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Abstract: To deal with complicated decision problems with T-Spherical fuzzy values in the aggrega-
tion process, T-Spherical fuzzy Bonferroni mean operators are developed by extending the Bonferroni
mean and Dombi mean to a T-Spherical fuzzy environment. The T-spherical fuzzy interaction Bonfer-
roni mean operator and the T-spherical fuzzy interaction geometric Bonferroni mean operator are
first defined. Then, the T-spherical fuzzy interaction weighted Bonferroni mean operator and the
T-spherical fuzzy weighted interaction geometric Bonferroni mean operator are defined. Based on
the Dombi mean and the Bonferroni mean operator, some T-Spherical fuzzy Dombi Bonferroni mean
operators are proposed, including the T-spherical fuzzy Dombi Bonferroni mean operator, T-spherical
fuzzy geometric Dombi Bonferroni mean operator, T-spherical fuzzy weighted Dombi Bonferroni
mean operator and the T-spherical fuzzy weighted geometric Dombi Bonferroni mean operator. The
properties of these proposed operators are studied. An attribute weight determining method based
on the T-spherical fuzzy entropy and symmetric T-spherical fuzzy cross-entropy is developed. A
new decision making method based on the proposed T-Spherical fuzzy Bonferroni mean operators
is proposed for partly known or completely unknown attribute weight situations. The furniture
procurement problem is presented to illustrate the new algorithm, and some comparisons are made.

Keywords: multiple attribute decision making; T-spherical fuzzy set; Bonferroni mean; Dombi

MSC: 94-10

1. Introduction

Decision problems with fuzzy and uncertain information exist extensively in the real
decision making process since decision problems become increasingly complicated. Many
useful tools have been developed to model these information, among which Spherical
fuzzy sets is an important one developed by Ashraf et al. [1] by extending picture fuzzy
sets and intuitionistic fuzzy sets [2,3]. Spherical fuzzy sets have been studied and extended
extensively [4,5].

Ashraf and Abdullah [6] developed generalized spherical aggregation operators based
on the Archimedean t-norm and t-conorm. Donyatalab et al. [7] defined a spherical fuzzy
weighted mean operator and Spherical Fuzzy Einstein weighted Harmonic mean operator.
T-spherical fuzzy sets were proposed by Mahmood et al. [8] to generalize Spherical fuzzy
sets. Zeng et al. [9] proposed some Einstein geometric averaging interactive aggregation
operators.

Zeng et al. [10] introduced T-spherical fuzzy interactive aggregation operators with
associate probability. Al-Quran [11] proposed T-spherical hesitant fuzzy sets by combin-
ing the hesitant fuzzy and the T-spherical hesitant fuzzy set. Some T-spherical hesitant
fuzzy weighted averaging operators have been defined, including the T-spherical hesitant
fuzzy weighted averaging operator and the T-spherical hesitant fuzzy weighted geometric
operator in [11].

Jan et al. [12] developed the T-spherical fuzzy graph concept and dominant theory
of T-spherical fuzzy graphs. Munir et al. [13] defined some Einstein operations based
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on the Einstein t-norms and t-conorms for T-spherical fuzzy set and developed some T-
spherical fuzzy Einstein geometric averaging aggregation operators. Ju et al. [14] extended
the TODIM method to the T-spherical fuzzy environment. Xian et al. [15] applied the
T-spherical fuzzy c-means method to image segmentation.

Zedam et al. [16] defined the T-spherical fuzzy graph and some related concepts, in-
cluding subgraphs, the shortest path etc. Guleria and Bajaj [17] applied the T-spherical
fuzzy graph notion for supply chain management problems. Mahmood et al. [18] devel-
oped T-spherical fuzzy MULTIMOORA method and T-spherical fuzzy Dombi prioritized
aggregation operators. Munir et al. [19] introduced some T-spherical fuzzy interactive
geometric operators with immediate probability information.

Liu et al. [20] proposed a decision making method based on the T-spherical fuzzy
generalized Maclaurin symmetric mean operator and applied it into the problem of se-
lecting the Yunnan Baiyao’s R&D project. Wang and Chen [21] presented the T-spherical
fuzzy ELECTRE approach by incorporating two forms of Minkowski distance measures.
T-spherical fuzzy correlation coefficients [22] and T-spherical fuzzy similarity measures [23]
have been studied, and their applications in clustering were presented.

Khan et al. [24] studied T-spherical fuzzy Schweizer—Sklar weighted geometric Hero-
nian mean operator. Garg et al. [25] proposed the T-spherical fuzzy interactive geometric
operators. Mahmood et al. [26] defined interval-valued T-spherical fuzzy soft sets and de-
veloped some interval-valued T-spherical fuzzy soft aggregation operators. Garg et al. [27]
developed T-spherical fuzzy power aggregation operators.

Ullah et al. [28] defined some T-spherical fuzzy Hamacher aggregation operators.
Based on the T-spherical fuzzy values, some new fuzzy sets have been defined and stud-
ied [29-36]. Chen et al. [32] presented generalized T-spherical fuzzy geometric aggregation
operators; however, the interaction of the operation laws has not been considered.

Though many T-spherical fuzzy multiple attribute decision making methods have
been proposed, there are still many decision making problems that cannot be solved using
existing methods. Aggregation operators are important in decision making process [36],
we develop some new T-spherical fuzzy aggregation operators based on the Bonferroni
mean operator and Dombi operator in this paper.

The Bonferroni mean operator is the product of each input value with the average
one of the other input values [37,38]. The Bonferroni mean operator has been extended
extensively. The Bonferroni geometric mean operator has been studied by Xia et al. [39]
and Li et al. [40]. Zhu and Xu [41] developed the hesitant fuzzy Bonferroni mean operator.
Zhu et al. [42] studied the hesitant fuzzy geometric Bonferroni mean operator.

He et al. [43] developed the intuitionistic fuzzy geometric power Bonferroni means
operators by combing the geometric Bonferroni mean operator with the power mean
operator. Park et al. [44] studied optimized weighted geometric Bonferroni means for
intuitionistic fuzzy information. Wei et al. [45] proposed the uncertain linguistic Bonferroni
mean operators. Liu and Liu [46] defined the intuitionistic uncertain linguistic partitioned
Bonferroni mean operators. Chen et al. [47] developed the linguistic 2-tuple geometric
Bonferroni mean operator.

Yang et al. [48] studied hesitant Pythagorean fuzzy geometric weight Bonferroni mean
operator considering interactions between arguments. Yang et al. [49] studied Pythagorean
fuzzy partitioned Bonferroni mean considering interactions. Yang and Pang [50] studied
fuzzy Bonferroni mean Dombi aggregation operators in g-rung orthopair fuzzy environ-
ments.

Liu and Liu [51] defined normal intuitionistic fuzzy Bonferroni mean operators.
Mesiarova-Zemankova et al. [52] introduced the weighted Bonferroni mean consider-
ing interactions between inputs. Liang et al. [53] presented interval-valued Pythagorean
fuzzy Bonferroni mean operators. Ate and Akay [54] developed picture fuzzy Bonferroni
mean operators.

Mahmood and Ahsen [55] presented some picture-hesitant fuzzy Bonferroni mean
operators. Although the Bonferroni mean operator has been extended into various en-
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vironments, the Bonferroni mean operator in T-spherical fuzzy environments has not
been studied. Hence, we extend the Bonferroni mean operator to the T-spherical fuzzy
environment considering the interaction operations between T-spherical fuzzy values.

The Dombi mean [56] is a flexible aggregation method by a parameter that is based on
the Dombi t-norm and Dombi t-conorm. The Dombi aggregation has also received extensive
attention. Liu et al. [57] studied Pythagorean fuzzy Dombi power average operators. Jana
and Pal [58] presented single-valued neutrosophic aggregation operators.

Wau et al. [59] proposed Dombi Hamy mean operators in interval-valued intuitionistic
fuzzy environments. Jana et al. [60] developed some Dombi aggregation operators to
aggregate Pythagorean fuzzy information. Shit and Ghorai [61] presented some Fermatean
fuzzy Dombi aggregation operators.

Kurama [62] studied the similarity classifier with Dombi aggregation operators. Jana
et al. [63] proposed picture fuzzy Dombi aggregation operators. Gulfam et al. [64] defined
some bipolar neutrosophic Dombi aggregation operators. Ayub et al. [65] presented cubic
fuzzy Dombi aggregation operators using the Heronian mean. Akram et al. [66] proposed
complex Pythagorean fuzzy Dombi aggregation operators.

Ali and Mahmood [67] presented some complex g-rung orthopair fuzzy Dombi ag-
gregation operators. Khan et al. [68] studied spherical fuzzy improved Dombi power
averaging operators. Saha et al. [69] studied hesitant fuzzy Archimedean Dombi aggre-
gation operators. Kamaci et al. [70] proposed bipolar trapezoidal neutrosophic Dombi
operators.

