
����������
�������

Citation: Powell, A. Computation

and Hypercomputation. Mathematics

2022, 10, 997. https://doi.org/

10.3390/math10060997

Academic Editor: Christos G.

Massouros

Received: 15 February 2022

Accepted: 15 March 2022

Published: 20 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Computation and Hypercomputation
Andrew Powell

Institute for Security Science and Technology, Imperial College, South Kensington Campus,
London SW7 2AZ, UK; andrew.powell@imperial.ac.uk

Abstract: This paper shows some of the differences and similarities between computation and
hypercomputation, the similarities relating to the complexity of propositional computation and the
differences being the propositions that can be decided computationally or hypercomputationally. The
methods used are ordinal Turing machines with infinitely long programs and diagonalization out of
computing complexity classes. The main results are the characterization of inequalities of run time
complexities of serial, indeterministic serial and parallel computers and hypercomputers and the
specification of a hierarchy of hypercomputers that can hypercompute the truths of all propositions
in the standard class model of set theory, the von Neumann hierarchy of pure sets.

Keywords: computation; diagonalization; hypercomputation; recursion theory; von Neumann
hierarchy of pure sets

MSC: 03D15; 03D55; 03D60

1. Introduction

This paper sets out to characterize computations and hypercomputations as trees. Both
computers and hypercomputers are defined in this paper, and the difference between them
is that a computer has a program of finite length, has finitely many non-empty registers to
store data and a computation will only be successful if the program runs for a finite time.
At least one of these assumptions is false for a hypercomputer: in the existing literature, a
cell-based computer with an infinite run time is called an infinite run time Turing machine
(see Hamkins and Lewis [1]), a register-based computer with an infinite run time is called
an infinite time register machine (see Koepke [2], Koepke and Miller [3], a cell-based computer
with an infinite run time and an infinite number of non-empty cells on a tape but with a fi-
nite program is called an ordinal Turing machine (see Koepke [4], Koepke and Koerwien [5]),
while a register-based computer with an infinite run time and an infinite number of non-
empty registers but with a finite program is called an ordinal register machine (see Koepke
and Siders [6]). (Strictly, ordinal machines have a tape length or number of registers which
is the proper class of all ordinals, but are such that any computation uses only finitely
many ordinals.) There is now a large amount of literature on hypercomputation due to (in
alphabetical order) Carl, Hamkins, Koepke, Welch and others, see Hamkins and Lewis [1],
Koepke [2,4], Koepke and Koerwien [5], Koepke and Siders [6], Carl et al. [7,8], Carl [9,10],
Koepke [11], Hamkins and Miller [12], Welch [13,14], Blanchetti [15], Rin [16], Welch [17].
The main focus of these papers is to characterize the strength of the propositions that
can be decided hypercomputationally by different types of hypercomputers, although
hypercomputation can also be regarded as a putative alternative foundation for a partic-
ular formal theory, such as admissible recursion theory, see Koepke and Seyfferth [18].
In addition, a literature work looking at hypercomputation of computational complexity
classes, such as the polynomial space and time classes and the non-deteministic polynomial
space and time classes (see Schindler [19], Hamkins and Welch [20], Deolalikar et al. [21],
Carl [22]) is relevant to this paper because this paper contains results on hypercomputa-

Mathematics 2022, 10, 997. https://doi.org/10.3390/math10060997 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10060997
https://doi.org/10.3390/math10060997
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3470-1038
https://doi.org/10.3390/math10060997
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10060997?type=check_update&version=2

Mathematics 2022, 10, 997 2 of 16

tional complexity classes, which are generalizations of existing results about computational
complexity classes.

This paper, unlike those just cited, allows hypercomputers with programs of infinite
length. Allowing programs of infinite length produces very powerful hypercomputers, suf-
ficiently powerful to decide the truth of any proposition of second-order Zermelo–Fraenkel
set theory (ZF2 for short, see Hellman [23] for an overview of standard set models of ZF2)
that does not involve proper classes, and therefore suffices to decide set membership for
any set in the von Neumann Hierarchy of pure sets, V. Although it is not possible in gen-
eral, even in principle, to implement a general purpose hypercomputer, hypercomputers
are very useful for characterizing the computational strength required to realize certain
mathematical systems. It is not the purpose of this paper to dispute the Church–Turing
thesis that all computable algorithms can be programmed on a Turing machine (i.e., a
finite but unbounded computer), but if computability defines an upper bound for what we
mean by finitary methods in mathematics, then propositions that can only be decided by
hypercomputational methods are fundamentally infinitary in nature.

It is well known that any total computation (that always returns a result no matter
what the input) can be expressed as a branch or set of branches of a rooted decorated tree
of finite length, where each branch represents a transition between states (which could
keep the same state and could represent a line number, command or loop). We can say that
a state label decorates the nodes of the tree, where the state label can be replaced by a
“snapshot” of the state of the computer executing a program. (The term “snapshot” is due
to Hamkins and Lewis [1].) Similarly, a hypercomputation can be expressed as a branch or
set of branches of a rooted decorated tree of infinite length.

Two different approaches to hypercomputation are described: one where a branch of
infinite length represents an ω-sequence of values, and the other where hypercomputations
are extended to branches of transfinite length. Transfinite lengths are possible if the registers
are left in a consistent condition at limit ordinals during computations. The latter approach
is in general much more powerful but being able to reason about ω-sequences as completed
infinities is simpler (although we do have the ability to use the limit value in one branch as
input to another branch, so can represent the transfinite). In the following definitions, we
split out the number of registers, the length of computations and the length of the program
as separate parameters.

2. Materials and Methods

This paper contains some cardinal and ordinal arithmetic, so it is worth saying how
cardinals and ordinals are treated. Cardinals are used to answer “how many” questions
(of cardinality), while ordinals are used for order dependent questions such as counting,
coding and enumeration. As is standard, here all cardinals are ordinals, finite cardinals
and ordinals are identical, and infinite cardinals are the least ordinal of that cardinality.
Thus, ordinal ω, the least infinite ordinal, is identified with ℵ0, the first infinite cardinal. In
this paper, only cardinal exponentiation is used because we want to compute how many
computation paths there are. On the other hand, addition and multiplication here are
ordinal addition and multiplication if we are considering an ordering of computation paths
or an enumeration. Where cardinal addition or multiplication is intended, we will write |α|
to indicate that α and any operations on it should be treated as cardinal operations. Finally,
to make treatment of sets easier from an ordinal perspective, the Axiom of Choice will be
assumed in the operations that can be performed by hypercomputers.

This paper uses classical methods of recursion theory such as diagonalization to de-
fine hypercomputational variants of complexity classes and builds on the literature on
hypercomputation. The methods used are often “brute force” because the underlying
hypercomputer is extremely powerful. Using infinitely long programs, it is possible to form
structures by direct construction, but also to construct functions by transfinite recursion
along a well-ordered set of any order type α and from any initial function and any iterator
function (whether finitely defined or otherwise). Whilst enumeration of an infinite set can

Mathematics 2022, 10, 997 3 of 16

be constructed by using a finitely long program that proceeds by transfinite recursion and
calls out to the Axiom of Choice to choose a member of the set that has not been chosen
so far and to add it to a well-order, choice functions provided by the Axiom of Choice
are not finitely defined. The use of Axiom of Choice to provide a choice function as the
iterator function can be eliminated by making the choice of members “hard coded” in the
enumeration in the program itself if the program is sufficiently infinitely long. Since the
Axiom of Choice is used as an oracle in computing terms, finite programs plus an oracle
are an alternative to allowing infinitely long programs.

Infinitely long programs are a key method of this paper. For a serial hypercomputer
where only one instruction can be executed at a time, infinite programs are treated using the
limit of the supremum of the states at the limit time. This is possible because the program
state is a “line number” of a sort which will execute when the state is reached. In some
cases, the limit state will be one of finitely many states, but in other cases a state represented
by an infinite ordinal will be required. For a parallel hypercomputer, effectively a number
of serial programs can be executed at one time, which only makes sense if the programs
are independent of one another. To address the concern that infinite programs are less true
to computing than an infinitely long tape (number of registers) or infinite run time, in the
author’s opinion, allowing an infinitely long program is as well formed in terms of the rules at
limits and is not conceptually different to an infinitely long tape or infinite run time. Without
infinitely long programs, the approach would reduce to that of ordinal Turing machines with
bounds on the number of calls on the tape, the number of states and the run time.

