is the white stalemate.

4.9. Dead Position

The dead position rule (DPR) holds for valid b when neither player can checkmate the
opponent by any series of moves. The DPR can be broken into four cases: (1) b contains
only 14 (white king) and 30 (black king); (2) b contains only 14, 30 and a bishop; (3) b
contains only 14, 30 and a knight; (4) b contains only 14, 30, one white bishop, and one
black bishop such that one bishop is light-colored and the other one-dark-colored.

The primitive recursive predicate

dp1(b) ≡ vld(b) ∧ (∀j ∈ ζcp){j = 14∨ j = 30∨ j 6∈ b} (62)

holds for case 1.
We break case 2 into five sub-cases: (2a) b contains only 14, 30, 12; (2b) b contains only

14, 30, 15; (2c) b contains only 14, 30, 28; (2d) b contains only 14, 30, 31; (2e) b contains only
14, 30, and exactly one metamorphic bishop.

The primitive recursive predicate

dpx(b, j) ≡ {vld(b) ∧ j ∈ b ∧ j 6= 14∧ j 6= 30}∧
(∀i ∈ ζcp){i = 14∨ i = 30∨ i = j ∨ i 6∈ b}}

(63)

holds when b contains 14, 30, and exactly one other piece j. The primitive recursive
predicate

dp2(b) ≡ dpx(b, 12) ∨ dpx(b, 15) ∨
dpx(b, 28) ∨ dpx(b, 31) ∨
(∃j ∈ ζcp){bhµ(j) ∧ dpx(b, j)}

(64)

holds for case 2 (See Equation (40) for bhµ(·)).
We break case 3 of the DPR into five sub-cases: (3) b contains only 14, 30, 11; (3b) b

contains only 14, 30, 16; (3c) b contains only 14, 30, 27; (3d) b contains only 14, 30, 32. (3e) b
contains only 14, 30, and exactly one metamorphic knight.

The primitive recursive predicate

dp3(b) ≡ dpx(b, 11) ∨ dpx(b, 16) ∨
dpx(b, 27) ∨ dpx(b, 32) ∨
(∃j ∈ ζcp){knµ(j) ∧ dpx(b, j)}

(65)

holds for case 3.
We break case 4 of the DPR into three sub-cases: (4a) b contains 14, 30, 15, 31; (4b) b

contains 14, 30, 12, 28; (4c) b contains 14, 30, and two metamorphic bishops one of which is
light-colored and the other dark-colored. Let the primitive recursive predicate
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dpxx(b, j′, j′′) ≡ {vld(b) ∧
j′ ∈ b ∧ j′′ ∈ b ∧ j′ 6= j′′ ∧
j′ 6= 14 ∧ j′ 6= 30 ∧
j′′ 6= 14 ∧ j′′ 6= 30 ∧
(∀i ∈ ζcp){{i = 14 ∨ i = 30∨ i = j′ ∨ i = j′′} ∨ i 6∈ b}}

(66)

hold of two different pieces j′ and j′′ on valid b that are the only two pieces on b different
from 14 and 30. The primitive recursive predicate

dp4(b) ≡ dpxx(b, 15, 31) ∨ dpxx(b, 12, 28) ∨ (∃j′ ∈ ζ lcb
µ )(∃j′′ ∈ ζdcb

µ ){dpxx(b, j′, j′′)} (67)

holds for case 4. The primitive recursive predicate

dp(b) = dp1(b) ∨ dp2(b) ∨ dp3(b) ∨ dp4(b) (68)

holds if b is a valid dead position board.
There are two more types of draw in chess: repetition and the 50-move rule. A draw

by repetition is achieved when the same position occurs three times in a row with the same
player to move. The 50-move rule states that a game is a draw when the last 50 moves
contain no capture or pawn move. We will consider these types of draw after we formalize
the concept of game history.

4.10. Moves

Let the primitive recursive predicate

P′7(j, k, b) ≡ vld(b) ∧ j ∈ b ∧ k ∈ arps(j, k j, b) ∧ ¬wkm(b) ∧ ¬bkm(b) ∧
¬wsm(b) ∧ ¬bsm(b) ∧ ¬dp(b)

hold when position k is actually reachable for piece j on valid b from k j (as defined in (54))
and b is not a mate, a stalemate, or a draw. Let

b
j
k = set(set(b, k, j), k j, 1). (69)

The above equation defines a primitive recursive function that calculates the board
obtained from b after j is placed in position k and position k j is set to 1. Thus, if b0 is the
starting board in Figure 1, then

b
6
37 = set(set(b0, 37, 6), 53, 1)

is the board after the white player moves pawn 6 from position 53 to position 37.
Let the primitive recursive predicate

P′′7 (j, k, b) ≡ ¬
{

j ∈ ζwp ∧ wkc
(

b
j
k

)}
∧ ¬

{
j ∈ ζbp ∧ bkc

(
b

j
k

)}
hold if the move of j into k from k j does not result a board where the king of the same color
with j is checked, because such moves are not allowed by the rules of chess.

Let

P7(j, k, b) ≡ P′7(j, k, b) ∧ P′′7 (j, k, b)

and {
b
}j

k
=


b

j
k if P7(j, k, b)

0 otherwise.

(70)
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The function defined in (70) is primitive recursive by the DCT. Thus, if b0 is the board
in Figure 1, then the board in Figure 3 is

{{{{
b0

}6

37

}22

29

}16

46

}32

22
= b0

6

37

22

29

16

46

32

22

.