Dombi aggregation operators have been used in typhoon disaster assessment prob-
lems [71], personnel evaluation problems [72], green supplier selection problems [73] etc.
Since the Bonferroni mean can consider the interaction between input arguments, and the
Dombi mean is flexible in aggregation, we further extend the Bonferroni mean to combine
the Dombi mean in T-spherical fuzzy environment and develop T-spherical fuzzy Dombi
Bonferroni mean operators.

The main contributions of this paper are summarized as follows. (1) The T-spherical
fuzzy values are used in the decision-making process to deal with complicated decision
problems. (2) The T-spherical fuzzy interaction operation laws are used to reduce the influ-
ence of an extremely small membership degree, abstinence degrees or non-membership
degree. (3) T-spherical fuzzy interaction Bonferroni mean operators are defined by ex-
tending the Bonferroni mean to accommodate the T-spherical fuzzy values by considering
interactions. (4) T-spherical fuzzy Dombi Bonferroni mean operators are developed by com-
bining the Bonferroni mean with Dombi mean operator in T-spherical fuzzy environments.

(5) A new T-spherical fuzzy entropy measure and a new T-spherical fuzzy cross-
entropy measure are proposed. The attribute weights are calculated using the proposed
entropy and cross-entropy measure for partly known and completely unknown situations.
(6) The decision making method based on the new T-spherical fuzzy Bonferroni mean
operators are developed. Some comparisons are conducted to illustrate the practical
advantages of the proposed method.

The rest of the paper is organized as follows. In Section 2, some concepts about T-
spherical fuzzy sets are reviewed, including the interaction operation laws of T-spherical
fuzzy numbers. In Section 3, some T-spherical fuzzy interaction Bonferroni mean operators
are defined, including the T-spherical fuzzy interaction Bonferroni mean operator and
T-spherical fuzzy interaction weighted Bonferroni mean operator. In Section 4, the T-
spherical fuzzy Dombi Bonferroni mean operator and the T-spherical fuzzy weighted
Dombi Bonferroni mean operator are introduced.

In Section 5, the T-spherical fuzzy entropy and cross-entropy measures are proposed,
and a method to determine attribute weights using the cross-entropy measure is devel-
oped. In Section 6, a new T-spherical fuzzy multiple attribute decision making method
is presented based on the new proposed operators. In Section 7, a numerical example is
proposed to illustrate the new method. In the last section, our conclusions are given.
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TSFWGA (a1, a2, . . .

2. Preliminaries
Definition 1 ([8]). For a universal set X, a T-spherical fuzzy set (T-SFS) A on X can be defined as

A={<xuz(x),nz(x),vz(x)>|xeX} 1)

where pz(x) : X — [0,1], nz(x) : X — [0,1] and v;(x) : X — [0,1] denote the member-
ship degree, the abstinence degree and the non-membership degree, respectively, which satisfy the
following condition 0 < p's(x) + 1% (x) +v5(x) < 1,t > 1. The refusal degree is given as
mz(x) = (ph(x) + 0% (x) + v (x)) V. For simplicity, the triple p =< pz,14,vz > is the
T-spherical fuzzy number (T-SFN). p* =< vz,1—1n 4,1z >. Let H be the set of all the T-spherical
fuzzy values.

Definition 2 ([14]). Let & =< p,n,v > be a T-SFN, then the score function S(a) of a is defined as

S(@) = (14— =), @
5(a) € [0,1].

Definition 3 ([14]). Let « =< p,1,v > be a T-SEN, then the accuracy function H(«) of a is
defined as
Ha) = p' 0"+, ®)

H(a) € [0,1].

Definition 4 ([14]). Let oy =< pq, 41,1 > and ap =< Uy, 43, vp > be two T-SFNs. Then,
(1) If S(aq) > S(ap), then aq > ap;
(2) If S(aq) = S(ap), and
H(aqp) > H(ap), then aq > ap;
H(aq) = H(ap), then aq ~ ay.

Let & =< pa, 1o, Vo > and B =< Hp Mg, Vg > be two T-SFNs, A > 0. Then, the
operational laws of T-spherical fuzzy values can be defined as follows [20]

(Da®p=<0—0—p)d—pp)"" 1an1p, vavp >,

(2) @ B =< paprp, (1= (1= 1) (L =)/, (1= (1= v) (A —vp)/* >

(8) & =< i, (1= (1= g% (1= (L))" >

(4) A =< (1= (1= p))V 2, v >.

Then, by using the T-spherical fuzzy operational laws [20], the T-spherical fuzzy
weighted averaging (TSFWA) operator and the the T-spherical fuzzy weighted geometric
averaging (TSFWGA) operator can be obtained, respectively, as

TSFWA(‘XLD‘Z/' . .,an) = < (1 - ;‘1:1(1 - le )wl)l/t 1 1 17061 ;l:l V;‘? >

o) = <TITg pag, (1—TT, (1 - Uﬁci)w")l/t/ (I-TT (1 - Vatci)wi)l/t >

Example 1. Let oy =< 0.5,0.4,0.0 >, ap =< 0.6,0.0,0.4 >, a3 =< 0.0,0.7,0.3 >, ay =<
0.5,0.6,0.4 >, t = 3. Then, the aggregated results are obtained as TSFWA(aq,ap, ..., a4) =<
0.4832,0, 0 > and TSFWGA (a1, ay, ..., a4) =< 0,0.5632,0.3379 >.

From the above results, we can see that, if 0 is in the membership degree, the abstinence
degree and the non-membership degree of the T-SFNs, then there may be 0 in the aggregated
the membership degree, the abstinence degree and the non-membership degree even if
other values are not zero. In order to avoid information loss, the following interaction
operational laws of T-SFNs can be defined.
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Leta =< p,n,v >, 01 =< yy,11,v1 > and ap =< yp, 12, v2 > be T-SENs, A > 0. The
operational laws of T-SFNs considering interaction relationships among y;, #;, v; are defined
as follows [14]

Mar®ay = <(1—Q—ph)A =) (1= ph) (1 —pb) — (1= pd — ) (1 — ph—

)Y (L=l =) (U= ph — ) — (L= — o} —v]) (1 — ph—
b — vVt >;
Qu®ay = <((1—vh—n)(A—vh—nh) — (1 —ph —nt —vi)(1—pbh —nb—vi))V/",
(T=v)(A—vh) — (1 —vh =) (1= vh —yh))V!, (1= (1 —h)
(1 71/1‘))1/1‘ >:

B)re = <{1-(01- }Att)l’;gl“/ (=) = @ =p' =YV (A= pt =) = (1=
W = V)R>
(4) o= < ((1 _yt t_;jtl)/)\t_ (1 _ Vt _ 17t _ 1/z,‘)/\)l/t, ((1 _ Vt)/\ _ (1 _pt— Wt)A)l/tr
1-1-vHHVE>.
By using the interaction operation laws of T-spherical fuzzy numbers, the TSFWA
operator and the TSFWGA operator become the T-spherical fuzzy interaction weighted

averaging (TSFIWA) operator and the T-spherical fuzzy interaction weighted geometric
averaging (TSFIWGA) operator as

TSFIWA (a1, 2, -, otn) =< (1 =TTy (1 — pug, )", ([T (1 — peg )™ =TT, (1 —
i VM (T (1= g, — k) =TTy (1= i, — vy — )" >

TSFIWGA (a1, a2, ..., &) =< (T (1 — vk, — k)% =TT (1 — phy, — vh, — q;i)uﬁ)l“,
(T (= v )™ =TT (1 =1, — v,ii)’”f)l/t, (1-TT (1 =)o/t >

Example 2. a;,w; (i = 1,2,...,4) and t are the same as that in Example 1. By using the TS-
FIWA operator and the TSFINGA operator, the aggregated results can be obtained as TSFIWA (a1,
ay, ..., 0g) =< 0.4832,0.5476,0.3393 >, TSFINGA(aq, ap, . . ., a4) =< 0.4636,0.5625,0.3379 >.

Definition 5 ([14]). Let a1 =< pq,%1,v1 >, ap =< Mo, 2,V > be two T-SENs. The T-spherical
fuzzy generalized distance measure can be defined as

d(ay,ap)) = (|P‘§ - H§|A + |’7{ - ’75|A + |Vf - V§|A)1M-

If A =1, d(ay, ap), becomes the T-spherical fuzzy Hamming distance. If A = 2, d(a1,a2),

becomes the T-spherical fuzzy Euclidean distance.

3. T-Spherical Fuzzy Interaction Bonferroni Mean Operator
Definition 6 ([37]). The Bonferroni mean aggregation operator of dimension n is a mapping
( R+)n N R+,

1 1

K+
BM(&Z],QZ,. . .,ﬂn) = (m @Z]':Li?éj (ai{ ®ﬂ;)) * ,

wherek,1 >0, (ay,ay,...,a,) is a collection of nonnegative real numbers.