Quantifiers can be viewed as infinite conjunctions “and” (for “for all”) and infinite
disjunctions “or” (for “there exists”) and truth predicates computed by enumerating the
domain of quantification. All of the hypercomputations of truth values of propositions in
this paper are no more than hypercomputations of the standard Tarski semantics applied
to the von Neumann hierarchy of pure sets, V. It is possible to perform logical operations
(including quantifiers) by means of a finite program provided that there are sufficiently
many registers to hold each value of the domain of quantification and the computation
is sufficiently long to evaluate the truth of a quantifier-free predicate for each member
of the domain of quantification and to perform logical operations on those truth-values.
Using a finite program for conjunction, c say, and a program p that hypercomputes the
truth value of formula P on input n, we can compute the truth of (∀x ∈ 22)P(x), where
22 here is the set of all binary sequences of length 2, by hypercomputing the truth values
of P(〈0, 0〉), P(〈0, 1〉), P(〈1, 0〉), P(〈1, 1〉) in some order, by running p 4 times, and then
running c to take the conjunction of truth values. Of course, this is a very inefficient way
to hypercompute the truth of (∀x ∈ 22)P(x), but the call to an enumeration function is no
longer a call to an oracle, rather to a particular well-ordering. Moreover, essentially the
same approach will hypercompute the truth value of (∀x ∈ 2ℵ)P(x), where 2ℵ is the set of
all binary sequences of length cardinal ℵ for any ℵ, with some handling of limit ordinals as
hypercomputing limits.

In summary, using an infinitely long program with sufficiently many registers to hold
each value of the domain of quantification and a sufficiently long computation length, it
possible to evaluate the truth of any proposition about sets that does not involve proper
classes.

There is no data associated with this paper because the results are purely theoretical
and used only for classifying the strength of hypercomputers.

3. Results
3.1. Definitions of Hypercomputing

Definition 1. A 〈ℵ,i,k〉-hypercomputer, for cardinals ℵ and i and ordinal k, where i ≤ k ≤ ℵ,
comprises the following elements:

• ℵ-many Registers for storage of inputs, outputs and workings of a computation. For ease
of exposition there will be disjoint sets of registers for inputs, outputs and workings. Input
registers are read-only and contain inputs in the hypercomputer’s initial state. Separate

Mathematics 2022, 10, 997 4 of 16

input, working and output registers are not essential, as registers can always be moved
around and working space created, but I hope their use makes the exposition easier to fol-
low. Working registers are read-write and receive a copy of the inputs when the program
starts. Output registers receive a copy of the content of the working registers, are write-
only by the program and contain the outputs of the program in the hypercomputer’s halting
state (see below). A register consists of an ordinal identifier and a data field, written Rα

for α < ℵ, which can contain 0 or 1. By default, all registers are initialized with the value
0 (representing “empty”). Input registers will be written Iα, working registers Wα, and
output registers Oα. It is convenient to allow multiple disjoint sets of working registers,
Wβ,α, to facilitate operations on data set and it will be assumed in this paper that working
registers are partitioned into disjoint sets. Disjoint sets of registers can be reproduced by cod-
ing the set of disjoint sequences {〈a1,α, a2,α · · · , ai<ℵ,α, · · · 〉 : α < ℵ} by the concatenation
〈a1,1, a2,1, · · · , ai<ℵ,1, · · · 〉〈a1,2, a2,2, · · · , ai<ℵ,2, · · · 〉 · · · 〈a1,α, a2,α, · · · , ai<ℵ,α, · · · 〉 · · · .
This coding depends on each sequence having a fixed length, ℵ for each sequence of regis-
ters in this case. To avoid complexities associated with the computability of functions that jump
between registers, registers perform like infinite linear tapes of length ℵ terminated on the left,
with R1 being the register with lowest ordinal and only registers Rα+1 and Rα−1, where they
exist, being accessible from Rα. W0,0 is treated as a special register as it is set to 0 by default
and set to 1 if a program (or subprogram) runs to completion, after o(ℵ) steps, where o(ℵ) is
the least ordinal of cardinality ℵ. This register can be used as a “flag” to capture the output of
the program;

• Symbols 0 and 1;
• i-many States which determine which action the hypercomputer takes and any output

it produces. A state can be identified by an ordinal, which is general will not have a
finite notation. There are at least two special states, an initial state, identified by the
ordinal 0, where a program (see below) starts and a halting state where a program
stops. The hypercomputer enters the halting state, i.e., stops, when none of the
instructions (see below) applies, when an instruction is executed that puts the program
in the halting state, or when the computation maximum length is reached (when the
contents of W0,0 are set to 1). Ordinary states are like line numbers in a hypercomputer
program (see Koepke [4]), so, from the initial state, the program will enter the first
ordinary state, 1 say, and as the number of instructions executed (i.e., the length of
the computation) increases towards limit ordinal α, the program jumps to state α
unless there is a state with a smaller least upper bound. (It is of course possible to
become stuck in a particular state and for the program not to output given a particular
set of register values, but equally it is possible to loop back to the same state if the
register value is 0 say, and then at the next limit ordinal for the program to read a 1,
when the program may move to a different state.) It makes sense not to be able to
jump past a limit ordinal, so, for successor ordinal state α, only states with ordinal
prevlim(α) ≤ β < nextlim(α) are accessible from α, where prevlim(α) is the preceding
limit ordinal ≤ α and nextlim(α) is the next limit ordinal > α;

• An initial configuration, comprising data loaded into the input registers, an initial state
and an initial current register (I1 by default and likewise Wβ,1 and O1 when these sets
of registers are accessed);

• A program of length i, which is a (in general transfinite) sequence of 5-tuples 〈Current
State, Register Set, Symbol, Action, Next, State〉, called program instructions, read as “if
the hypercomputer is in Current State and the current register in the Register Set
contains Symbol then do Action and move into Next, State”, where an Action may
be to do nothing, write a 0 or 1 to a current register, Rα, in any set of registers, to
move left or right where possible, i.e., from Rα to Rα−1 or Rα+1 if α is a successor
ordinal and from Rα to Rα+1 otherwise, or set the current register to the 0-th register,
i.e., R0. The instructions can be grouped by state into a table of instructions. For
ease of exposition, the program length will refer to the number of state entries in