The right-hand side of the above equality denotes the board obtained from b0 with
four moves: (1) white pawn 6 to position 37; (2) black pawn 22 to position 29; (3) white
knight 16 to position 46; and (4) black knight 32 to position 22; or (1) e4 e5; (2) Kf3 Kf6 in
standard chess notation.

We will denote the white player by 1 and the black player by 2. If x is a player, then x̄
denotes the player’s opponent. Thus, if x = 1, then x̄ = 2; if x = 2, then x̄ = 1. Let〈〈〈

b,
{

b
}j

k

〉
, x
〉

,
〈

j,
〈

k j, k
〉〉〉

(71)

denote the move of piece j by player x from k j to k on b that results in {b}j
k. Thus,〈〈〈

b0,
{

b0

}6

37

〉
, 1
〉

,
〈

6,
〈

53, 37
〉〉〉

is the move of pawn 6 from 53 to 37 by player 1 on b0 that results in{
b0

}6

37
= b0

6

37
.

The primitive recursive function mvp(·) in (72) constructs the required move number
for valid b, x, j, k.

mvp(b, x, j, k) =
〈〈〈

b,
{

b
}j

k

〉
, x
〉

,
〈

j,
〈

k j, k
〉〉〉

(72)

Let

z = mvp(b, x, j, k)

be a move constructed from valid b, x, j, and k. Then the primitive recursive functions
pcb(·), scb(·), plr(·), and mvi(·) in (73) return the predecessor board, the successor board,
the player, the piece and the piece’s positions of move z, respectively.

pcb(z) = l(l(l(z)))

scb(z) = r(l(l(z)))

plr(z) = r(l(z))

mvi(z) = r(z)

(73)

Thus, if b0 be the board in Figure 1, the G-number

[
mvp(b0, 1, 6, 37), mvp(scb(mvp(b0, 1, 6, 37)), 2, 22, 29),
mvp(scb(mvp(scb(mvp(b0, 1, 6, 37)), 2, 22, 29)), 1, 16, 46),
mvp(scb(mvp(scb(mvp(scb(mvp(b0, 1, 6, 37)), 2, 22, 29)), 1, 16, 46)), 2, 32, 22)
]

contains a sequence of moves from b0 in Figure 1 to the board
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b0
6

37

22

29

16

46

32

22

in Figure 3.
Let Mx

b be the G-number of all possible moves that player x can do on b if it is x’s turn
to play. Equations (74) and show us how M1

b and M2
b are pr-computable.

M1
b = ⊗r

∣∣∣
j∈ζwp

⊗r

∣∣∣
k∈arps(j,kj ,b)

[mvp(b, 1, j, k)]

M2
b = ⊗r

∣∣∣
j∈ζbp

⊗r

∣∣∣
k∈arps(j,kj ,b)

[mvp(b, 2, j, k)]

(74)

Let the primitive recursive predicate

P8(b) ≡ vld(b) ∧ ¬wkm(b) ∧ ¬bkm(b) ∧ ¬wsm(b) ∧ ¬bsm(b) ∧ ¬dp(b)

hold when b is not a mate, a stalemate, or a dead position. The function mvs(·) in (75),
which is primitive recursive by the DCT, maps board b to the G-number of all possible
moves obtained from it by exactly one move of player x.

mvs(x, b) =


rm(0, M1

b) if x = 1∧ P8(b),
rm(0, M2

b) if x = 2∧ P8(b),
0 otherwise.

(75)

4.11. History

An epoch of a D2PBG is the G-number of all possible valid boards that can be obtained
from each board in the previous epoch with exactly one move by the player whose turn it
is to play on the boards of the previous epoch. The history of a D2PBG is the G-number of
finitely many epochs.

Let b0 be the initial board in Figure 1. Let the history of chess start at epoch

E0 = 〈EM0, 1〉, (76)

where
EM0 = [〈〈〈0, b0〉, 0〉, 〈0, 〈0, 0〉〉〉].

We observe that
scb((l(E0))1) = scb((EM0)1) = b0

and r(E0) = 1 denotes player 1 whose turn it is to play on scb((l(E0))1).
Epoch Et, t > 0, is

Et = 〈EMt, x〉, (77)

where EMt is pr-computable from Et−1 as

EMt = ⊗r|m∈l(Et−1)
mvs(r(Et−1), scb(m)). (78)

Thus, epoch E1, is pr-computable from E0 as

E1 = 〈EM1, 2〉,

where
EM1 = ⊗r|m∈l(E0)

mvs(1, scb(m)).

Epoch E2 is pr-computable from E1 as
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E2 = 〈EM2, 1〉,

where
EM2 = ⊗r|m∈l(E1)

mvs(2, scb(m)).

To generalize, we let

F14(Et, t) =

{
〈EMs(t), 1〉 if 2|s(t),
〈EMs(t), 2〉 if 2 - s(t),

and define epoch Et as a primitive recursive function in (79).

E0 = 〈EM0, 1〉,
Et+1 = F14(Et, t).

(79)

Thus,
E0 = 〈EM0, 1〉;
E1 = F14(E0, 0) = 〈EM1, 2〉;
E2 = F14(E1, 1) = 〈EM2, 1〉;
E3 = F14(E2, 2) = 〈EM3, 2〉;
E4 = F14(E3, 3) = 〈EM4, 1〉;
E5 = F14(E4, 4) = 〈EM5, 2〉;
. . .