Definition 7. Let a; =< pla,, a;, Ve, > (i = 1,2,...,n) be T-SENs. The T-spherical fuzzy
interaction Bonferroni mean (TSFIBM) operator can be defined as

1
TSFIBM(ay, 0, . ., ay) = (ﬁ Oy i (a?@oc;))k“, )

where k,t > 0.
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Theorem 1. Let a; =< plo,, o, Ve, > (i =1,2,...,

n) be T-SFNs, k,t > 0. The aggregated

value of TSFIBM operator is still a T-SFN, and

Proof.

1
TSFIBMy (a1, @, .., t0n) = (ﬁ b i (af @ al))
<((1- (H?jﬂ#]( —-(1- myl) (1 —v, =)'+ (1= ply, — 1k, —
Vt ) ( ]/llX] - 771x] gc ) )) (Hi,j:l,i;éj(( Vuc, - 770cl - sz,) (17
1 1
HIX]' - 1706] - D(j)l))n(n 1))’(? - (( 1,]:1,175]((1 - HIXI' - ;7041' - Vﬂé,’)k(l_
k+1

— (v v+

1
Moy = Tay — Va;)1)) )RV (1 ( ijl,i;léj(l
(1= pi =k, = va)F (U= gy = ma = v )') " +
S
(T i (U= pih = 1k, = Vi )* (U =ty — e, — ,i,)l))"“)“
(1= ([T} =y, = (1—vt — 10 ) (U= vy =i )t (L= pl, — ik, — i, )

&j

©)

ky

(1= by, — 1, — va, 1)) 4 ([T Pt (U= py =l = vi)* (1 =y~
L
’71xj - Vij)l))” DR (1= (1—( Pi—1izj(1— (1= Ve ) (1~ Vﬁj)l‘f‘
1
(1= pi, = mh, = i) (U= ity = 1, — Ve ))) ™0 + (T, (1 — pl—

_1 1
171561' - Vlii) ( - :ua] - 775(] - Vli]')l))”(n_l) )k+1)1/t >

= < (U =vg =) = (= = ma, = va )M (1= v )F = (1= v~
M) (1= (1= v )OOV >

= (U =) = (L= = — vV (L= k) — (1= vk
gV (- (1) Wf
df@al = < ((1—vj =i U —vh —yl) = (1= ply =, —vi)*(1— ph, —
Mo, — ,x]-) ((1 b ( VE,.)’—(l—VLi—n&i)"(l—Vij—mij)’)l”,
(1—( — v (1 - Ua)l)l/t
1] 117&]( )
= <(-TII- 117&(1 (1= vg, — 12" (1 — v, — i) + (1= g, — i, — vg,)*
(1= gty =110, = va) )M ( ?] 117&]( — (U =vg —m ) (1 =i, —i,)!

( “l/laz—ijal—l/ii)k(l Vocj Waj gc]-)l)_ zrf] 1i7é]( (1_1/ ) (1_
ve)' + (1 ufxl—ﬂi,—v,i)k( #&—ni = v )M ([T i (1 — (1= v )
(1 - Vij) ( #uc, sz, ti ) ( ‘utx 771;]' - Uij)l) Hz,]:l,z;é](( Vgci_
Moy = Vo) (1 = ptly, — ])))1”

1 ko ol
2 Ohjmtizg ®"‘j)

< (1= (i (= (U= vl =i ) (U= vl — i)'+ (1= ply =, — v ¥ (1=
1
=t = v )T (T2 (1 = (1= v, =t JF(L— v, — )1+
1
(1= piby = 1ty — Vi) (U= paty, = 11a; = A )1)) 070 = ([T iy (1 — (1= v )¥ (1~

1
Vi)' (1= py = 1ay = Vi) (U= iy, — 1ty — v ))) D) (T (1 = (1=
1
Ve (U= ve)' + (1= g — e, — v, ) ¥ (1= ply, — i, — )"0 —
1
(017, (U = py = iy = va) (U= ik, — i, —v,)')) D) ME >
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N
(ﬂn 1) /] 11#1( k®“§'))k+l

< (1= (T jm,igg (1 = (U= v = i ¥ (U= vy — i)+ (1= pag, — 1k, — i, )
(U= sy = = )’))ﬁﬂ P (U= il =k, = VAR (U= ity —mi, —
Ve, )’))" )R — (T i (U= pi = 1ty — va)* (1= ity — 14—

v Y1) >kw“f«1—< (U= (1 VR =t )+ (1l —
VKL= iy — ks — VD) T e (T (1 — i, =ty — v (1 — i~
%,—%ph)¢v>%w—u—mnaﬂ@ga—<g—w,—mg< —vh k)

(1= pay = My = V) (U=t = 11a; = v )")) 00 o (DT (1 — pi, — 176~
VE R = i — gk — v )T R (1= (1= (TTfm (1~ (1= v (1
VY (1 i, — gty — V)R — g, — v D) T 4 (T sy (1

_ 1 1
Bty — 11k, = VAL = gy =l — vl )) T ) E) >

”\
B

- T

Moreover,
vt 4t
= (1 - ( :‘/ljfl 1#]( (1 - Vt T]i,)k(l - Ut‘ - 175()1 + (1 - ysc, - 775(, - Vlfél‘)k*
(1—;1“]—17“] i)))" ([T, (1= ply = 1, — V) (1 =y —
L
Moy — V) 0D ) BT — (T iy (1 — ph, — 1, — v (L= il —ma—
1 1
Vgcj)l))M D)FT 4 (1= (T 2y, (1 = (1= v DACES ) (1= ply — 13, —

VAL i, )T (T2 (1 — ot (1
;%*n%f%y»WvawfufuL]hﬁ< — (1, K v -
@V+u—%;wg—%>u—m;mm—wmwﬁﬂ+<3ﬂ#ﬂr—
M&i—n&i—VEi)k(l—ui.—ni.—VQ)’))'“I TE) 41— (1= ([T (1
1 vt K=ot )+ (1=, — ity — v (1 — gty — i, — o)) T 4

(
1 1
(I—[Z]=1,l7é]((1 - AulXi - 170(1' - Uﬂél‘) ( - ]’lIJK/ - 771,?(] - ]/li]_)l))”(”*]))lH»l
1
1— 1

1
(it (1 = py = 110 — v ) (U= i, — g, — vi))) 700 ) Fo1.

]

IN

Since 1 < ph +7h +vh < 1,0 < (1—ph —nb —vi)F < 1. Similarly, 0

(1= py, = 11a; — éj)l < 1. Then, 0 < ((TTj_1,20 < ((1— pl, — 74, — vi,) (1 — pi,, —

1
175( - Vlij)l))”(n 1))IHEI < 1 and O < 1 - (( Z,]=],17é]((1 - ]’llX,' - 1706,‘ - Uﬂél‘) ( - ]’lli] - 175(] -

]

1
v,ij)l )) =D )le < 1. Hence, the aggregated value of TSFIBM operator is still a T-SEN. [

In the following, we prove some important properties of the TSFIBM operator, includ-
ing idempotency and boundedness.

Theorem 2 (Idempotency). If &; = &, < Ya;, Na;s Va; >=< Pa,Na,Va > (i =1,2,...,n). Then
TSFIBMk,l(Dq,lXQ, . ,txn) = Q.

Proof. Let TSFIBMy (a1, &y, ..., &) =< i, 1,V >.
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]/l = ((]‘ - ( l] 1175] 1 (1 - Vt W;{,)k(l - Ulf(] - Wi,)l ( :ua 17111‘ - Vlii)k*
(1= pg; = 7711 Vi)' )FET P, (U= py =ty — v )" (1 — g —

s t t

Moy — ])))” )E = ((IT ]119&,((1—%,—nii—vlf(,-)"(l—ua,.—vaj—

vt )!)) T YR )1/

1
(0 (g0 = (1 v ) (1 il g — )T
11
(T i (1= e — 10 — ve)K ) ) E ((TTF =i (1 = pgy — 10—
# L
VAR T sl e 1
= (U =vh—nl) = (U= ph = = vV = pa,
D= (0= (T — (1= V)= v )+ (1= g, — i, — vl F (1

1

Bty =ty = VA )T (T (L= i, =, = vE (L= gl

! 1
t
Mo

1
D) (1 ([T (1~ (L v, — it )F (L,
1
M)+ (U= pl =k, = v )F (U= ity =i, = vi )™+ (T (1=

]
1 1
Auzéi _17561 ) (1 I’ll);é/ - D(j _Vi])l))n )k+[ 1/t
5
= (=1 =1 —vh)r +( — Me— % VD) + (1 = b =l — vi)*H)) B —
(1= (=1 —vh =g+ (- Ua—vi)k”)
(1= phy — g — wh)ktD) e )1/
= (v (v — )Y =,
v o= (1 - (1 - ( Zj:l,i;éj(l - (1 - I/ti)k(l - 1/&],)1 + (1 - ]15(1 - 7] o thé )k(l_
1
Moy — a; — Vi )')) " (T iy (U= pik, — 1, — v ) (L= ik, — i,
1
v, )T ) E !
1
= (1= (= (T (1= (U= vi) 4 (1= i =l = vf)e)) 0 4
1
(T it (1 = pily =l = wp)EHD)) 70 ) )1/t
= (1-(1-v )k+l)k+l)1/t:1/
Hence, TSFIBMy (a1, a2, . .., &n) =< o, Yo, Vo >= . [

Theorem 3 (Boundedness). Let (a1, az,...,a,) be a collection of T-SFNs. If a™ =< 1,0,0 >,
~=<0,0,1>, then

o~ < TSFIBM (aq, 0z, ..., 0n) < .