Mathematics 2022, 10, 997 5 of 16

the table. As these operations apply to each disjoint set of registers, I, Wβ, O, there
are 11 instruction types (as “do nothing” applies to all registers and I cannot be
written to). For definiteness, “do nothing” is represented by 0, “write a 0” to the
current register of Wβ by 〈1, β〉, “write a 0” to the current register of O by 5, “write
a 1” to the current register of Wβ by 〈2, β〉, “write a 1” to the current register of O
by 6, “move left” by 3 (for I), 〈7, β〉 (for Wβ) and 9 (for O), “move right” by 4 (for I),
〈8, β〉 (for Wβ) and 10 (for O), and “reset register” by 11 (for I), 〈12, β〉 (for Wβ) and
13 (for O). Each program comprises a standard introduction which copies the input
registers to working registers (i.e., a set of 5-tuples with source set of registers I and
destination set of registers W1), a program that manipulates the working registers,
and a standard conclusion which copies working registers to output registers (i.e., a
set of 5-tuples with source registers Wβ and destination registers O). A program to
copy the registers from Wβ and destination registers O has one ordinary state, 1, and
comprises the instructions 〈0, Wβ, 0, 0, 1〉, 〈0, Wβ, 1, 0, 1〉, 〈1, Wβ, 0, 5, 1〉, 〈1, Wβ, 1, 6, 1〉,
〈1, Wβ, 0, 〈8, β〉, 1〉, 〈1, Wβ, 1, 〈8, β〉, 1〉, 〈1, Wβ, 0, 9, 1〉, 〈1, Wβ, 1, 9, 1〉. The sequence
〈1, W0, 0, 〈12, 0〉, 1〉, 〈1, W0, 1, 〈12, 0〉, 1〉, 〈1, W0, 1, 0, 2〉will move the computation to the
halting state, 2, when it completes copying. A program to copy the registers from I and
destination W1 has one ordinary state, 1, and comprises the instructions 〈0, I, 0, 0, 1〉,
〈0, I, 1, 0, 1〉,〈1, I, 0, 〈1, 1〉, 1〉, 〈1, I, 1, 〈2, 1〉, 1〉, 〈1, I, 0, 4, 1〉, 〈1, I, 1, 4, 1〉, 〈1, I, 0, 〈8, 1〉, 1〉
〈1, I, 1, 〈8, 1〉, 1〉. The sequence 〈1, W0, 0, 〈12, 0〉, 1〉, 〈1, W0, 1, 〈12, 0〉, 1〉, 〈1, W0, 1, 0, 2〉
will move the computation to the halting state, 2, when it completes copying. It is not
possible for humans to write down infinitely long programs, but it is possible to write
program schemas. An example is a program schema for the logical conjunction of a set of
registers of cardinality ℵ given by a finite program could be written 〈1, W1, 1, 〈2, 2〉, 1〉,
〈α, W1, 1, 〈8, 1〉, α + 1〉, 〈α, W1, 0, 〈1, 2〉, o(ℵ)〉, where α < o(ℵ) is an ordinal parameter
for the state and o(ℵ) is the halt state. Program schemas are concise, but finite pro-
grams suffice in the example of logical conjunction (the state number does not have to
be increased every time the head moves right). For example, take a program which has
two states (other than the standard special states), 1 and 2, the standard introduction
and conclusion for input and output being ignored for simplicity. In state 1, if the pro-
gram reads a register W1,α containing a 1, it writes a 1 in register W2,1 and stays in state
1. In state 1, if the program reads a register W1,α containing a 1, it moves right to W1,α+1
and stays in state 1, while, if W1,α contains a 0, it writes a 0 in register W2,1 and termi-
nates by moving to the halting state, 2. When reading registers W1,λ with limit ordinal
λ, the program will be in the highest state achieved (i.e., 1 in practice) when reading
registers W1,α<λ and the value of any register Wβ,α≤λ after limit ordinal λ steps of the
program will be the value of an eventually constant sequence Wβ,α for < λ steps or 1,
otherwise. It can be seen that W2,1 contains 1 if and only if every W1,α for ordinal α < ℵ
contains 1. The program implements infinite logical conjunction (i.e., infinite logical
“and”) of propositions with truth values stored in W1,α. This program can be written
formally as follows in the notation of this paper: 〈1, W1, 1, 〈2, 2〉, 1〉, 〈1, W1, 1, 〈8, 1〉, 1〉,
〈1, W1, 0, 〈1, 2〉, 2〉, 〈1, W0, 0, 〈12, 0〉, 1〉, 〈1, W0, 1, 〈12, 0〉, 1〉, 〈1, W0, 1, 0, 2〉. The last three
instructions implement the flag set to 1 in W0,0 when the program completes, and
moves the program to the halt state. Infinite “or” can be done similarly with the two
state machine: in state 1, if the program reads a register W1,α containing a 0 it writes
a 0 to W2,1, moves to W1,α+1 and stays in state 1; if it reads a register W1,α containing
a 1 it writes a 1 to W2,1 and moves to halting state 2. It is also worth explaining how
transfinite recursion such as Fg f 0 := f and Fg f β := gβ(λγ < β)Fg f γ, where λ is
abstraction in the lambda calculus, for ordinal β < α for arbitrary ordinal α if f , g are
hypercomputable functions, can be implemented. If we assume that F uses (a set of
states including) state 1, f uses (a set of states called by state 1 including) state 2 and g
uses (a set of states called by state 1 including) state 3, we can represent a transfinite
recursion for F by using one working register set, W1 say, as a counter (up to cell α,
preset to 1 on the input tape), a second set, W2 say, to contain (a binary code) of the

Mathematics 2022, 10, 997 6 of 16

output to f , a third set, W3 say, to contain the output to g, and a fourth set of registers,
W4 say, to contain the output of F. Aside from coding and decoding from the binary
representation on the tape, the program works until the counter hits the α-th cell when
it copies the output of W4 to the output tape (in state 1), starting by copying f from
the input, incrementing the counter, copying those values in W2 to the input of g (state
2), running g, copying the output of g in W3 to the input of g, appending the output of
g at the end of the output of F in W4, and incrementing the counter, at limits copying
the output of F in W4 to the input of g in W3 (state 3). To enable markers (1s) to be put
at the end of outputs, we can code the working registers by leaving every second cell
of 0 value and marking a 0 marker cell with a 1 when the end of the output is reached;

• ≤ k many steps in the computation;
• Output is the contents of the output registers when the program is in a halting state.

A hypercomputer will read a program, which will start in the initial state, run through
its computation and terminate when it reaches a halting state. The output of the program is
the contents of the hypercomputer’s output registers.

Definition 2. A hypercomputation is a sequence of steps of length k that results in output given a
specific input.

To make this characterization precise, a hypercomputation can be considered to take
place in discrete time intervals indexed by ordinals. Following Koepke [4], a “step” can
be taken to have three components: the current state at time α, written Sα(R), a pointer
to the ordinal index of the current register, Hα(R), and the contents of all the registers (a
“snapshot” of the computation), Cα(R) : k → {0, 1}, where R is a set of registers I, Wβ,
O. Limit ordinal “steps” are special, as the principle (see Hamkins and Lewis [1]) will be
adopted that, if Sα(R), Hα(R) or Cα(R) are eventually constant for α < λ, where λ is a
limit ordinal, then, by default Sλ(R), Hλ(R) or Cλ(R)(ζ) for ζ < ℵ will take those constant
values or else will take the limit of the least upper bounds, which will be Cλ(R)(ζ) = 1 if
Cα<λ(R)(ζ) is not eventually constant and Sλ(R) = λ and Hλ(R) = Rλ if Sλ(R) and Hλ(R)
are otherwise unbounded. This is the “lim sup” construction (i.e., the limit of the least
upper bounds). Recursive definitions for Sα(R), Hα(R) and Cα(R) are given as follows
(again based on Koepke [4]). Koepke uses “lim inf” rather than “lim sup” because the
programs he considers are finite, and it makes no sense to jump to an infinite limit ordinal
state.

If 〈β, R, b, a, γ〉 is the instruction such that Sα(R) = β and Cα(R)(Hα) = b, then:

• S0(R) = 0;
• Sα+1(R) = γ where prevlim(α) ≤ γ < nextlim(α);
• H0(R) = 0;
• Hα+1(I) = Hα(I)− 1 if a = 3 and Hα(I) is a successor ordinal;
• Hα+1(Wβ) = Hα(Wβ)− 1 if a = 〈7, β〉 and Hα(Wβ) is a successor ordinal;
• Hα+1(O) = Hα(O)− 1 if a = 9 and Hα(O) is a successor ordinal;
• Hα+1(I) = Hα(I) + 1 if a = 4;
• Hα+1(Wβ) = Hα(Wβ) + 1 if a = 〈8, β〉;
• Hα+1(O) = Hα(O) + 1 if a = 10;
• Hα+1(I) = 0 if a = 11;
• Hα+1(Wβ) = 0 if a = 〈12, β〉;
• Hα+1(O) = 0 if a = 13;
• Hα+1(R) = Hα(R) otherwise;
• C0(I)(ζ) = Iζ for all ζ < ℵ;
• Cα+1(Wβ)(ζ) = 0 if a = 〈1, β〉 and ζ = Hα(Wβ);
• Cα+1(O)(ζ) = 0 if a = 5 and ζ = Hα(O);
• Cα+1(Wβ)(ζ) = 1 if a = 〈2, β〉 and ζ = Hα(Wβ);
• Cα+1(O)(ζ) = 1 if a = 6 and ζ = Hα(O);

Mathematics 2022, 10, 997 7 of 16

• Cα+1(ζ) = Cα(ζ) otherwise for all ζ < ℵ;
• Sλ(R) = lim supα→λ Sα(R) if λ is a limit ordinal;
• Hλ(R) = lim supα→λ Hα(R) if λ is a limit ordinal;
• Cλ(R)(ζ) = lim supα→λ Cα(R)(ζ) if λ is a limit ordinal.

Definition 3. A serial 〈ℵ,i,k〉-hypercomputer, for cardinals ℵ, i and ordinal k, where i ≤
k ≤ ℵ, is a hypercomputer in which there are ℵ many input, working and output registers which
each can store 0 or 1 and which supports programs with i states, with i instructions (5-tuples),
and which supports a maximum of k steps.

Definition 4. A non-deterministic serial 〈ℵ,i,k〉-hypercomputer, for cardinals ℵ, i and ordinal
k, where i ≤ k ≤ ℵ, is a serial 〈ℵ,i,k〉-hypercomputer in which the computer chooses a shortest
computation of a program with with i states among all i|k| possible computation paths of length k
on given input (using cardinal exponentiation), where |k| returns the cardinal corresponding to
ordinal k.