Given an epoch number t, the history of chess, Ht, is pr-computable as

Ht = ⊗r|tk=0[Ei] = [E0, E1, . . . , Et−1, Et]. (80)

Thus, for t > 2.
H0 = [E0];
H1 = [E0, E1];
H2 = [E0, E1, E2];

. . .
Ht = [E0, E1, E2, . . . , Et].

4.12. Games

We define the primitive recursive predicate

eb(b, t) ≡ (∃m ∈ Mt){scb(m) = b} (81)

to hold when b is a successor of some move in Mt, t ≥ 0. We will refer to b as an epoch t
board. Let the primitive recursive predicate

scr(b, b′, t) ≡ {t > 0∧ eb(b, t− 1) ∧ eb(b′, t) ∧
(∃m ∈ Mt){pcb(m) = b ∧ scb(m) = b′}} (82)

hold between boards b and b′ if for some move m ∈ Mt such that b is the move’s predecessor
and b′ is its successor. In other words, epoch t board b′ can be obtained from epoch t− 1
board b in exactly one move by the player whose turn it is to play on b.

Let z = [bi1 , . . . , bik ], k ≥ 2, be a sequence of boards and let b0 be the starting board.
The primitive recursive predicate

hgm(z) ≡ Lt(z) ≥ 2∧ (z)1 = b0 ∧ (∀t ∈ ggn(2, Lt(z), 1)){scr((z)t−1, (z)t, t)} (83)
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holds of z when it has at least two boards, its first board is b0, and the predicate scr(·)
in (82) holds of every two consecutive boards in z. If hgm(z) = 1 for some sequence of
boards z, we refer to z as chess game Gz or simply as game Gz.

Consider the board sequences in Figures 8–11 and let

z1 = [b0]⊗r z′1 = [b0, b1
1, b1

2, b1
3, b1

4];
z2 = [b0]⊗r z′2 = [b0, b2

1, b2
2, b2

3, b2
4];

z3 = [b0]⊗r z′3 = [b0, b3
1, b3

2, b3
3, b3

4];
z3 = [b0]⊗r z′4 = [b0, b4

1, b4
2, b4

3, b4
4].

Then, since

hgm(z1) = hgm(z2) = hgm(z3) = hgm(z4) = 1,

Gz1 , Gz2 , Gz3 , and Gz4 are games.
Let z be a G-number of boards. The primitive recursive function

tlb(z) = (z)Lt(z) (84)

computes the last board of z. If Gz is a game, we will refer to the last board of Gz (i.e.,
tlb(Gz)) as the tail board or the tail of Gz.

The primitive recursive function J(·) computes the G-number of all games up to epoch
t > 0.

J(0) = [[b0]],
J(t + 1) = F15(J(t), t),

(85)

where

F15(Z, t) = ⊗r|z∈ZF16(z, EMt+1), (86)

where

F16(z, EM) = F17(z, mappcb(m)=tlb(z)(EM),
Lt(mappcb(m)=tlb(z)(EM))),

(87)

where

F17(z, EM, 0) = [ ],
F17(z, EM, t + 1) = F18(z, EM, F17(z, EM, t), t),

(88)

where

F18(z, EM, Z, t) = Z⊗r [z⊗r [scb((EM)s(t))]]. (89)
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b1
1 b1

2

b1
3 b1

4

b1
1 =

{
b0

}6

37
= b0

6

37

b1
2 =

{{
b0

}6

37

}22

29
= b0

6

37

22

29

b1
3 =

{{{
b0

}6

37

}22

29

}16

46
= b0

6

37

22

29

16

46

b1
4 =

{{{{
b0

}6

37

}22

29

}16

46

}32

22
= b0

6

37

22

29

16

46

32

22

Figure 8. Board sequence z′1 corresponding to the moves (1) e4 e5; (2) Kf3 Kf6.

b2
1 b2

2

b2
3 b2

4

Figure 9. Cont.
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b2
1 =

{
b0

}6

37
= b0

6

37

b2
2 =

{{
b0

}6

37

}32

22
= b0

6

37

32

22

b2
3 =

{{{
b0

}6

37

}32

22

}16

46
= b0

6

37

32

22

16

46

b2
4 =

{{{{
b0

}6

37

}32

22

}16

46

}22

29
= b0

6

37

32

22

16

46

22

29

Figure 9. Board sequence z′2 corresponding to the moves (1) e4 Kf6; (2) Kf3 e5.

b3
1 b3

2

b3
3 b3

4

b3
1 =

{
b0

}16

46
= b0

16

46

b3
2 =

{{
b0

}16

46

}13

29
= b0

16

46

13

29

b3
3 =

{{{
b0

}16

46

}13

29

}6

37
= b0

16

46

13

29

6

37

b3
4 =

{{{{
b0

}16

46

}13

29

}6

37

}32

22
= b0

16

46

13

29

6

37

32

22

Figure 10. Board sequence z′3 corresponding to the moves (1) Kf3 e5; (2) e4 Kf6.
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b4
1 b4

2

b4
3 b4

4

b4
1 =

{
b0

}16

46
= b0

16

46

b4
2 =

{{
b0

}16

46

}32

22
= b0

16

46

32

22

b4
3 =

{{{
b0

}16

46

}32

22

}6

37
= b0

16

46

32

22

6

37

b4
4 =

{{{{
b0

}16

46

}32

22

}6

37

}13

29
= b0

16

46

32

22

6

37

13

29

Figure 11. Board sequence z′4 corresponding to the moves (1) Kf3 e5; (2) e4 Kf6.