Proof. Since 0 < pyy < 1,0 < 1y < 1,0 < vy, < 1,0 < g + 178, + v, < 1,
S(aj) = 3(1+pt, —nk, —vi.), then o™ < TSFIBMy(ay, s, ..., &) < o

Definition 8. Let a; =< pla,, a; Ve, > (i = 1,2,...,n) be T-SENs. The T-spherical fuzzy
interaction geometric Bonferroni mean (TSFIGBM) operator can be defined as

1

TSFIGBM(aq,az,...,0y) = k+l ®l] Lidi (kaj @ laj) -1) (6)

where k,1 > 0.
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Theorem 4. Let a; =< o, a;, Vo, > (i = 1,2,...,n) be T-SFNs, k,t > 0. The aggregated
value of TSFIGBM operator is still a T-SFN and
1

TSFIGBM(aq,a3,...,04) = k%l ®zj=1,i7éj (koci &) lzxj) n(n=1)

= <(1-(1—( ?]‘71 i;&j((l —(1- P‘fxi)k(l - Vztx/)l + (1= phy, — 1k, — ,)k*

1
(1 - ,uoc] 77a] ,) )n(117]>) - H?,j:l,i;éj((l - .uoc, mx, ,) ( - ,uoc]-_
1
1t — VA )T ) BV (1= ([T (L — (1= i (L — i)'+
1
(1=, —1h, — i) (1 = My — e, — Vi) ) — H?j:1 i (1= pf,—
11
Moy = Vo) (1= ply = 1k, = v )" ) 0 )) BT — (1 =TT g (1= (1= py—
1
M) (U= pi, = 1)+ (1= ply = mh, — v )" (U= py, =k, — v )H) 0D +
1
T g (1 =, — 1, — Vi K1 =l =, — vl )70 ) )1,
(U= T,y (1 = (U pidy = 1) (U= ity — i)+ (1= ply — i, =
J=Li#] i i i
Vt ) ( .“a,"?zx] thcl) )nn R +H1] 1z¢]((1_l¢5c,»_’7§q—1/5c,»)k(1—
L 1

Ha, = ey — V) )”

]

)k+’ - ( l] 1,19&](( - ]’lll;l - ﬂil _Vil)k(l_
1
‘uﬂéj_ﬂﬂéj_ 1‘) )n )kJrI)l/t

Proof.

(1= pa =k, — ,) )1”
la; = <(1—(1—ﬂ5¢,—)l)1/t (1 ﬂtj)’—(1—ﬂij—ﬂij)l)”*,((l—ﬂij—mi,-)l—
(1= pi = i, = vi)HV >,
ki@l = < (1= (1= pe ) (=g ) (0= pe )= g ) = (1 pg —
M) (1= ply, =1 )Y (1= ply, =i, )"( m M) — (1=
lullgél‘ - ;7511 _Vt);él)k(l - ‘ui] - 17561 - VD([) )1/t
1
(kaej @ lacj) 0=
1
= < (U= A=) U= i)'+ (U=t =y — v ) (1= ply, —ma; — va,) )" —
1
(1 - ;/IIXI' - ’7061' - Vﬂéi)k(l - HII;(] - 775(] - théi)l)n(nil) )1/t’ ((1 - (1 - ‘ulgé, - Ugél)k*
1
1= iy — i)'+ (1= pty, — 1, — v )" (U= iy, — i, — i)D" — (1=
1
T

;i)l)n n—1) )1/t

1

®1] 1i#j (klxZ ® l“]) e
= < (Mg (1 = (= g )5 (L = )+ (1= puly, = m1a, — va ¥ (1 = ply, — 11k =
_1 1
th(,—)l)n(117])) - ?,j:l,i;éj(( .uzx, - 77041 ,) (1 Vtx 77a] Vgc,)l)n n1) )Ut
(T, (1 = (U= ply = ma ¥ (U= gty =)'+ (1= py, = pa, — v, ) ¥ (1=
1
Ha, = My = Va) )00 =TT i (1= (1= ) (U= il )+ (1= ik, — 1, —
1
Ve (U= i, = i = va )0 (1= T oy (1= (1 = i, — 1k, )

1
(1= pa; = 1ma)' + (1= by = ma, = v )M (L = p, — 7, — v, )') o0 )V >
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1

k+l ®1] 1,i#j (kai @laj nny
= <= (- [y (1 - (- ﬂi,-)"(l =)' (L= ph, =, —ve)*
(1_]/[561_1756_ )) Z] 1,i7éj((1_1’l£ci_77£¢i_vai) ( _]/llx]_
1
Utj —vg)) ))k*’)l/t (1= (ITfj=,i (A = (1 = ph ) (1 — P‘ﬁj)l‘f‘
1
(1~ phy = 1ay — Vi) (1 = by, — 11k, — ,)’)"“H)) T,y (1= iy~
1
770(,— - szl-) ( - ,uoc] 770(] ,)l)n(n R ))HZ - (1 - Zj:l,i;éj(l - (1 - Vgci*
1
Wil)k(]' - ,”5(] - 7704]) ( - ]/lﬂéi - ’7541 - Vlil)k(l - I’lg(] - 715(] - Vﬂtéi)l)n(nil) +
11
HZ]:],I#]((l - nutgéz - ’7561 - thé,‘)k(l - I’lgc] - ;751] - Vii)l)n(n—l) )k+l )l/t/
(=TT, (1 = (U= g, = 1) (U= ity = i)+ (1= by = 17a, =
Ve ) (1 = Ty~ VT Ty o (1= g, — 1, — v, (1
1
yﬂ( 170( Ii) ) )k+1 _( ,] 1,175](( —H;Z—W;I—V;])k(l—
1
M, = oy — Vi)' ™™ )R

) -
(

1
Letk+l®l] Litj (kocl@loc)"" 0 =< p,n,v > Since 0 < py; <1,0 <1, <1,0<
Vy; £1,0< 1 <1,0<7n <1,0 <v <1 canbe proved easily. Moreover,

_1 1
ot vt =1 = (T (1= el =, = V)R (U= il — h — vi,)!) 00 ) &1,
0 < ph + b, +va, < 1,0 < gl +mh + vl 1,0 ST ((1— ply, — 7k, —vi) (1 —
1
yij - 17@], — i)y )k%l < 1.Hence, 0 < u! + 5! + v < 1. Then, the aggregated value of
TSFIGBM operator is still a T-SEN. O

Theorem 5 (Idempotency). If a; = &, < pa,, o Vay >=< Ha, N, Va > (I = 1,2,...,n).

Then,
TSFIGBMy j (a1, a2, . .., &) = .
Proof.
po= (= (U= (T (U= (U= (U= gl )+ (1= i, — ik, — i)
1
(1 - .uoc 771x] gc,-)l)n(nfl)) 7Hi,]'=1,i7éj(( sz - 77041 7Vucl) (1 - ,utx]
b N ) B\ 1/t
’70(]' IX,‘) ) ( 1))>krl)
= (= (= ) EY = (1= (1= )Y =
o= (= ([~ (1 )~ >l+

(1 - ]’ltgcz - ’71561 - Vti)k(l - #0& 170( li ) - HZ]:l,l#]((l - ]’llil_
Moy — ,) (1- ]’la] 770<] 1) )” D))k —(1— ?,j:l,i;éj(l — (1= pl,—
1
170(1‘) ( - ]/llij - ;7%]) ( - ]/llxl' - ;71X,' - V!X,') (1 - ,uztx] - 175( - ti)l)n(n—l) +
1
T i (1 — i, — 1, — ViK1 =l =, — v )) 700 ) o) /1
= (I—ph— (= ph =)V = e,
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0= (=TT (U= (U= ply = d )N (1 — gl — i)'+ (1= ik, — 10—
VR = i, =k — V) T Ty (1= i, =ty — v )F(1
o )T (T (1 i — 1, — 1O
=y = )T
= ((L—ph—n) — (L= plh =yl — Vi)' =
]

Theorem 6 (Boundedness). Let (a1, az,...,a,) be a collection of T-SFNs. If a™ =< 1,0,0 >,
~=<0,0,1>, then

a” < TSFIGBMk,Z(Nl,az,. . .,0(,1) <at.