Definition 5. A parallel 〈ℵ,i,k〉-hypercomputer, for cardinals ℵ, i and ordinal k, where i ≤
k ≤ ℵ, is a hypercomputer that can store data in the registers and process data from the registers
in parallel. For the purposes of this paper, such a parallel hypercomputer will comprise ℵ−many
serial 〈ℵ,i,k〉-hypercomputers running independently in step but with the ability to use common
read-only input registers and the capability of writing outputs to a set of registers through a second
management program. The general case is where the 〈ℵ,i,k〉-hypercomputers are not independent
of one another, but, even in the general case, the dependency can be made explicit by taking the output
of a parallel 〈ℵ,i,k〉-hypercomputer as an input to a serial 〈ℵ,i,k〉-hypercomputer or to another
parallel 〈ℵ,i,k〉-hypercomputer. To be precise, there are ℵ sets of registers {〈Iα,γ, Wβ,α,γ, Oα,γ〉},
where γ < ℵ is an index of the set of registers and in fact an index of the overall parallel program,
and the working and output registers are disjoint, i.e.,

⋃
β<ℵ,α<ℵWβ,α,γ ∩

⋃
β<ℵ,α<ℵWβ,α,δ = /O

if γ 6= δ and Oα,γ 6= Oα,δ if γ 6= δ. For each 〈Iα,γ, Wβ<ℵ,α,γ, Oα,γ〉, there is a program, Pγ, of
length i which runs disjoint computations based on input registers Iα,γ for ≤ k steps and produces
any output in Oα,γ for α < ℵ. Instructions in a parallel hypercomputer have the form 〈Index of
Serial hypercomputer,Current State, Current Set of Registers, Symbol, Action, NextState〉, so
that a program to copy input registers Iα,γ to working register W1,α,γ (without the sequence to
move the program into the halting state) is 〈γ, 1, I, 0, 〈1, 1〉, 1〉, 〈γ, 1, I, 1, 〈2, 1〉, 1〉, 〈γ, 1, I, 0, 4, 1〉,
〈γ, 1, I, 1, 4, 1〉, 〈γ, 1, I, 0, 〈8, 1〉, 1〉, where α is the current register in the input registers and in
the set W1,γ in γ-th hypercomputer in the parallel set). There may be a separate management
program M(Q) that copies the contents of all registers Oα,γ to the registers in the initial state of
a separate parallel 〈ℵ,i,k〉-hypercomputer and then runs a given program Q (= Pγ) that in the
halting state contains the output of Q (if any). For ease of computation, it is assumed that parallel
hypercomputers can be chained, the output from one parallel hypercomputer being the input to
other parallel hypercomputers, and such a chain of hypercomputers is also a parallel hypercomputer.
Allowing chains of parallel programs does not change the set of computable functions, but can be
useful in practice.

3.2. Definitions of Computing

Definition 6. A Turing machine (see Turing [24]) is a serial 〈< ℵ0,< ℵ0,< ℵ0〉-hypercomputer
as it has ℵ0 many registers but with only finitely many registers addressed in the program, and each
program having finitely many states and instructions. Although a finite program may not stop, a
function is usually considered computable if there are < ℵ0 steps.

Definition 7. A computation can be considered to take place in discrete time interval steps indexed
by natural numbers. Following Koepke [4], a “step” can be taken to have three components: the
current state at time n, written Sn(R), a pointer to the natural number index of the current register,
Hn(R), and the contents of all the registers (a “snapshot” of the computation), Cn(R) : N<ω →
{0, 1}, where R is a set of registers I, Wβ, O and N<ω is an unbounded but a finite set of natural

Mathematics 2022, 10, 997 8 of 16

numbers. If 〈m, R, b, a, p〉 is the instruction, where m, p are natural number indices of the current
and next state, such that Sn(R) = m and Cn(R)(Hn) = b then:

• S0(R) = 0;
• Sn+1(R) = p;
• H0(R) = 0;
• Hn+1(I) = Hn(I)− 1 if a = 3 and Hn(I) is a successor ordinal;
• Hn+1(Wm) = Hn(Wm)− 1 if a = 〈7, m〉 and Hn(Wm) is a successor ordinal;
• Hn+1(O) = Hn(O)− 1 if a = 9 and Hn(O) is a successor ordinal;
• Hn+1(I) = Hn(I) + 1 if a = 4;
• Hn+1(Wm) = Hn(Wm) + 1 if a = 〈8, m〉;
• Hn+1(O) = Hn(O) + 1 if a = 10;
• Hn+1(I) = 0 if a = 11;
• Hn+1(Wm) = 0 if a = 〈12, m〉;
• Hn+1(O) = 0 if a = 13;
• Hn+1(R) = Hn(R) otherwise;
• C0(I)(ζ) = Iζ for all ζ < ℵ;
• Cn+1(Wm)(ζ) = 0 if a = 〈1, m〉 and ζ = Hn(Wm);
• Cn+1(O)(ζ) = 0 if a = 5 and ζ = Hn(O);
• Cn+1(Wm)(ζ) = 1 if a = 〈2, m〉 and ζ = Hn(Wm);
• Cn+1(O)(ζ) = 1 if a = 6 and ζ = Hn(O);
• Cn+1(ζ) = Cn(ζ) otherwise for all ζ < |N<ω |.

Definition 8. A serial computer is a serial hypercomputer in which there are finitely many input,
working and output registers which each can store 0 or 1 and which supports programs with finitely
states, with finitely instructions (5-tuples), and which supports an unbounded finite number of
steps.

Definition 9. A non-deterministic serial computer is a serial computer in which the computer
chooses a shortest computation of a program with |N<ω | states among all k|N<ω | possible computa-
tion paths of finite length k on given input.

Definition 10. A parallel computer is a parallel hypercomputer that can store data in the registers
and process data from the registers in parallel.

3.3. Hypercomputation and Trees

A tree is a way of visualizing sequences, where the branches of the trees are sequences
and sets of branches correspond to subtrees. In the case of a hyper-computation, the se-
quences are k-sequences of states that depend on the content of the input registers, see
Clarkson and Schneider [25]. It is more accurate to decorate each node in the hypercom-
putation tree with the snapshot of the computation as a whole, represented by Cα at the
α < k node in the computation. It is easily seen that, in the case of a serial computer, the
hypercomputation tree comprises one branch; in the case of a parallel computer, the hyper-
computation tree has i|k| = 2|k| ≤ 2ℵ branches if k ≥ ℵ0) in the case of an indeterministic
serial computer the tree comprises a single branch selected by a function acting on a tree of
i|k| = 2|k| ≤ 2ℵ branches if k ≥ ℵ0. The same is true with computations, albeit the trees
have finite branches.

Let us state some theorems about hypercomputation and complexity that can be
proved using trees. For this, we need to know that the run-time complexity of an algorithm
is the number of steps needed to produce the output given the input as a function of the
length of the input in bits. These theorems are not deep in any sense, but they do show the
insights that hypercomputational trees provide.

Mathematics 2022, 10, 997 9 of 16

Theorem 1. The run-time complexity of a program running on a serial 〈ℵ,i,k〉-hypercomputer
has complexity <

∣∣∣iK(ℵ) × K(ℵ)
∣∣∣, where complexity K(ℵ) measures the cardinality of the number

of steps in the computation and must be ≤ |k|.

Proof. Given that for complexity measure K(ℵ) there are (a cardinal number of) iK(ℵ)

execution paths for the number of states i of the program (excluding the halting state
as the halting state will terminate the k-sequence), treating each execution path as the
execution path of a program running on a serial 〈ℵ,i,k〉-hypercomputer, we can see that
the total run time (for all execution paths) is of the form

∣∣∣iK(ℵ) × K(ℵ)
∣∣∣. Hence, the run

time for any one computation path is <
∣∣∣iK(ℵ) × K(ℵ)

∣∣∣, where the total number of steps
K(ℵ) ≤ |k|.

Corollary 1. The run-time complexity of a program running on a serial computer that has
polynomial run-time is strictly less complex than exponential run-time.

Theorem 2. The run-time complexity of a program running on a parallel 〈ℵ,i,k〉-hypercomputer
has complexity =

∣∣∣iK(ℵ) × K(ℵ)
∣∣∣.

Proof. A parallel computer will execute all possible state transitions, i.e., iK(ℵ) execution
paths for the number of states i of the program. As the run time is K(ℵ), for a single
execution path, the total complexity is

∣∣∣iK(ℵ) × K(ℵ)
∣∣∣.

Corollary 2. The run-time complexity of a program running on a parallel computer that has
polynomial run time on each execution path has exponential run time.