The primitive recursive function F18(·) in (89) takes a game Gz, a G-number EM of
moves such that (∀m ∈ EM) {pcb(m) = tlb(z) }, a G-number Z of games and a number
t. This function computes the continuation [z⊗r [scb((EM)s(t))] of Gz and appends it at
the right of the games Z computed thus far.

The primitive recursive function F17(·) in (88) takes a game Gz, a G-number M of
moves such that (∀m ∈ EM) {pcb(m) = tlb(z) } and returns the G-number of games
each of which is a continuation of Gz with each successor board of the moves EM.

The primitive recursive function F16(·) in (87) takes a game Gz and the G-number EM
of moves of epoch t > 0 and computes the G-number of all games that extend Gz with the
appropriate successor boards in EM (i.e., with the successor board of each move m ∈ EM
such that pcb(m) = tlb(z)).

The primitive recursive function F15(·) in (86) takes a G-number of games Z and t ≥ 1
and computes the G-number of games by extending every game in Z with all appropriate
successor boards in EMt+1. If t > 0, then

Gt = ⊗r|ti=1[J(i)] (90)

is the G-number of all games up to epoch t. All games in Gt are historical in the sense that
they are based on the moves in each epoch Et of Ht in (80). All games in Gt are legal, because
they are obtained by legal moves from the initial board b0. We have the following lemma.

Lemma 4. Let Gz ∈ Gt, t > 0, and b = tlb(Gz). Then Lt(z) = t + 1 and if t is even, then
player 1 is to play on b; if t is odd, player 2 is to play on b.
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Let
PΓ(z) ≡ hgm(z) ∧ Gz ∈ GLt(z)−1 (91)

be a primitive recursive predicate that holds of z if Gz is a chess game and let

Γ = {z ∈ N|PΓ(z)} (92)

be the set of numbers for which PΓ(·) holds. Since every primitive recursive function is
computable (See Chapter 3 in [5]), we have the following lemma.

Lemma 5. The set of chess games Γ is recursive.

Lemma 5 shows that the characteristic of chess game historicity or, equivalently, chess
game legality is pr-decidable.

Let Gz be a game and let z′ be a sequence of boards such that Lt(z′) > 1. We say that
z′ is a subgame of Gz if the primitive recursive predicate sbg(·) in (93) holds of Gz and z′.

sbg(z′, Gz) ≡
{1 < Lt(z′) ≤ Lt(z) ∧
(∃i ∈ ggn(1, Lt(z) .− 1, 1)){
(∀k ∈ ggn(1, Lt(z′), 1)){(z′)k = (z)i+k−1}}}

(93)

In other words, z′ must have at least 2 boards but no more boards than z and be a sub-
sequence of z that starts at some position i between 1 and Lt(z′) .− 1. Consider Figure 10.
If

z3 = [b0, b3
1, b3

2, b3
3, b3

4],

then

sbg([b0, b3
1], Gz3) = 1;

sbg([b3
1, b3

2, b3
3], Gz3) = 1;

sbg([b3
1, b3

3, b3
4], Gz3) = 0;

sbg([b3
2, b3

4], Gz3) = 0.

We define the primitive recursive predicate sbg2(·) to hold when z′ starts at a specific
board i in Gz.

sbg2(z
′, Gz, i) ≡

{1 < Lt(z′) ≤ Lt(z) ∧ {0 < i ∧
(∀k ∈ ggn(1, Lt(z′), 1)){(z′)k = (z)i+k−1}}}

(94)

Thus,

sbg2([b0, b3
1], Gz3 , 1) = sbg2([b

3
2, b3

3, b3
4], Gz3 , 3) = 1.

4.13. Repetition and 50-Move Rule

We now return to the remaining two types of draw: draw by repetition and the
50-move rule, which we promised to consider at the end of Section 4.9. We recall that a
draw by repetition is achieved when the same board position occurs three times in a row
with the same player to move. Consider the sequence of boards in Figure 12. Board b0
occurs three times in this sequence (i.e., b0 = b4 = b8) with player 1 to move.
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b0 b1 b2

b3 b4 b5

b6 b7 b8

Figure 12. Draw by threefold repetition.

Let z′ be a subgame with player x to play on (z′)1. The same board occurs in a row
at (z′)5 since x and x̄ must make one move each and then reverse that move. Player x
then plays on (z′)5 and the same board occurs in a row at (z′)9, since x and x̄ make one
move each again and reverse it. Thus, z′ is a draw by repetition if it has 9 boards such that
(z′)1 = (z′)5 = (z′)9. In other words, if

Lt(z′) = 9∧ (z′)1 = (z′)5 = (z′)9.

Let Gz ∈ Gt, t > 0, then Gz is a draw by repetition if

drp(Gz) ≡ {Lt(z) ≥ 9 ∧ tlb(z) = (z)Lt(z) .−8 = (z)Lt(z) .−4} (95)

The 50-move rule states that a game is a draw when the last 50 moves contain no
capture or pawn move. If a game Gz is a draw by the 50-move rule, then Gz ∈ Gt, t ≥ 49.
Let z′ be a subgame of Gz that has 50 boards (i.e., Lt(z′) = 50). Then Gz is a 50-move rule
draw if for all boards in z′ the pawn positions are same and the counts of all white and
black pieces remain constant.