Definition 9. Let a; =< pla,, a;, Ve, >, (i = 1,2,...,n) be T-SENs. The T-spherical fuzzy
interaction weighted Bonferroni mean (TSFIWBM) operator can be defined as

1

TSFINBM (a1, 0, . .., 0n) = (ﬁ@;{jzl#j((wiai)k®(w,-oc,-)l))"*’, @)

where k,t > 0, (w1, wy, ..., wy) is the weight vector of T-SFNs a (k=1,2,...,n) withwy > 0
and Y} we =1

Theorem 7. Let a; =< pa;, Mo, Vo, > (i = 1,2,...,n) be T-SFNs, (wq,wy, ..., wy) be the
weight vector of T-SFNs with wy > 0 and Y}, wy = 1. The aggregated value of TSFIWBM
operator is still a T-SFN and

TSFWIBM](,I (061, Ko, ... ,Dén)
1
e L (8)
= (s Ol (@) ® (i)™ =< 7,0 >,

1
A= (U (i (= gy = 1 = v ) (1= paly, — ik — i )“)!) 70 —
(Xi— 11;&]( — (U= (U= )™+ (U= g — 1t = va )R (= (1= i)+
(1= gty = 11ay — i)+ (1= pah, = 1, — v, )™
W\ T\
(1= pi; = i, — vi)*7))) =D ) i
1 L
~ (it (U= phy =l = V)DL = ik, =, — v, )™ 7o ) B,
] ]
7= (- (2 1,#(1 (1= ph, = 1y — Vi)™ (1 = el — Tloz] ])“’f)’—
(1= (1= pa, — 1) + (1= p, — Moy, — Vo)™ D = (1= i, — o yoit
] j
1
(1= ply = 1oy — V)N 7070+ (Bl o (U= py — 11, — v H (1 — pg—
1 .
’70{‘ Vlfé )w]) )n )k (1+(ZZ]:1,175]((1_M061_770(1 _VIXZ')W1) ((1_]’{12]_
’7a —v,ij)”’f))" — (Cfj1,igg (1= (U= (1= i)™ + (1 — g, — 11a,—
vh k(L - (1 — Jiy )“’f+(1—m — 1oy — Ve ) (1= py — i, — va,)™)
1
(1= pa = iy, —va)*™)1)) 1>)k+1)1”,
Vo= (1_(1_( i,j= 11#]( ((1 770cl thcl )(( ]’lgc]-_ﬂlij_vtij)w/)l_
(1= (1 =ty — 1,) " + (1 = u — Moy = Vi) (1= (1= ply, —a )i+
(]‘_yltxj _’7061 - ) )) n(n 1) ( l,]:1,175]((1_y0¢, _?]i, _Vlfcl)w’)k((]‘_

V )
1
Moy, — Ta; — Vi, )“)') 7D e,
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Definition 10. Let a; =< pa;, Ha;, Vo, > (i =1,2,...,1) be T-SFNs, k,1 > 0. The T-spherical
fuzzy weighted interaction geometric Bonferroni mean (TSFIWGBM) operator can be defined as

) wi .1
TSFINGBM (a1, 02, ..., &) = 7o (®;j].=1,l. LUy (1a7)) 0D ) )
Theorem 8. Let a; =< g, Mo, Vo, > (i = 1,2,...,n) be T-SFNs, (wq,wy, ..., wy) be the

weight vector of T-SFNs with wy > 0 and Y}, wy = 1. The aggregated value of TSFINGBM
operator is still a T-SFN and

TSFWIGBMj j (a1, 3, . . ., &)

; Wi L ot ot o~ (10)
= k%l( P i (ke ) (I ]))”("*”) =<, 7,7 >,
Proof
po= 1= (1= (T (L= (1= (L= v, —175,) % + ( fol 770(, éi)wl’)k(l - (1=
1
Vij)le)) 00 T i (= ity — 14, — Vﬁi)kw’
N 1

(1= by, — 7k, — v, )1y oD )t

7' = (L= (I (1— (1= (1 - 17,x )w’ ( — Hhy — ey = Vi) (1= (1=,

1
v )) o THﬁjzl,i#((l — Hay — My — Vi) (1= i, — 1t = 1
)T ([T (0= iy =y = )0 = iy = )"0
*(H?,j:l,i;éj(l — (14 (1= ply, =y, —va) = (1 —v)® i)k (1 JF (T — i, 0~ 77}31/-*
Vzij)w] - (1 - thc]v)w])l ( ‘ua, - 7704, a )kwl(l “M aj 7704 uc])lw]))n(”il))kﬂ/
1

7= (ITj=r,i(( — Moy — Moy — ,-)kw’( P‘fx - 7754]- - Vij)lw')"(”’l)
(T (= (U (= g, — 1, — ,)”’f — (1=l )R+ (1 - i, —m]
VLY = (1= v YUY 4 (L= g, — i, — v, )R (L — i, — gt =t )')) 7 ) e

L1
_(H;szl,i7éj((1 - Vuci - 77041 - Vai)kwl( - ,utx]- - ’7aj - Vucj>lw]) =) ) k.
]

Example 3. a;,w; (i = 1,2,...,4), and t are the same as that in Example 1. By using the
TSFIWBM, 5 operator and the TSFIWGBM; » operator, the aggregated results can be obtained as
TSFIWBMj 5 (a1, &z, ..., 04) =< 0.3107,0.3631,0.2338 >, TSFIWNGBMp (a1, a2, . . ., &g) =<
0.3149,0.3674, 0.2139 >.

4. T-Spherical Fuzzy Dombi Bonferroni Mean Operator

Definition 11. Let x,y € (0,1),y > 0. The Dombi T-norm Tp,, and Dombi T-conorm Sp ., are
defined as follows.

_ 1
TD,'Y(x/y) = 1+((FTX)W+(1;J)W)1/7' (11)
Spy(vy) = 1- 1+((%)7i(i)7)1/7' (12)

Definition 12. Let &« =< piy, o, Va >, p =< pig, 1, Vp > be two T-SFNs. The operational laws
of T-SFNs based on the Dombi T-norm Tp ., and Dombi T-conorm Sp ., are defined as
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(1) adp=((1- —— ) ( —— v
1+((1fi£)7+(17i§;)7)1/7 1+(( ﬂga)w(ﬁﬁml/w
1 1/t
1-vt 1_1/% )
() 1+ (— 2
@ B
(2). a®B = (( — 1 = )1/t, (1- y 1 . 1/t,
T () ()Y 1+((1;’;£¥)7+(%)7)”7
(1_ t 1 - )1/t>'
(- (Em
—vg ﬂ/ﬁ
3) Aw = ((1— 1 l/t, 1 l/t, 1 1/t .
) ( 1+<A<ﬁ§>v>1/v) (1+(A(1,7F5‘>7>1/7) (1+(A(1;—I@>7>1/7) )
4). a* = ((—L—— 1/t’ 1 — l/t, 1-— 1 Uh,
@ <(1+(A<1yg@)v>“v) ( 1+<A(]”§’7£>v>1/7) ( 1+(A<1”§é>v>1/w) )

Definition 13. Let a; =< pa;, Yo, Va; > (i =1,2,...,1) be T-SFNs, k,1 > 0. The T-spherical
fuzzy Dombi Bonferroni mean (TSEDBM) operator can be defined as

1
TSFDBM (a1, aa, ..., 0n) = (ﬁ @Z]-:Li#(uci?(%a})) o (13)

Theorem 9. Let &; =< plo,, Ha;, Va; > (i = 1,2,...,n) be T-SENs, k,1 > 0. The aggregated
value of TSFDBM operator is as follows.