Theorem 3. The run-time complexity of a program running on an indeterministic serial 〈ℵ,i,k〉-
hypercomputer has complexity ≤

∣∣∣iK(ℵ) × K(ℵ)
∣∣∣, where complexity K(ℵ) measures the number of

steps in the computation and must be ≤ |k|.

Proof. In the case of an indeterministic serial 〈ℵ,i,k〉-hypercomputer, because a selection
of a single computation path is made on the whole hypercomputation tree, in general, the
run-time complexity of a program is ≤

∣∣∣iK(ℵ) × K(ℵ)
∣∣∣.

We now move on to consider diagonal functions of classes of hypercomputing algo-
rithms, which are functions that are constructed to have values outside a class of such
algorithms.

Theorem 4. If a class of algorithms, A, contains functions ℵℵ → ℵℵ for a cardinal hypercomputed
by a serial 〈2ℵ, 2ℵ, 2ℵ〉-hypercomputer that has run-time complexity ℵκ for κ, a variable cardinal
run-time complexity measure over κ < ℵ, then the diagonal function of the class A is ℵsupz(z>k)

where supz(z > k) is the least z > κ.

Proof. Note that ℵℵ = 2ℵ in cardinal terms for infinite cardinal ℵ and that a function
of cardinal complexity |x||x| dominates the complexity of each member of the |x||x|<ℵ
complexity class and is the least cardinal to do so, for x a sequence of ordinals (state labels)
< ℵ and therefore having length ℵ. If there were an ordinal α < ℵℵ such that {α}(y) =
{y}(y) + 1 for y variable over ordinals < ℵℵ, {α} is a hypercomputable function with
ordinal program code α, {y) enumerates the class of all programs of the |x||x|<ℵ complexity
class for different values of y, then substituting α for y would result in the contradiction
{α}(α) = {α}(α) + 1. Here, as {y}(y) + 1 < ℵℵ, then it is true that {y}(y) + 1 ∈ ℵℵ (and
vice versa using the standard set representation of an ordinal). It follows that α ≥ ℵℵ, and
we have seen that a class of complexity α = ℵℵ suffices to enumerate all complexity classes

Mathematics 2022, 10, 997 10 of 16

of cardinal complexity ℵκ . This is a diagonal construction originating from Kleene [26],
although the use of diagonalization to show that the complexity of the class of computable
functions is due to Peter [27].

Corollary 3. Polynomial run-time computing algorithms of order n have diagonal functions of
order n + 1 for natural number n, where the order of a polynomial is the greatest exponent value of
the variable (which is a consequence of the Time Hierarchy Theorem; see Arora and Barak [28], for
example).

Proof. Follow the proof of Theorem 4 with ℵ := n + 1 and κ ≤ n.

Corollary 4. Polynomial run-time computing algorithms of unbounded finite order running on a
serial or indeterministic serial computer have an exponential run-time diagonal function.

Proof. Follow the proof of Theorem 4 with ℵ :=< ℵ0, so that ℵℵ = 2<ℵ0 =< ℵ0 and
technically κ < |x| to obtain the diagonal of functions of run-time complexity |x|κ for
natural numbers x, κ as |x||x|.

Corollary 5. It is not possible to differentiate a serial or indeterministic serial computer for polyno-
mial run-time programs by means of a diagonal function (see Fortnow [29]).

Remark 1. Finally, in this section, it is worth noting that, in general, the computational resources
of a hypercomputer do not collapse to those of a computer when used for proof. The case of an
2ℵ0 -hypercomputer in the next section illustrates this conclusion well. However, it is always possible
to represent mathematical objects that require greater computational resources and to (hyper) prove
that certain computations always, sometimes or never succeed. There is a priori no upper bound
on this representation process (of ordinals or types for example), but the hyper-proof resources of
any serial 〈ℵ,ℵ,ℵ〉-hypercomputer will cover those of a serial 〈2ℵ, 2ℵ, 2ℵ〉-hypercomputer almost
nowhere in the sense that 2ℵ − ℵ = 2ℵ in terms of number of objects for infinite ℵ.

3.4. A 2ℵ0 -Computer

Definition 11. A particularly nice hypercomputer is simply a hypercomputation tree consisting
of binary valued ω-sequences as branches, called a 2ℵ0-hypercomputer, because the set of all real
numbers is representable. Each branch corresponds to an extensionally unique property of the
natural numbers since an ω-sequence is simply a function from N → {0, 1}. It is assumed that
branches can depend on the computations in other branches, so there are serial computations as well
as parallel ones.

Definition 12. The arithmetical hierarchy is the hierarchy of propositions of the form (∃x ∈
N)Pn(x) for n ∈ N, known as Σ0

n, and (∀x ∈ N)Qn(x) for n ∈ N, known as Π0
n, where Pn is a

property defined by a formula in Π0
n−1, Qn is a property defined by a formula in Σ0

n−1, and P0and
Q0 are computationally decidable propositions.

Definition 13. The analytical hierarchy is the hierarchy of propositions of the form (∃r : N →
2)Pn(r) for n ∈ N, known as Σ1

n, and (∀r : N → 2)Qn(r) for n ∈ N, known as Π1
n, where Pn is a

property defined by a formula in Π1
n−1, Qn is a property defined by a formula in Σ1

n−1, and P0and
Q0 are propositions in the arithmetical hierarchy with real number parameters.

Definition 14. The lightface analytical hierarchy is the hierarchy of propositions of the form
(∃r : N → 2)(∀m ∈ N)Pn(〈r(0), . . . , r(m − 1)〉) for n ∈ N, known as Σ1

n, and (∀r : N →
2)(∀m ∈ N)Qn(〈r(0), . . . , r(m− 1)〉) for n ∈ N, known as Π1

n, where Pn is a property defined by
a formula in Π1

n−1, Qn is a property defined by a formula in Σ1
n−1, and P0 and Q0 are propositions

in the arithmetical hierarchy.

Mathematics 2022, 10, 997 11 of 16

Definition 15. Formulas in a formal language that include quantifiers are called first-order if
quantifiers apply to terms (including variables) of the theory. Formulas are called second-order if
quantifiers apply to all properties of the terms and more generally over all relations and all functions
with the terms in their domain.

Theorem 5. Any proposition in the arithmetical hierarchy can be decided by a 2ℵ0-computer by
means of computable operations on countably many branches of a hypercomputation tree.

Proof. We proceed by mathematical induction. A single branch representing a particular
property P : N → 2 is sufficient to decide a proposition of the kind (∀x : N)(P(x)) if P(n)
is the constant ω-sequence of 1s or (∃x : N)(P(x)) if P(n) is not the constant sequence
of 0s for a P computable and quantifier-free. For the induction step, ¬P can be decided
by considering the branch that decides P, P ∨Q and P ∧Q can be decided by considering
the branches that decide P and Q, while, if Q(n) can be decided by a 2ℵ0-computer by
means of computable operations on countably many branches of a hypercomputation tree
for all n ∈ N, then (∃x ∈ N)Q(x) and (∀x)Q(x) can be decided considering the branch
comprising truth values of Q(n) in increasing order of n ∈ N, that is, by considering
countably many branches.

Theorem 6. The truth-value of any proposition P of the form (∃ f : N → 2)Q(f) for formula
Q of first-order arithmetic containing no real number quantifiers such that ¬P has the form
(∃ f : N → 2)R(f) for formula R of first-order arithmetic containing no real number quantifiers
can be decided by a 2ℵ0 -computer.

Proof. Either P or ¬P is true, so, by enumerating the set of all real numbers (using the
Axiom of Choice and transfinite recursion up to 2ℵ0) and applying Theorem 5 to compute
the truth value of Q(f) and R(f) for particular real numbers f because they are in the
arithmetical hierarchy with real number parameters by definition, we see that P or ¬P will
be decided as true.

Theorem 7. The truth-value of any proposition P in the analytical hierarchy can be decided by a
2ℵ0 -computer.

Proof. Proceed by mathematical induction on the complexity of the quantifiers in the
formula P, the basis case being proved in Theorem 6. If Q is a formula that starts (∃ f :
N → 2) . . . R(f , g) , for real number parameter g that, by assumption, the truth value of
which can be hypercomputed, then the truth value of (∀g : N → 2)(∃ f : N → 2) . . . R(f , g)
can be hypercomputed by enumerating all real numbers g and hypercomputing the truth
value of (∃ f : N → 2) . . . R(f , g). If (∃ f : N → 2) . . . R(f , g) is false for some g, then we
can conclude that (∀g : N → 2)(∃ f : N → 2) . . . R(f , g) is false; otherwise, it is true. It
can be seen that the computation depends on ≤ 2ℵ0 branches of the hypercomputation
tree. If Q is a formula that starts (∀ f : N → 2) . . . R(f , g), for real number parameter
g that, by assumption, the truth value of which can be computed, then the truth value
of (∃g : N → 2)(∀ f : N → 2) . . . R(f , g) can be hypercomputed by hypercomputing
(∀ f : N → 2) . . . R(f , g) and, if it is true for some g, then we can conclude that (∃g : N →
2)(∀ f : N → 2) . . . R(f , g) is true; otherwise, it is false.