We define several auxiliary primitive recursive predicates to compose them into a
primitive recursive predicate that holds of Gz if the latter is a draw by the 50-move rule. Let

ζwpn = ggn(2, 9, 1);
ζbpn = ggn(18, 25, 1)

be the G-numbers of the white and black pawns, respectively. The primitive recursive
predicates wpx50(·) and bpx50(·) below hold if every white and black pawn is present or
abscent on both boards (i.e., b1 and b2) and, if any white or black pawn is present on both
boards, its position is the same on both.
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wpx50(b1, b2) ≡
{(∀i ∈ ζwpn){{i ∈ b1 ∧ i ∈ b2} ∨ {i 6∈ b1 ∧ i 6∈ b2}}} ∧
{(∀i ∈ ζwpn){{i 6∈ b1 ∨ i 6∈ b2} ∨ cpsn(i, b1) = cpsn(i, b2)}}

(96)

bpx50(b1, b2) ≡
{(∀i ∈ ζbpn){{i ∈ b1 ∧ i ∈ b2} ∨ {i 6∈ b1 ∧ i 6∈ b2}}} ∧
{(∀i ∈ ζbpn){{i 6∈ b1 ∨ i 6∈ b2} ∨ cpsn(i, b1) = cpsn(i, b2)}}

(97)

We recall that ζcp in (41) defines the G-number of all the white and black pieces. The
primitive recursive predicate

cntx50(b1, b2) ≡ (∀j ∈ ζcp){cnt(j, b1) = cnt(j, b2)}

holds if the counts of all pieces on the boards b1 and b2 are equal.
Let z be a sequence of boards. The primitive recursive predicate

wbp50(z) ≡ (∀t ∈ ggn(1, Lt(z) .− 1, 1)){wpx50((z)t, (z)t+1) ∧ bpx50((z)t, (z)t+1)}

holds if the predicates wpx50(·) and bpx50(·) hold for every pair of consecutive boards in z.
The primitive recursive predicate

cnt50(z) ≡ (∀t ∈ ggn(1, Lt(z) .− 1, 1)){cntx50((z)t, (z)t+1)}

holds if the counts of all pieces on all boards in z are equal. The primitive recursive predicate

drx50(z) ≡ wbp50(z) ∧ cnt50(z)

holds if the boards in z have no pawn moves or piece captures.
The game Gz is a draw by the 50-move rule if there is a position i in z that starts a

subgame of length 50 for which drx50(·) holds. The primitive recursive predicate

dr50(Gz) ≡ Lt(z) ≥ 50 ∧ (∃t ∈ ggn(1, Lt(z) .− 49, 1)){drx50(ssq(z, t, t + 49)} (98)

holds if Gz is a draw by the 50-move rule.

4.14. Classification of Games

We define the primitive recursive predicate

drg(Gz) ≡ drp(Gz) ∨ dr50(Gz) ∨ bsm
(
tlb(Gz)

)
∨ wsm

(
tlb(Gz)

)
∨ dp

(
tlb(Gz)

)
(99)

to hold when Gz is a draw game by repetition, the 50-move rule, stalemate, or dead position.
The primitive recursive predicate

wng(Gz, x) ≡


bkm

(
tlb(Gz)

)
if x = 1,

wkm
(
tlb(Gz)

)
if x = 2,

0 otherwise

(100)

holds when Gz ends in a mate for x̄. The primitive recursive predicate

ufg(Gz, x) ≡ ¬drg(Gz) ∧ ¬wng(Gz, x) (101)

holds when Gz is unfinished for x (i.e., it is neither a draw nor a win for x).
By Lemma 4, player 1 can win only those games in Gt if t is odd and player 2 can

win only games in Gt if t is even. Let Gz ∈ Gt, t > 0, and let x be the player to play at
t. If Gz is not a win for x̄, then x can win in 1, 3, 5, . . . , 2k + 1 moves. Let n be an odd
number of moves into the future. We inquire if it is possible to find games Gy ∈ Gt+n that
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are continuations of Gz and are wins for x in a primitive recursive fashion. The primitive
recursive predicate

cng(y, z) ≡ z = ssq(y, 1, Lt(z)) ∧ PΓ(y) (102)

determines if Gy is a continuation of Gz. For any Gz, we let the primitive recursive predicate

wcng(y, x) ≡ cng(y, z) ∧ wng(Gy, x)

hold when Gy is a continuation of Gz that is a win for x. Let wnx(y) ≡ wcng(y, 1) and
bnx(y) ≡ wcng(y, 2). If Gz ∈ Gt, t > 0, then the primitive recursive function

wngs(Gz, x, t, n) =


mapwnx(Gt+n) if 2 - n ∧ x = 1,
mapbnx(Gt+n) if 2 - n ∧ x = 2,
0 otherwise

(103)

returns the G-number of all continuations of Gz in Gt+n that are wins for x whose turn it is
to play on the tail of Gz. The primitive recursive predicate

dcng(y) ≡ cng(y, z) ∧ drg(Gy)

holds when Gy is a continuation of Gz that is a draw. If Gz ∈ Gt, t > 0, then the primitive
recursive function

drgs(Gz, t, n) =

{
mapdcng(Gt+n) if 2 - n,

0 otherwise
(104)

returns the G-number of all continuations of Gz in Gt+n that are draws for x whose turn it
is to play on the last board of Gz. The primitive recursive predicate

ucng(y, x) ≡ cng(y, z) ∧ ufg(Gy, x)

holds when Gy is a continuation of Gz that is unfinished for x. Let wux(y) ≡ ucng(y, 1) and
bux(y) ≡ ucng(y, 2). If Gz ∈ Gt, t > 0, then the primitive recursive function

ufgs(Gz, x, t, n) =


mapwux(Gt+n) if 2 - n ∧ x = 1,
mapbux(Gt+n) if 2 - n ∧ x = 2,
0 otherwise

(105)

returns the G-number of all continuations of Gz in Gt+n that are unfinished for x whose
turn it is to play on the tail of Gz.