1

A A k+1
TSFDBM(DQ, np, ... ,Dén) = (ﬁ@%:l/i%j(k?@w;)) -

1/t
= <(1+( . 11 )1/7) 4

i
k+1 1
W) =LA T
k(e )Y 1 (—d )7
Haj a;
(1 . i 1 , )1/t
T+ (F I R — e
w) Hmid
1
M ST
1/t
1— 1 .
( R ey — i) )
n(n—1) =i,j=1,i#j V&- Vﬂf‘j
1
s >7+r<1_”&j )y
Proof.
ko 1 1/t 1 1/t 1 1/t
&y = <T ’(1—T ’(1_‘;—) >’
1+ (k( V£_1)7)1/7 1+(k(17,7'w_)7)1/7 1+(k(lfvl£(,)’y)l/7
1 1 1
1 _ 1 1/t 1 1/t 1 1/t
& = (( Ty ) Py ) oL ) )
T+ (I(—L)m)V/ 1*(’(17,@ )V 1+(l(17]t YV
I‘:x] o ; V:x]-
ka1l 1 1/t 1 1/t
i = (( " L ) " ], )
1+ (k( 7 DY HI(— L)1)V 1+(k(17 ) l(l =)/
aj Haj 1 A
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AN 1
Di =1, O
1/t 1 1/t
/v ’ v '
- 1
1+ Y Tk, ) o i i )
Hiy & Taj %
(! Ly k(—=)Y+I(—=)7
}lai F‘ocj 1*’70(14 1*’7041'
! X
1/y
(Tl T )
K ) T+ )T
T
B Y o
n(?l*l) ealr]:l/l#]lxl ®D‘]
= (- 1 ) : "
= —— 1 ’ —1 1 ! ’
1+(n(n—1) szjl,i#f 1—ph, T—pil. " 1+("<"71> ZZj:l'i#j h 3 "
Ky gy k()Y +(—L—)7
. ?‘&j l—ﬂui 1 ’7aj
( 1 )M
T 1 )
4+ (o L=z p—vg(j)l/v
Rl ol
_1 an kSl
(1) Dij=1,i#j% O 1 1/
= ((1- T+ A Y i L )1/7) "M G Eijevigg ; )1/7) ,
) Lhj=Lij - T n(n—1) ~i,j=1i#j k. k.,
Ky gy Ko TG
Ha; }‘uc]- ~la 1
! X0
1+(ﬁ Z?,]’:l,i;éj ot ! vﬁ,, )1/7
k( _?t )7+I(1_V]t )Y
o 04]‘
1
1 ke ) T = ! v
(n(nfl)@l,]zl,l#](‘xi ®”‘j)) a <(1+(k%1 T_yn : )1/7) I
A=) Lij=1,i#j - =
k(— L)
Ha; Haj
(1 - T ! 1 )1/t
7
1+(m( 1 Yoo 1 )1/7
A(n=T) “ij=Liz] ¢ '73/-
k I \Y4] v
( —17};‘,> +(1*’h§¢v)
1/t
1_ 1 .
( 1*(1{%4( T 1 . )1/7) >
n(n—1) ~i,j=1,i#j 1/&, V[t‘t]'
1
k<1—v‘§¢l )7+l<1—’7.§z]~ )W
O
Theorem 10. Let a; =< pia;, fa; Vo, >, & =< Ha, N, Vo > be T-SFNs, 0 = e (i = 1,2,...,n),

k,1 > 0. Then, TSFDBM (a1, a2, ..., 0n) = & =< 1,1,V >.

Proof. Let TSFDBM (aq, a2, ..., &y) =< p, 11,V >.

1 1/t
‘u = T 1
(1+(kT1 1y 1 )1/7)
n(n—1) =i,j=1,i#j 1—pl, T—piby,
k( f B)Y+I( t ! )
Ha; P!Xj
= T 1
I+ — 1 "

W) Dhj=1id)

oyt —ut
K T
P

1/t
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= 1— 1
17 1+(%‘H 1 Y ! 1 )1/7
=T Sij=LiA — r L
K(— )Y+ (—L)7
1*’71)(1‘ 1*’704]
= 1- T L T 1
I+ —1 ST : Y1/
(n-1) Zij=1i#j gt i
K T )Y
= 1- T L T 1
+(ey I YW
t
(et ()T
= 1 — tl = — :11 = ’706'
1+((1ff’;‘m)7)1/” =
o1 1
v = 1 1+(%H : . 1 )]/7
Gy Nij=1it L
k() T+1(—L)7
Va; 1”70(]»
= 1- T ! T 1
(g —1 S )
(n—T1) ~i,j=1i#j k(i't)'hrl( 1/,§,t)7
1 1-vy 1-114
= 1 —
1+(5 1 4
t
(k+)( 13& )Y
= 1-— o =1--1 =y,
()T s
Hence, TSFDBM(aq, a3, ..., ay) = a. O
Theorem 11. (Boundedness) Let (aq, a3, . ..,u,) be a collection of T-SFNS. Ifzx+ =< 1,0,0 >,
o~ =<0,0,1>, then
a~ < TSFDBM(ay,az,...,a,) < at.
Definition 14. Let a; =< pa;, Yo, Va; > (i =1,2,...,1) be T-SFNs, k,1 > 0. The T-spherical
fuzzy geometric Dombi Bonferroni mean (TSFGDBM) operator can be defined as
1
1 an A nn—1)
co ) = T.H(@i,j:l,i#j(k“i@l“j)"(" ”) (14)

TSFGDBM (a1, a3, .

1,2,...,n) be T-SFNs, k,1 > 0. The agqregated

Theorem 12. Let a; =< po, ;) Va; > (i
1
k+I1

value of TSFGDBM operator is as follows
TSFGDBM (a1, a0, - . ., &y)

1
I

= <(17
Tt gy T
T i e e
3
- )7+1(17:]f "
Ha hxj
)1/t

)1/7

= (e Sz (@fea)))
) 1/t

4

7

(1+(%ﬂ n 1
Y R S §
BV (—L )Y
. N

(1+(% I
i weD 14

[ )Y +I( i

®
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Proof.
R 1 1/t 1 1/t 1 1/t
ki = ((1-—— A A :
1+ k(= )M)V/ T (k(—)T) V7 1 (k(—)M)V/r
1—pg; M Va;
R 1 1/t 1 1/t 1 1/t
l“] - <(1 - ‘u&, ) 4 ( 7]&, ) 4 ( 171/5(, ) >
T+(I(—-)Mr T+(I(—L)n/r T+(I(—L)mVr
“Ha: ’70¢j Va]-
A 1 1/t 1 1/t
klxl'EBllXj = <(1 - T e ) , oy - ) ,
T (k=) T+ (= )M/ T (k(—2) 7+ (— L))/
1*140%- - ‘oc]- Ma; ’704]-
1 1/t
( 1—vt 1—1/1;, ) >
Y yy 4] 1Y)/
T k(=5 (= 5)7)
Otl‘ Otj
A 1/t
(kOCiEBloc])n(nfl) — <(1 1 1 T 1/7) ’
+(mn " 0 )
K( 17];&’_ >’Y+z<17% )7
1 1/t 1 1/t
(1 - 1+( 1 1 )1/7) 4 (1 - 1+( 1 1 )1/7) >
(1)t - CIT=ya—— 1L
k(— )7 k(—p )Y +1(—L)7
Ma; aj Vaij VtX]'
1
&N A nin=1) 1 1/t
X Iy '(kﬂ('@lﬂ(‘)n(" 1) — . . ,
B=LIA T <(1+():Zj:1,i#j Iy y 7
k<17];ai V(= 3 )1
(1 o 1 )1/t
1 1 7
R IR
k(—p L)Y+ (—L)7
Ma; 17“],
1/t
1— 1
( 1+ ) - : 1 )1”) )
K )Y (L)
o; aj
1 ANl — 1 1/t
m(@i’]‘ l,iyéj(klxl@la])"(” 1)) = <(1 — 1+(ﬁ - T . )1/7) ’
R R T i
Ha; 4
k(0 )V 41— )7
“Hay *ﬂzx]‘
( ! ) . )
e T Wl (g L . )
W=LA] (=) gt 1-nk. W= (=) g e 1-vh.
K(—2)T+(—L)7 K(— L)Y +(—L)7
M aj Va; Va]-
O
Theorem 13. Let a; =< pa;, Yoy Va; >, & =< Mo, Ha, Vo > be T-SENs, a; = (i =1,2,...,n),

k,t > 0. Then, TSFGDBM(ay, &, ..., an) = .
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Proof. Let TSEGDBM (a1, az,...,an) =< p,v,1] >.

1 1/t
po= (1- i T
( W T )1/7)
ij=1i#j n(n—1) ul ul.
k()Y 41— )7
1*14:;(1- 1-pg
1/t
= (1- . 1
( 1+(kT—l . )1/7)

- (- 1 )11‘:(1_ L )1/t

t
L+ (g () (£ )/ 1y
P

= (1-= =(1-1=p))" = pa,

( ' )

1 1
1+(kTrl n.o 1 1 )1/7
i,j=1,i#j n(n—1) B

(i

o Mo

= (—2—)""=n
— = Ha,
(5

v =

1 1 1
(1+(sz T T e

1
Lij=isj an-1) -

(1+(

1
kTI):;;_ 1 1
i,j=1,i#] n(n—1)  1—f

. 1 1/t _
= ) =

Y

o

Hence, TSFGDBM (a1, ay, ..., a,) = a. O

Theorem 14 (Boundedness). Let (a1,ay, ..., ay,) be a collection of T-SFNs. If at =< 1,0,0 >,
a” =<0,0,1 >, then

a~ < TSFGDBM (a1, a2,...,an) < a™.