Theorem 8. The truth-value of any proposition P in the lightface analytic hierarchy can be decided
by a 2ℵ0 -computer.

Proof. In the lightface analytic hierarchy (see Martin [30], for example), all formulas are
computable on all finite initial subsequences of an ω-sequence. In this case, the proof
of Theorem 7 goes through in exactly the same way as quantification over the length of
sequences, which is the same as quantification over the natural numbers.

Mathematics 2022, 10, 997 12 of 16

Remark 2. A 2ℵ0-hypercomputer will not be able to decide the truth of propositions that involve
arbitrary sets of real numbers or quantification over arbitrary sets of real numbers. For that, we
would need to move to a 22ℵ0 -hypercomputer. In terms of the traditional classification of formal
number theory, we can say that an 2ℵ0-hypercomputer is sufficient to decide all the propositions of
formal first and second-order (natural) number theory, but not third order number theory.

3.5. A Hierarchy of Hypercomputers by Strength

The following section cites a couple of known results from other authors and shows
that the hypercomputer described in Section 2 will hypercompute the truth of all propo-
sitions in the standard model of set theory, the von Neumann hierarchy of pure sets,
V.

Definition 16. The number of bits in a sequence, set, proposition or function is the least number of
bits to which the sequence, set enumerated as a sequence, characteristic function of the proposition or
function expressed as a sequence can be losslessly compressed. Lossless compression of a sequence of
bits of length ℵ, an ℵ-sequence for short, here is simply a binary sequence of codes each representing
a repeated < ℵ-sequence of bits and a code for the number of repetitions, in general there being
a shortest sequence which can be obtained by repeated lossless compressions. A code is a finite
binary sequence that can be used to represent other finite binary sequences in such a way that the
representation is unique and the original finite binary sequence can be recovered from its code. A
sequence, set, proposition or function is said to require ≤ ℵ bits of information to define if the
number of bits in the sequence, set, proposition or function is ≤ ℵ.

Theorem 9. An infinite run time Turing machine that is a computer with finitely many register
values and a finite program, but allowing for infinite run times, can decide propositions which extend
up the lightface analytical hierarchy to those defined by a Π1

1 formula, i.e., (∀ f : N → 2)(∀n ∈
N)P(f̄ (n)) for real number variable f and P a computable predicate on finite initial subsequence
of f of length n, f̄ (n) := 〈 f (0), ..., f (n− 1)〉, and every infinite run time decision problem can
be defined by a ∆1

2 formula, i.e., a formula of the form (∀ f)(∃g)(∀n ∈ N)P(f̄ (n), ḡ(n)) and
(∃ f)(∀g)(∀n ∈ N)Q(f̄ (n), ḡ(n)), see Hamkins and Lewis [1].

Theorem 10. Using an ordinal Turing machine, with a finite program and a set of registers
indexed by all bounded sets of ordinals, the class of all ordinal-computable sets of ordinals that
can be computed from finitely many ordinal parameters is Gödel’s constructible set universe L (see
Koepke [4,11]).

Theorem 11. A serial 〈2ℵ, 2ℵ, 2ℵ〉-hypercomputer can hypercompute (a) the truth of first-order
computably decidable propositions with quantification over sets that require ≤ ℵ bits of information
to define, (b) the truth of first-order computably decidable propositions like (a) but with the addition
of allowing set membership of sets that require ≤ 2ℵ bits of information to define, and (c) a serial
〈22ℵ , 22ℵ , 22ℵ〉-hypercomputer can compute the truth of second-order propositions about sets that
require ≤ ℵ bits of information to define.

Proof. (a) To start, the truth of computable relations involving finitely many sets that
require ≤ ℵ bits of information to define (including the standard logical operators ∧, ∨,→,
↔ and ¬) can be decided by a program with finitely many instructions in≤ ℵ steps because
the computable relation generates a finite program and ≤ ℵ steps are needed, one for each
bit. Then, to decide (∀x)R(x) for x a set that requires ≤ ℵ bits of information to define and
R recursive, loop through the set of all sets that require ≤ ℵ bits of information to define
by enumerating the set (applying transfinite recursion to the selection of elements by the
Axiom of Choice to define a well-ordering), run the program for R(x) in disjoint register
sets in series, and then copy the results (0 or 1, i.e., false or true) to another disjoint set of
registers, the program having ≤ 2ℵ instructions to avoid the use of the Axiom of Choice
as an oracle and the computation having ≤ 2ℵ steps. Any set that requires ≤ ℵ bits of

Mathematics 2022, 10, 997 13 of 16

information to define can be either be a member or not a member of the set of such sets;
hence, the cardinality of the set of all sets that require ≤ ℵ bits of information to define, X
say, is the same as the set of all functions ℵ → 2, i.e., 2ℵ. Hence, the total number of steps
to loop through every member of X is ℵ × 2ℵ = 2ℵ. To “loop through” the quantification
domain, coding can be used to detect in finitely many instructions which registers have been
accessed by the program, and the least unaccessed member of the set can be accessed next,
which acts as a label for the start of the loop and which is the next state for instructions in
the loop after the program for R(x) has run.). Looping requires one new state. If a sequence
〈a1, a2, · · · , ai<ℵ, · · · 〉 of length 2ℵ, where ai is a member of the quantification domain and a
binary sequence of length < ℵ+ 1, is coded as 〈a1, 1, a2, 1, · · · , 1, ai<2ℵ , 1, · · · 〉, by placing a
1 marker after every successor and limit member of the sequence, then the 1 can be replaced
with 0 if the previous register has been accessed by the program. The program can proceed
until it finds a register succeeded by a 1. To create and load all sets that require ≤ ℵ bits of
information to define requires a program of length ≤ 2ℵ because there are ≤ 2ℵ such sets to
be computed, each requiring ≤ ℵ instructions. The conjunction (“and”) of the truth values
of R(x) is then computed by a finite program (see Definition 1 for the outline of a finite
program to compute the truth value of a conjunction), and (∀x)R(x) is true if and only if
the conjunction has value 1 (true). (∃x)R(x) can be decided similarly using disjunctions
(“or”) rather than conjunctions. By induction on quantifier complexity, the truth of any
first-order proposition about sets that require ≤ ℵ bits of information to define (with a
recursive quantifier free formula) can be decided by a 〈2ℵ,< ℵ0, 2ℵ〉-hypercomputer given
an enumeration of a set of sets that require ≤ ℵ bits of information to define. If the loading
of the input to be looped through is included or the input needs to be enumerated, a
serial 〈2ℵ, 2ℵ, 2ℵ〉-hypercomputer suffices to compute the truth of any first-order quantified
proposition about sets that require ≤ ℵ bits of information to define.

(b) To show that a first-order quantified proposition with quantification over sets
that require ≤ ℵ bits of information to define and with the addition of specific sets that
require ≤ 2ℵ bits of information to define can also be computed by a serial 〈2ℵ, 2ℵ, 2ℵ〉-
hypercomputer, we note that a serial 〈2ℵ, 2ℵ, 2ℵ〉-hypercomputer can compute any set that
requires ≤ 2ℵ bits of information to define by starting with a blank tape (i.e., all 0s) and
running a program of length 2ℵ to write a value (0 or 1) to each register. Membership of
a set, x ∈ X, where each x must take ≤ ℵ bits to define to be consistent with (a) (since
x ∈ 2ℵ as x takes ≤ ℵ bits to define), can therefore be computed by a serial 〈2ℵ, 2ℵ, 2ℵ〉-
hypercomputer by looping through the set X with current value y ∈ X and checking
whether y = x. The inductive argument in (a) above can then be applied to show that a
serial 〈2ℵ, 2ℵ, 2ℵ〉-hypercomputer can compute the truth of any first-order proposition with
quantification over sets that require ≤ ℵ bits of information to define and which have set
membership of sets that require ≤ 2ℵ bits of information to define.