Let Gz ∈ Gt, t > 0, and let x be the player whose turn it is to play on the tail of Gz. We
will further assume that Gz is unfinished (i.e., ufg(Gz, x) = 1) for x. We call Gz winnable
for x in n moves if wngs(Gz, x, t, n) 6= 0, drawable for x in n moves if drgs(Gz, t, n) 6= 0, and
unfinishable for x in n moves if ufgs(Gz, x, t, n) 6= 0. We will call unfinishable games hangs.
If a player makes a move that results in a hang, we will say that the player hangs the game
or that the game is hung. We have the following lemma.

Lemma 6. Let Gz ∈ Gt, t > 0, be a hang and x be the player whose turn it is to play on
b = tlb(z). If n is an odd positive integer, then it is pr-decidable whether Gz is is winnable for x
within n moves, is drawable for x within n moves, or is a hang for x within n moves.

Of course, if a game is winnable, drawable, or unfinishable for x, x may still lose it
within n moves, because there may be a sequence of at most n moves from the tail of Gz
that allows x̄ to win.

We pose the question if it is pr-decidable to whether Gz is absolutely winnable for x
within n moves when x is to play on the tail of Gz. Gz is absolutely winnable for x if any
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continuation of Gz of less than or equal to n boards results in a win for x and is not winnable
or drawable for x̄.

Let us assume that Gz ∈ Gt, t > 0, and x is the player whose turn it is to play on the
tail of Gz and Gz is unfinished (i.e., ufg(Gz, x) = 0). Let

g1 = ggn(t + 1, t + n, 2)
g2 = ggn(t + 2, t + n, 2)

(106)

be the G-numbers of game epochs strictly between t and t + n, where g1 = [(t + 1), (t +
1) + 2, . . . , (t + 1) + 2j], and g2 = [t + 2, t + 2 · 2, . . . , t + 2k], where (t + 1) + 2j and t + 2k
are the largest numbers less than t + n obtained in even increments from (t + 1) and (t + 2),
respectively. G-number g1 contains the numbers of epochs, where x̄ plays and x can win,
draw, or hang, and g2 contains the numbers of epochs where x plays and x̄ can win, draw,
or hang.

The primitive recursive predicate

awg1(Gz, x, n) ≡ (∀t ∈ g1)(∀y ∈ Gt){¬cng(y, z) ∨ wcng(y, x)}

holds if x wins every continuation Gy of Gz within n moves and the primitive recursive predicate

awg2(Gz, x, n) ≡ (∀t ∈ g2)(∀y ∈ Gt){¬cng(y, z) ∨ ucng(y, x̄)}

holds if every continuation Gy of Gz within n moves is a hang for x̄.
The primitive recursive predicate

awg(Gz, x, n) ≡ awg1(Gz, x, n) ∧ awg2(Gz, x, n) (107)

holds if Gz is absolutely winnable for x within n moves.
Is it pr-decidable if x can win or draw Gz from its tail within the next n moves while x̄

cannot win under any sequence of moves less than or equal to n? If Gz is such a game, we
call it favorable for x.

We define the primitive recursive predicate

fvg1(Gz, x, n) ≡ (∀t ∈ g1)(∀y ∈ Gt){¬cng(y, z) ∨ {dcng(y) ∨ wcng(y, x)}}

to hold if x wins or draws in every continuation Gy of Gz within n moves and define the
primitive recursive predicate

fvg2(Gz, x, n) ≡ (∀t ∈ g2)(∀y ∈ Gt){¬cng(y, z) ∨ ucng(y, x̄)}

to hold if every continuation Gy of Gz within n moves is a hang for x̄.
The primitive recursive predicate

fvg(Gz, x, n) ≡ fvg1(Gz, x, n) ∧ fvg2(Gz, x, n) (108)

holds if Gz is favorable for x within n moves in that in any continuation Gy of Gz within
the next n moves x wins or draws whereas x̄ hangs.

Is it pr-decidable whether neither x nor x̄ can win or draw Gz within the next n
moves from the tail of Gz? In other words, is any continuation of Gz within the next n
moves from its tail is a hang? If that it the case, let us refer to Gz as an absolute hang or
absolutely unfinishable.

The primitive recursive predicate

ahg1(Gz, x, n) ≡ (∀t ∈ g1)(∀y ∈ Gt){¬cng(y, z) ∨ ucng(y, x)}

holds if x hangs in every continuation Gy of Gz within n moves, and the primitive recur-
sive predicate
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ahg2(Gz, x, n) ≡ (∀t ∈ g2)(∀y ∈ Gt){¬cng(y, z) ∨ ucng(y, x̄)}

holds if every continuation Gy of Gz within n moves is a hang for x̄.
The primitive recursive predicate

ahg(Gz, x, n) ≡ ahg1(Gz, x, n) ∧ ahg2(Gz, x, n) (109)

holds if Gz is unfinishable for x and x̄ within n moves.
We summarize the above arguments in the following lemma.