Definition 15. Let a; =< pia;, Ya;, Vo, > (i =1,2,...,1) be T-SFNs, k,1 > 0. The T-spherical
fuzzy weighted Dombi Bonferroni mean (TSFWDBM) operator can be defined as

1
TSFWDBM(ay,a, ..., 0,) = (ﬁ@@:lli#((wiai)kéa(wjaj)l))k“. (15)

Theorem 15. Let (a1, ap,...,a,) be a collection of T-SFNs, k,1 > 0. The T-spherical fuzzy
weighted Dombi Bonferroni mean (TSFWDBM) operator is as follows
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TSFWDBM(aq, a2, ..., 05)

= 1 = )Ut
7
I+ —1 S . 2&
n(n—1) =i,j=1i#j i 1t 1 1t
) Ha; ¥ Po:
wl( 1*,“1’;(1» ) wj(l—}l]&_ )Y
]
(1_ 1 )1/1‘
1 1 7
I+ —1 ST . E:
n(n—1) =i j=Li#j | 1lt + 1lt
“Na; a;
A
]
1/t
1—— L .
( 1+(k+’¥zll. — 1 )1/7) >
n(n=1) Zij=1i#j i 11, +1 11t
*l’ui *‘l/“,
U . ]
;i V[tyl- w]( 1/5‘] )
Proof.
1 1/t 1 1/t 1 1/t
wix; = <(1— z;. ) ,( - ) ,( = ) p
L+ (i ()Y Lt (wi( )M L+ (i (=)
i i
k 1 1/t 1 1/t _ 1 1/t
(wia;) () O —m) () )
w;( Vait ) wl(l_tﬂai )7 wi(l_;/ﬂ(i )Y
1 Ha; M Va;
! 1 1/t 1 1/t 1 1/t
(ZUJD(]) <(l+(l 1t )1/7) ’ (1 1+(1 1t )1/7) ’ (1 1+(1 lr )1/7) >’
(5 Ry T
w; w; w.
A 7k o
] ] ]
ks 1 1/t o 1 1/t
() &) = ) - )
Ha v ﬂa]- 1*’7«, 1*'l:x]-
wi(i ) w](l—y’ )Y w; ( e wj( i )Y
0‘]‘ i aj
(1- 1 )
14+ (k—L— 1 —1 R4
1—vf 1-v]
. %y L
w;( i ) w]-( )
a" I/“]_
B jm,izj (win) & (wjay)') = (1~ 75 Lo 1/7)1”,
i 1)
Ha; o F‘zxj
. ) 5
101<17Vai) w](lfy,tx’.)
( 1 )1/t ( 1 )l/t>
1 7
(RIS e — IBE; (i ¢ T T E;
— k. —v, —Vy,
w; ta w;( tal)'y w; ta wi( t“])“y
Mo ] a Va; ] Yaj
1 Aan k& 1
=) Dij=1,i (witi) "0 (wjaj)7)
_ <(1_ 1 )1/1l
- 1 n 1 1/ ’
I+ (moty Zj=i B — 2
P ¥ l‘zxj
wz( 17%‘1 ) w]-( ]7;‘&‘ )Y
]
1 )1/t
1 1 7
1+(7n(,,,1) Z?J:l,i;&j P 1 B— T X Y/
1=1g; =g
wi(— )7 w(—L
B N Ty ) 1/t
1
(1+( 1__yn . 1 )1/7) >’
n(n—1) ~ij=Li#j | lt i 1t
—Vg. 1-vg.
w; t‘/al wi( :/Dt])
Vi I g
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(5

oy Sl (i) 6 (wia)'))

1
(

o <( 1 )1/t
= T 1 7
1+(kTrl 1 _yn 1 )1/7
T VRE VT — ——

Pa; Pa;
wr () My
TR *va/'>
1/t
- -
1 7
( Wen 1 )/7>
n(n—1) =i j=1i#j : 1 ; ] : j ;
N e
w;( ,75(‘1)7 w]-(fﬂ
i ”Ia]-
1/t
1- 1 ! 1
1 .
( Hm T T )/7) >
n(n—1) =i j=Li#j : 1 ; +1 : 1 ;
—Vj. —Vj
w; Vgc.l w/-( 1/5 ])W

O

Theorem 16 (Boundedness). Let (a1, az,...,ay,) be a collection of T-SFNs. If at =< 1,0,0 >,
o~ =<0,0,1>, then
a~ < TSFWDBM (a1, a2, ...,a,) < at.

Definition 16. Let a; =< pia;, fa,, Va; > (i =1,2,...,1) be T-SFNs, k,1 > 0. The T-spherical
fuzzy weighted geometric Dombi Bonferroni mean (TSFWGDBM) operator can be defined as

A P
TSPWGDBM(DQ,DQ, . D(n) = kLH <®Zj:1,i7éj((k“?}l )EB(ZD(;U])) n(n=1) ) . (16)

Theorem 17. Let (aq,ap, ..., &) be a collection of T-SFNs, k,1 > 0. The TSFWGDBM operator
is as follows

TSFWGDBM (a1, s, . . .,y )

1/t
= (1- 1 ! 1
1 ’
( 1+(kT—l #Zn‘ o 1 ) /7)
n(n—1) =i,j=1i#j | 1 ; + j
17#’"1‘ 1—;1,’;,
w, v
i #5‘1‘ w]( l‘ztx/ )
( 1 )1/1‘
1 1 7
e —1 I 1 I
n(n—1) =i,j=1,i#j k 1t +1 lt
ey ¥ 17,,(],
wl(l*ﬂél-) w]-(]imgp)’)‘
]
( 1 )1/t
1 1
1+(m Ty 1 )1/7
n(n—1) =i j=1i#j i lf +1 1t
vy, vy,
il e
i i
Proof.
R <( 1 1/t 1 1 1/t 1 1 1/t
i 17;1&_ ’ ;]a, ’ vgc.
(o1 1 (2 )V (g o 7)1/
i i i
w; 1/t 1/t 1/t
7 1 1 1
& = (( " ) (- i ) (- oL ) )
T+ (wj(—L)M)V7 1+ (wj (- L yr)l/y 1+(wj(171f YN
Vu]v ’704j va]v
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w; . 1 1/t 1 1/t 1 1/t
ktxz - <(1 1+ (k 11Vf )1/7) (1+(k r/lt )1/7) (1+(k Vlf )1/7) >
M o; 43
w; ( 1‘5&1-1)7 1(171;};{ )Y wl(l*JLi )T
i 1 1/t 1 1/t 1 1/t
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Theorem 18 (Boundedness). Let (a1, a5, ..., ay) be a collection of T-SFNs. If a™ =< 1,0,0 >,
—=<0,0,1>, then

a~ < TSFWGDBM(aq, a2, ..., 0,) < .

5. T-Spherical Fuzzy Entropy and Cross-Entropy Measure

Let A = {aq,ay,...,a,} be T-spherical fuzzy set, a; =< pua(x;), 14(x;),va(x;) >.
Then, an entropy measure is defined as follows

1
E(A)=1-— -
n

n
Y (wia (i) + vy (i) g (1) — 17ae (1) |-
i=1

The entropy measure satisfies the following axioms:

(1)0 < E(A) < 1.

() E(A) =1if pa(xi) = 1,na(x;) =valx;) = 0or pa(x;) = na(x;) = 0,va(x;) = 1.

() E(A) = 0if 4(x;) = 0.5.

(4) E(A) < E(B) if iy (i) + vy(x1) < ph(x) + vh(xi) and [ (x) — ()] <
|75 (xi) — 17pe (x:) -

(5) E(A) = E(A).

Let A = {ay,a,..., 0y} and B = {B1, B2, ..., Bn} be a T-spherical fuzzy set, a; =<
wa(xi), na(xi),va(x;) >, Bi =< wup(x;),yp(x;),vg(x;) >. Then, the T-spherical fuzzy
cross-entropy measure can be defined as

TCE(A,B) = Yilj(tan(uy (x;)) - tan(|pjy (x;) — w(x:)]) +tan (i} (x;)) - tan ([, (x;)
—1(xi)]) + tan(v) (x;)) - tan([v) (x;) = vi(x)])).

The T-spherical fuzzy cross-entropy measure TCE(A, B) satisfies the following condi-
tions:

(1) TCE(A,B) > 0,VA,B € H,

(2) TCE(A,B) =0,if A =B,

(3) TCE(A,B) = TCE(AS, BY).

The symmetric T-spherical fuzzy cross-entropy measure is defined as

STCE(A,B) = TCE(A, B) + TCE(B, A).

In the decision making process, there are case attribute weights that are partly known
or completely unknown. The attribute weights can be determined by using the entropy
measure and cross-entropy measure proposed above. Let D = (a;;)mx» be decision matrix.
If the attribute weights are unknown completely, the following mathematical programming
model can be set up.