(c) The truth of a second-order proposition of set theory with quantification over sets
that require ≤ 2ℵ bits of information and sets of sets that require ≤ ℵ bits of information
can be decided by “looping through” every set of sets that require ≤ ℵ bits of information,
which requires 22ℵ registers and 22ℵ steps with a finite program and which depends on 22ℵ

instructions to create and loop through the data, i.e., the set of sets that require ≤ ℵ bits of
information.

Theorem 12. A parallel 〈2ℵ,ℵ,ℵ〉-hypercomputer can hypercompute (a) the truth of first-order
computably decidable propositions with quantification over sets that require ≤ ℵ bits of information
to define, (b) the truth of first-order computably decidable propositions like (a) but with the addition
of allowing set membership of sets that require ≤ 2ℵ bits of information to define, and (c) a parallel
〈22ℵ , 2ℵ, 2ℵ〉-hypercomputer can compute the truth of second-order propositions about sets that
require ≤ ℵ bits of information to define.

Proof. (a) Note that a parallel 〈2ℵ,ℵ,ℵ〉-hypercomputer can write 2ℵ sets that require ≤ ℵ
bits of information to define into the registers in parallel. Proceed by induction with the

Mathematics 2022, 10, 997 14 of 16

hypothesis that a parallel 〈2ℵ,ℵ,ℵ〉-hypercomputer can compute the truth of first-order
quantified propositions of sets that require ≤ ℵ bits of information to define, noting that,
for the basis case of a computationally decidable relationship between finitely many sets
that require ≤ ℵ bits of information to define, it takes ≤ ℵ instructions and ≤ ℵ steps to
write finitely many sets that require ≤ ℵ bits of information to define to a set of registers
and then finitely many instructions and ≤ ℵ steps to compute the recursive relationship for
those sets. For the induction step, note that, for (∀x)R(x) or (∃x)R(x), 2ℵ sets that require
≤ ℵ bits of information to define can be loaded by a parallel 〈2ℵ,ℵ,ℵ〉-hypercomputer
across 2ℵ disjoint sets of 2ℵ registers and the quantification can be parallelized by running a
(finite) program for deciding R(x) in parallel in ℵ steps, for (∀x)R(x) writing 1 to an output
register of the management program initially and then writing 0 to the output register
if any of the R(x) computes as false, while, for (∃x)R(x), writing 0 to an output register
initially and then writing 1 to the output register if any of the R(x) computes as true.

(b) If we add propositions involving membership of ≤ 2ℵ specific sets, assumed for
consistency (a) to consist of members which have ≤ ℵ bits to define, then to write a specific
set requires a parallel 〈2ℵ,ℵ,ℵ〉-hypercomputer if each disjoint set of 2ℵ registers contains
one set that requires ≤ ℵ bits of information to define. It is assumed that the ≤ ℵ bits
are presented serially and cannot be parallelized, for example by a recursive relationship.
Testing membership of a specific set of sets that require ≤ ℵ bits of information to define, r,
requires matching r against 2ℵ disjoint sets of registers which contain one set that requires
≤ ℵ bits of information to define, sα<2ℵ , which can be done in parallel with a finite program
in ℵ steps as follows. Use r and sα from the input registers and create a set of working reg-
isters, Wα<2ℵ , with one register each in one step and with a finite program writing 1 to each
Wα in parallel. For r and each sα, for ordinal β < ℵ, perform the operation (r)β ↔ (sα)β,
that is, ((r)β ∧ (sα)β) ∨ ((¬r)β ∧ (¬sα)β), in parallel, which returns 1 if (r)β = (sα)β and 0,
otherwise; and, if the result is 0, write 0 to Wα and then halt the program; otherwise, write
1 to Wα and then move right one register along r and sα to (r)β+1 and (sα)β+1. At limit
ordinals λ, proceed as normal by performing the operation (r)λ ↔ (sα)λ. To implement
the pseudo-code as a program, it is possible to use a hypercomputer with three ordinary
states, 2,3,4, an initial state, 1, a halting state, 5, with the following instructions, assuming
that the program starts in state 1 that two sets that require ≤ ℵ bits of information to
define are for simplicity stored in W1,α<ℵ,γ and W2,α<ℵ,γ, the result of bit-wise comparison
of the sets that require ≤ ℵ bits of information to define is stored in W3,1. A suitable pro-
gram is 〈γ, 1, W1, 0, 〈2, 3〉, 4〉, 〈γ, 1, W1, 1, 〈2, 3〉, 4〉, 〈γ, 4, W1, 0, 〈8, 1〉, 3〉, 〈γ, 4, W1, 1, 〈8, 1〉, 2〉,
〈γ, 3, W2, 1, 〈1, 3〉, 5〉, 〈γ, 2, W2, 0, 〈1, 3〉, 5〉, 〈γ, 3, W2, 0, 〈8, 1〉, 4〉, 〈γ, 2, W2, 1, 〈8, 1〉, 4〉, 〈γ, 1,
W0, 0, 〈12, 0〉, 1〉, 〈γ, 1, W0, 1, 〈12, 0〉, 1〉, 〈γ, 1, W0, 1, 0, 5〉. The reason that the state in the
main loop is the highest ordinary state of 4 is to allow the program to start in the main loop
at limit ordinals. It can be seen that the program will either halt in state 5 with output 0 or
in state 4 with output 1 when the computation runs to completion (i.e., at step o(ℵ)).

(c) Each of a maximum of 22
ℵ

sets of sets that require≤ 2ℵ bits of information to define
can be represented as specific sets when computing the truth of first-order quantified propo-
sitions involving such sets. Put more formally, since a parallel 〈2ℵ,ℵ,ℵ〉-hypercomputer
can compute the truth of a first-order quantified proposition with quantification over sets
of sets that require ≤ ℵ bits of information to define with the addition of membership
of specific sets that require ≤ 2ℵ bits of information to define, if R(X), for X, a set of sets
that require ≤ ℵ bits of information to define, is a formula of set theory with free variable

X, then (∀X)R(X) can be computed in parallel across 22
ℵ

disjoint sets of 2ℵ registers by
writing 1 to an output register of the management program initially and then writing 0 if
any of R(X) is false; and for (∃X)R(X) by writing 0 to an output register initially and then
writing 1 if any of R(X) is true. By induction on quantifier complexity of a second-order
predicate A(X), since the parallel computation adds two steps and needs a finite program to

implement A(X) on each parallel hypercomputer, it can be seen that a parallel 〈22
ℵ

, 2ℵ, 2ℵ〉-

Mathematics 2022, 10, 997 15 of 16

hypercomputer can hypercompute the truth of second-order quantified propositions about
sets that require ≤ 2ℵ bits of information to define.

Remark 3. It is possible to take the union of all serial 〈2ℵ, 2ℵ, 2ℵ〉-hypercomputers, for example,
to define a universal hypercomputer, which does hypercompute the truth of properties in the von
Neumann hierarchy of pure sets, V. It is possible to continue by specifying hypercomputers that
decide the truth of propositions that involve quantification over proper classes (such as those in
Morse–Kelley set theory, see Monk [31]).

4. Discussion

The main purpose of this paper is to show that computation and hypercomputation
work are linked, and have similarities in terms of complexity classes and differences in
terms of computational power. One of the key differences is that the set of natural numbers
is closed under cardinal exponentiation, while infinite cardinals strictly increase under
cardinal exponentiation (until the first strongly inaccessible cardinal if such exists). Thus,
there is a proper class of hypercomputers once the proper class of all ordinals is allowed
as resources (which is true for Koepke’s ordinal register machines and ordinal Turing
machines of Koepke [4], Koepke and Koerwien [5], Koepke and Siders [6], Koepke [11] as
well as for the 〈2ℵ, 2ℵ, 2ℵ〉-hypercomputers in Section 3 above).

Given that computation defines a mechanical, finitary process, in light of Gödel’s
Incompleteness Theorem (see Gödel [32], Smorynski [33]) indicating the existence of true
propositions (of the form (∀x ∈ N)P(x) for P quantifier-free and having only natural
number constants) not provable in sufficiently rich formal number theory (such as weak
fragments of first-order Peano Arithmetic), hypercomputation shows that there are formal
theories that have a naturally infinitary semantics in the sense that truth of a proposition in
the language of the theory can be decided hypercomputationally but not computationally.
The author believes that principles of mathematics (including axioms of set theory, type
theory and class theory) that are not computably decidable should be judged on whether
they are true or at least plausible from the perspective of an infinitary semantics. It is, of
course, very difficult to judge whether a principle of mathematics is true from an infinitary
point of view, but there are principles that are true even if humans cannot effectively use
them. An example of a true principle from an infinitary perspective is the Axiom of Choice,
see Jech [34], which was used extensively in this paper, ether as an oracle or in writing
infinitely many instructions. In the context of class theory, the Axiom of Global Choice is
true because a choice function on the von Neumann hierarchy of non-empty sets can be
extended to a choice function on the universe of sets V minus the empty set (see Fraenkel
et al. [35]).