Lemma 7. Let Gz ∈ Gt, t > 0, be a hang and x be the player whose turn it is to play on
b = tlb(z). If n be an odd positive integer, then it is pr-decidable whether Gz is absolutely winnable
for x within n moves, is favorable for x within n moves, or is an absolute hang for x (and x̄) within
n moves.

Before we leave this section, we summarize our findings in the following lemma.

Lemma 8. The following characteristics of chess are pr-decidable: board validity, checkmate,
stalemate, draw, potential and actual reachability, game winnability, drawability, and unfinishability
within the next n moves, absolute game winnability and unfinishability within the next n moves
and game favorability within the next n moves, where n is a positive odd integer.

5. Procedures

Suppose Gz ∈ Gt, t > 0, and the player x is to play on the tail of Gz. Is an optimal
continuation of Gz for x within n moves pr-computable for some positive odd n? An
optimal continuation may be the continuation of 0 moves (i.e., resignation), which is the
only rational decision in the absence of any wins or draws. Lemma 8 suggests a host
of primitive recursive procedures for x to find an optimal continuation including the
resignation. If awg(Gz, x, n) is true, then let

Za = wngs(Gz, x, t, n)

be the pr-computable G-number of winnable games for x within n moves, which, since Gz
is absolutely winnable, includes all continuations of Gz within n moves. The next move
from (Za)1 can be arbitrarily chosen for x to play (e.g., ((Za)1)Lt(z)+1). Alternatively, the
minimalization can be used to find the index of z′ ∈ Za such that

(∀z′′ ∈ Za){z′ = z′′ ∨ Lt(z′) ≤ Lt(z′′)}.

Since the above predicate is primitive recursive, so is its minimalization. If Gz′ is
the shortest absolutely winnable game found through the minimalization of the above
primitive recursive predicate, the next move is chosen as

(z′)Lt(z)+1.

If awg(Gz, x, n) = 0 but fvg(Gz, x, n) = 1, then let

Zw = wngs(Gz, x, t, n);
Zd = drgs(Gz, x, t, n).

Since Gz is favorable, all continuations of Gz within the next n moves will be in Zw or
Zd. If Zw 6= 0, x uses the minimalization to find the shortest continuation in Zw as outlined
above and selects the next move from that continuation. If Zw = 0, then all continuations
of Gz are draws for x within the next n moves, and x can choose the next move from the
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shortest continuation in Zd. If awg(Gz, x, n) = fvg(Gz, x, n) = 0 but ahg(Gz, x, n) = 1, then
x chooses the next move from the shortest z in

Zh = ufgs(Gz, x, t, n).

What if Zw = Zd = Zh = 0? In this case, Gz is absolutely losable or an absolute loss for x
within n moves. The primitive recursive predicate

alg(Gz, x, n) ≡ wngs(Gz, x, Lt(z) + 1, n)
= drgs(Gz, x, Lt(z) + 1, n)
= ufgs(Gz, x, Lt(z) + 1, n)
= 0

(110)

holds when Gz is absolutely losable for x within the next n moves. In this case, the concept
of lookahead (i.e., n + m moves ahead for some positive even number m) can be applied
and the above primitive recursive steps of computing Zw, Zd, and Zh repeated so long as
n + m ≤ K, where K is some arbibrary large positive odd integer. Taking M = 399 should
suffice in light of the fact that the longest game so far in the history of chess took 269 moves
to complete and lasted 20 h and 15 min [8]. If Gz remains absolutely losable for x within
the next K moves, x resigns.

What if Zh 6= 0 (i.e., there are absolute hangs)? We can use the same incremental
lookahead method to determine if any Gz′ ∈ Zh is absolutely winnable or favorable for x
within the next K moves. If there is an absolutely winnable game, x plays the first move of
that game. If there is a favorable game, x plays the first move of that game.

If there are no absolutely winnable or favorable games within the next K moves for
any game in Zh, it must be decided for x which unfinishable game in Zh to choose. One
possible pr-computable procedure is to choose a continuation Gz′ of Gz in Zh for which
the counts of the pieces for each board of Gz′ are equal. If there is such a game, x plays its
first move.

Another, more flexible, pr-computable procedure is to assign an arbitrary value (a
positive integer) to each piece: 2 to a pawn, 3 to a knight and a bishop, 5 to a rook, 7 to a
queen and compute the value of each board for player x as the sum of x’s pieces on the
board. Then a continuation Gz′ ∈ Zh of Gz is chosen where each board from the tail of Gz to
the tail of Gz′ has the same value for x and x̄ or the difference in the values does not exceed
an arbitrarily chosen number. In general, any decision procedure or a utility function
that is built from primitive recursive functions and predicates that compute properties of
G-numbers will be primitive recursive

The above discussion furnishes us with the following theorem and a corollary.

Theorem 1. Let Gz ∈ Gt, t > 0, be a hang and x be the player whose turn it is to play on
b = tlb(z) and let K be a large positive odd integer. Then there exist pr-computable procedures to
compute optimal continuations of Gz for x and to decide if Gz is absolutely losable for x within the
next M moves.