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: Many thanks to Tim Button and Filip Hrdlicka for correspondence on related
ideas.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Hamkins, J.; Lewis, A. Infinite Time Turing machines. J. Symb. Log. 2000, 65, 567–604. [CrossRef]
2. Koepke, P. Infinite Time Register Machines; CiE 2006; Beckmann, A., Ed., University of Athens: Athens, Greece, 2006; Volume

LNCS 3988, pp. 257–266.
3. Koepke, P.; Miller, R.G. An enhanced theory of infinite time register machines. In Logic and the Theory of Algorithms; Lecture Notes

in Computer Science; Beckmann, A., Ed.; Springer: Berlin, Germany, 2008; Volume 5028,
4. Koepke, P. Turing Computations on Ordinals. Bull. Symb. Log. 2005, 11, 377–397. [CrossRef]
5. Koepke, P.; Koerwien, M. Ordinal computations. Math. Struct. Comput. Sci. 2006, 16, 1–18. [CrossRef]
6. Koepke, P.; Siders, R. Register Computations on Ordinals. Arch. Math. Log. 2008, 47, 529–548. [CrossRef]

http://doi.org/10.2307/2586556
http://dx.doi.org/10.2178/bsl/1122038993
http://dx.doi.org/10.1017/S0960129506005615
http://dx.doi.org/10.1007/s00153-008-0093-3

Mathematics 2022, 10, 997 16 of 16

7. Carl, M.; Fischbach, T.; Koepke, P.; Miller, R.; Nasif, M.; Weckbecker, G. The basic theory of infinite time register machines. Arch.
Math. Log. 2010, 49, 249–273. [CrossRef]

8. Carl, M.; Ouazzani, S.; Welch, P.D. Taming Koepke’s Zoo. In Proceedings of the Sailing Routes in the World of Computation—14th
Conference on Computability in Europe, Kiel, Germany, 30 July–3 August 2018; Lecture Notes in Computer Science; Manea, F.,
Miller, R.G., Nowotka, D., Eds.; Springer: Berlin, Germany, 2018; Volume 10936, pp. 136–145.

9. Carl, M. Ordinal Computability: An Introduction to Infinitary Machines; De Gruyter Series in Logic and Its Applications; De Gruyter:
Berlin, Germany, 2019.

10. Carl, M. Taming Koepke’s Zoo II: Register machines. Ann. Pure Appl. Log. 2022, 173, 103041. [CrossRef]
11. Koepke, P. Ordinal Computability. In Mathematical Theory and Computational Practice; Number 5635 in Lecture Notes in Science;

Ambos-Spies, K., Ed.; Springer: Berlin, Germany, 2009; pp. 280–289.
12. Hamkins, J.; Miller, R. Post’s Problem for ordinal register machines: An explicit approach. Ann. Pure Appl. Log. 2009, 60, 302–309.

[CrossRef]
13. Welch, P.D. Characteristics of discrete transfinite time Turing machine models: Halting times, stabilization times, and Normal

Form theorems. Theor. Comput. Sci. 2009, 210, 426–442. [CrossRef]
14. Welch, P.D. Discrete transfinite computation models. In Computability in Context: Computation and Logic in the Real World; Cooper,

S.B., Sorbi, A., Eds.; World Scientific: Singapore, 2011; pp. 375–414.
15. Blanchetti, M. Weaker variants of infinite time Turing machines. Arch. Math. Log. 2020, 59, 335–365. [CrossRef]
16. Rin, B. The computational strengths of alpha-tape infinite time Turing machines. Ann. Pure Appl. Log. 2014, 1165, 1501–1511.

[CrossRef]
17. Welch, P.D. Characterisations of variant transfinite computational models: Infinite time Turing, ordinal time Turing, and

Blum–Shub–Smale machines. Computability 2021, 10, 159–180. [CrossRef]
18. Koepke, P.; Seyfferth, B. Ordinal machines and admissible recursion theory. Ann. Pure Appl. Log. 2009, 160, 310–318. [CrossRef]
19. Schindler, R. P [not =] NP infinite time Turing machines. Monatshefte für Math. 2003, 139, 335–340. [CrossRef]
20. Hamkins, J.D.; Welch, P.D. Pf not =NPf for almost all f. Math. Log. Q. 2003, 49, 536–540. [CrossRef]
21. Deolalikar, V.; Hamkins, J.D.; Schindler, R. P [not =] NP [intersect] co-NP for infinite time turing machines. Log. Comput. 2005,

15, 577–592. [CrossRef]
22. Carl, M. Space and time complexity for infinite time Turing machines. Log. Comput. 2020, 30, 1239–1258. [CrossRef]
23. Hellman, G. Mathematics without Numbers. Towards a Modal-Structural Interpretation; Clarendon Press: Oxford, UK 1989.
24. Turing, A. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1937,

s2-42, 230–265. [CrossRef]
25. Clarkson, M.; Schneider, F. Hyperproperties. In Proceedings of the 21st IEEE Computer Security Foundations Symposium,

Pittsburgh, PA, USA, 23–25 June 2008; IEEE Computer Society: Washington, DC, USA, 2008; pp. 51–65.
26. Kleene, S. Recursive predicates and quantifiers. Trans. Am. Math. Soc. 1943, 53, 41–73. [CrossRef]
27. Peter, R. Recursive Functions; Academic Press: New York, NY, USA, 1967.
28. Arora, S.; Barak, B. Computational Complexity: A Modern Approach; Cambridge University Press: Cambridge, UK, 2009.
29. Fortnow, L. Diagonalization. In Current Trends in Theoretical Computer Science; Chapter Diagonalization; Păun, B., Rozenberg, G.,

Salomaa, A., Eds.; World Scientific: Singapore, 2001; Volume 102–114.
30. Martin, D.A. Descriptive set theory: Projective sets. In Handbook of Mathematical Logic; Studies in Logic and the Foundations of

Mathematics; Barwise, J., Ed.; North-Holland: Amsterdam, The Netherlands, 1977; Volume 90, Chapter C.8, pp. 783–818.
31. Monk, J.D. Introduction to Set Theory; McGraw Hill: New York, NY, USA, 1969.
32. Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Math. Und

Phys. 1931, 38, 173–198. [CrossRef]
33. Smorynski, C. The Incompleteness Theorems. In Handbook of Mathematical Logic; Studies in Logic and the Foundations of

Mathematics; Barwise, J., Ed.; North-Holland: Amsterdam, The Netherlands, 1977; Volume 90, Chapter D.1, pp. 821–865.
34. Jech, T. About the axiom of choice. In Handbook of Mathematical Logic; Studies in Logic and the Foundations of Mathematics;

Barwise, J., Ed.; North-Holland: Amsterdam, the Netherlands, 1977; Voume 90, Chapter B.2, pp. 345–370.
35. Fraenkel, A.; Bar-Hillel, Y.; Levy, A. Foundations of Set Theory; Studies in Logic and the Foundations of Mathematics; North-Holland:

Amsterdam, Netherlands, 1973; Volume 67.

http://dx.doi.org/10.1007/s00153-009-0167-x
http://dx.doi.org/10.1016/j.apal.2021.103041
http://dx.doi.org/10.1016/j.apal.2009.01.004
http://dx.doi.org/10.1016/j.tcs.2008.09.050
http://dx.doi.org/10.1007/s00153-019-00692-9
http://dx.doi.org/10.1016/j.apal.2014.04.016
http://dx.doi.org/10.3233/COM-200301
http://dx.doi.org/10.1016/j.apal.2009.01.005
http://dx.doi.org/10.1007/s00605-002-0545-5
http://dx.doi.org/10.1002/malq.200310057
http://dx.doi.org/10.1093/logcom/exi022
http://dx.doi.org/10.1093/logcom/exaa025
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1090/S0002-9947-1943-0007371-8
http://dx.doi.org/10.1007/BF01700692

	Introduction
	Materials and Methods
	Results
	Definitions of Hypercomputing
	Definitions of Computing
	Hypercomputation and Trees
	A 2 0-Computer
	A Hierarchy of Hypercomputers by Strength

	Discussion
	References