Corollary 1. Absolute losability of a chess game is a pr-decidable characteristic.

6. Discussion

In the AI game playing literature (e.g., [9,10]), game engines are functions computed
by programs that can play specific games by generating legal moves against humans or
other programs with varying degrees of success. These programs almost never compute
total functions, because they are based on search control heuristics (e.g., A*, minimax,
alpha-beta pruning, etc.). Thus, even when their inputs and outputs can be represented
as natural numbers with a rigorous Gödel numbering scheme, they can be construed
only as partially computable functions. Furthermore, programs that play games with
difficult combinatorics (chess, checkers, Go, etc.) break the fundamental tenet of classical
computability in Rogers’ quote from [4] in Section 1, because, to be efficient, they must esti-
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mate, ahead of computation, how long the decision making process takes and heuristically
prune continuations.

In the classification of Barr and Feigenbaum [9], D2PBGs are games that can be
represented with AND/OR trees. Specifically, Barr and Feigenbaum write that

‘‘[a]t each turn, the rules define both what moves are legal
and the effect that each possible move will have; there is
no element of chance. In contrast to card games in which the
players’ hands are hidden, each player has complete information
about his opponent’s position, including the choices open to
him and the moves he has made. The game begins from a specified
state, often a configuration of men on a board. It ends in a
win for one player and a loss for the other, or possibly in
a draw.’’

Russell and Norvig [10] characterize chess as “a game of perfect information”, because
“the agent can perceive everything there is to know about the environment”. In our opinion,
Russell and Norvig’s definition is less precise than Barr and Feigenbaum’s, because it
appears to separate computation and perception. If perception is not computation, then
AI D2PBG engines fall outside of the scope of classical computability. If perception is
computation, many such engines are partially computable functions, because they are not
total due to heuristic pruning.

AND/OR game trees can be searched with minimax [9]. If in a chess engine both
players use minimax on the complete AND/OR game tree, which is feasible only in theory,
and if the board evaluation function applied to each tree node by each player is primitive
recursive, then the engine is a primitive recursive function by Lemma 8 and the Section 5
theorem. However, if the board evaluation function in minimax is not primitive recursive
(e.g., if it is computable but not primitive recursive or partially computable), then the
engine is not primitive recursive.

What if we put aside heuristic search control (e.g., minimax) and consider a chess
game engine that uses an artificial or convolutional neural network (ANN or ConvNet)
(e.g., [11])? In this case, the chess engine computes a primitive recursive function if and only
if the synapse weights are natural numbers, which is never the case in the state-of-the-art
ANNs or ConvNets that play such games as chess and Go. They are deep multi-layer
networks where each weight is a real number (typically, but not always, between 0 and
1). But, since there are uncountably many reals between 0 and 1 or in any interval defined
by two distinct real numbers, it is impossible to generate network states with primitive
recursion. Consequently, if the chess engine is a ANN/ConvNet, then the engine may be
computable, but not primitive recursive. Of course, even the computability of the engine
depends on whether, in addition to representing inputs and outputs as natural numbers,
we are able to show that the engine computes a total function.

Any characteristic of a D2PBG game with a finite history (e.g., Tic Tac Toe) is pr-
decidable and pr-computable in the sense that the entire game history is a G-number
and an optimal sequence of moves for either player can be found using number-theoretic
methods from an arbitrary board within that number.

A D2PBG all of whose boards can be calculated in a primitive recursive fashion
within the next K moves for some arbitrarily large number K (with the magnitude of
K dependent on the rules of the game) is pr-decidable for K in the sense that for either
player it is possible to decide in a primitive recursive fashion whether an unfinished
game is absolutely winnable, favorable, or absolutely losable within K moves. If a game
is absolutely unfinishable within the next K moves, then there exist primitive recursive
calculation procedures to choose the next move and in that sense (and that sense only)
chess is pr-computable.

As we showed in this article, some characteristics of chess are pr-computable. Any
characteristic of the chess board (and, in general, a board in a D2PBG) represented as a G-
number that can be decided by a primitive recursive predicate through primitive recursive
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number-theoretic methods is pr-decidable. Since sequences of boards can be combined into
G-numbers as games, any characteristic of the G-number of a game that can be calculated
through primitive recursive number-theoretic methods is pr-computable and pr-decidable.

The following questions remain open with respect to chess as a D2PBG:

1. Is chess a D2PBG with a finite history? In other words, is there t > 0 such that
(∀t′){t′ ≤ t ∨ Et′ = 0}? (See Equation (79)).

2. Are there computable decision procedures for player x that are not primitive recursive
and that guarantee for x to win or draw an unfinished game if x̄ uses only primitive
recursive decision procedures?

3. Are there games that x cannot lose when x uses only primitive recursive decision pro-
cedures while x̄ uses computable decision procedures that are not primitive recursive?

7. Summary

We investigated several characteristics of chess with methods of computability and
number theories. We showed that chess boards can be represented as Gödel numbers
(G-numbers). The following characteristics were shown to be pr-decidable: board validity,
position reachability, potential and actual position reachability, check, mate, stalemate,
and draw.

We showed that it is pr-decidable whether an unfinished game is absolutely winnable,
favorable (i.e., winnable or drawable), or absolutely losable within a specified number
of moves for the player whose turn it is to play on the last board. We also showed that
that there exist primitive recursive procedures to compute optimal continuations of an
unfinished game and that the set of all chess games is recursive.
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