(M) max DLy X G D 1STCE(aU,ak]>+<1—E(aij>>>wj
s.t. ]1w =1lw;>0,j=12,..

The Lagrange function L(wj, A) is set up as
AL, 5
2 2 — 2 STCE (aij, i) + (1 = E(ayj)))Jwj + 5 Y (wi—-1). (17)
j=li= j=1
Then, calculate the partial derivatives of L(W, A) and set them to zero.

(18)

faazﬁ] = m (7m1 T Zm STCE(O(,']', Dékj) +(1- E(Dé,']'))) + )\ZU]‘ =0,
JL 1
oA — 7( j= 1w - 1) =0.
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w; can be calculated as

:n:1(L Z?:l STCE(DCZJ, (ij) —+ (1 — E(Dél])))

m—1

wj - m n 1 m 2' (19)
VI (T (g Ty STCE (wyg,ayg) + (1 — E(ay))
Normalize wj to obtain
1
o — =1 Gior Yy STCE (ayj, ayg) + (1 — E(ay))) 20)

LT T (5t Xy STCE (i, ag) + (1 — E(aij)))

If the attribute weights are partly known, the following linear programming model is
set up.

(M-2) max Yy 7 (i Tl STCE (wyj, axj) + (1 — E(ay)) )w
st. wieHw; >0,i=1,2,...,n,
wrtwy+--F+wy =1,

where H is the set of partly known attribute weights, including the following cases: {w; >
wit, {wi —w; > &(> 0)}, {w; = qjw;}, 0 < oy <1, {f; < wj < Bj+¢},0<p; <
Bi+e <1 {w—w>wr—w},iFj#k#L

6. T-Spherical Fuzzy Decision Methods Based on Bonferroni Mean Operator

A new T-spherical fuzzy multiple attribute decision making method based on Bonfer-
roni mean operators is developed in this section. Let { A1, Ay, ..., A, } be the alternatives
and {Cy,Cy, ..., Cy} be the attributes. (wq, wy, ..., wy) is the weight vector of the attributes
withw; > 0and } ! ; w; = 1.

The T-spherical fuzzy numbers are given by decision makers to evaluate alternatives.
Based on the introduced T-spherical fuzzy Bonferroni mean operators, a new T-spherical
fuzzy multiple attribute decision making method is proposed as in Algorithm 1. The
flowchart of the algorithm is shown in Figure 1.

Identify alternatives and attributes, collect information about alternatives and attributes

'

Expert evaluates alternatives with T-spherical fuzzy values to form decision matrix

!

Calculate T-spherical fuzzy entropy and cross-entropy measure

}

Set up nonlinear programming model for unknown case and linear programming model for partly known case to determine attribute
weights

v

Aggregate evaluation values by TSFWIBM operator the TSFWIGBM operator, the TSFWGDBM operator or the TSFWDBM
operator

:

Rank alternatives according to the score function and accuracy function

Figure 1. Flowchart of decision making method based on Bonferroni mean operator.
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Algorithm 1 T-spherical fuzzy decision making method based on Bonferroni mean operator

Step 1. T-spherical fuzzy evaluation values ajj (i=1,2,...,mj=1,2,...,n) are given by
decision makers to form T-spherical fuzzy decision matrix D = (&;j)mxn-

Step 2. Calculate the weights of attributes w; (j = 1,2,...,n) using Equation (20) for
completely unknown situations.

0 — " (i1 YHy STCE(wij, o) + (1 — E(ajj)))
oy Z}Q(ﬁ Ypy STCE(ajj, axj) + (1 — E(ajp)))

For partly known attribute situation, Model (M-2) is used to calculate the attribute weights.
Step 3. Aggregate the T-spherical fuzzy evaluation values into collective ones using the
TSFWIBM operator, the TSFWIGBM operator, the TSFWGDBM operator or the TSFWDBM
operator as follows

wj = TSFWIBMy (a1, &io, - - -, i)
1 n k 1 k%—l (21)
= (i @i e (wstis)* @ (wra))) .
n;, = TSFWIGBMk,l(tXil, KiD,een, ‘Xin)
1
_ 1 s =1 (22)
= B (e (k)@ (ley) T ).
o = TSFWDBMk,Z(Dq, N, ..., Oén)
1 an ko 1\ B (23)
= (m@s,tzl,s;ﬁt((wso‘is) & (weait) )) :
or
o, = TSFWGDBMk,l(DCil, Kio,eue, Dc,-n)
(24)

1
= (B (k) (1)) T ).

Step 4. Rank w; (i = 1,2,...,m) according to Definition 4 and select the optimal alternative.

7. Numerical Example

Increasingly, students are entering university for higher education due to the devel-
opment of Chinese higher education. Some old campuses are located in the city center,
and there is no room for new buildings to accommodate more students. Some universities
choose to construct new campuses in rural areas. There is a university constructing a new
campus in Gaoxin district of Xi’an city. Several new dormitory buildings for students have
been built, and there is the need to purchase new furniture.

The following attributes are considered: C;—price, C;—quality, Cz—after-sales ser-
vice, C4—transportation cost and Cs—convenience of use. The university rear service
group invited several experts from different fields, including the purchasing department,
finance department etc. There were five furniture companies left for further select af-
ter pre-evaluation: A;—Zhongwei furniture company, A;—Jongtay furniture company,
Az—Yongnuo furniture company, As—Yicai furniture company and As—Jiheng furniture
company. The proposed algorithm is used to select the best furniture company. t = 3.

Step 1. The T-spherical fuzzy evaluation values are given by experts, and a decision
matrix is formed as D = (a;;)5x5 in Table 1.

Table 1. The decision matrix.

(] C (&) Cy Cs
A <0.7,03,02> <03,03,04> <05,0204> <04,0304> <0204,03>
A, <05,04,05> <08,0203> <06,04,03> <03,04,05> <04,0504>
Az <04,04,05> <06,0504> <08,03,02> <05,04,02> <0.203,02>
Ay <03,05,04> <05,06,03> <04,03,04> <05,0302> <09,01,02>

<0.6,0.3,04 >

<02,04,03 >

<03,04,03 >

<0.7,0.1,0.3 >

<05,0.3,0.5 >
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Step 2. Assume the attribute weights are completely unknown and can be calcu-
lated by Equation (20). First, E(a;;) can be calculated as as in Table 2. Then, calculate the
STCE(a;j, axj) = TCE(a;j, axj) + TCE(a;, ojj). For example TCE (w12, a42) = tan(0.3%) x
tan(|0.3% — 0.5%|) + tan(0.3%) * tan(|0.3> — 0.6%|) + tan(0.4%) * tan(|0.4% — 0.3%|) = 0.0102.
TCE(ayg, a12) = tan(0.5%) * tan(|0.3% — 0.5%|) + tan(0.6%) * tan(|0.3% — 0.6%|) + tan(0.3%) *
tan(]0.4% — 0.3%|) = 0.0553. STCE (w13, a40) = TCE(a12, a4p) + TCE(ag, a12) = 0.0102 +
0.0553 = 0.0655. Other STCE(txij, zxkj) (i,j,k = 1,2,...,5) can be calculated similarly.
By using Equation (20), the weights can be calculated as w; = 0.1661,w, = 0.2028,
w3 = 0.1956, wy = 0.1329, w5 = 0.3025.

Table 2. Entropy of a;;.

E(oci]-) C1 Cz C3 C4 C5
Ay 0.6490 0.9090 0.8110 0.8720 0.9650
Ay 0.7501 0.4610 0.7571 0.8481 0.8725
Aj 0.8111 0.7211 0.4800 0.8671 0.9840
Ay 0.9094 0.8512 0.8720 0.8670 0.2630
As 0.7200 0.9650 0.9460 0.6300 0.7500

Step 3. If the TSFWIBM operator is used to aggregate evaluation values and t = 3,
k = 2,1 = 2, the aggregated results can be calculated by Equation (21) to obtain a1 =<
0.2816,0.1957,0.2127 >, ay; =< 0.3603,0.2519,0.2571 >, a3 =< 0.3507,0.2444,0.2160 >,
ny =< 0.4428,0.2560,0.2048 >, a5 =< 0.3047,0.2013,0.2489 >.

Step 4. The scores of the a; can be calculated as S(a;) = 0.5026, S(ay) = 0.4982,
S(az) = 0.4963, S(ng) = 0.4952, S(as5) = 0.5027. Then, A; can be ranked according to the
scores to obtain Ay > Az > Ay > Aj > As, and the optimal alternative is Aj4.

For other k, I considered in the TSFWIBM operator, including k = 3,4, and | = 3,4, the
aggregated results are shown in Table 3, and the ranking results are shown in Table 4. From
the results, we can see that the optimal alternative is A4, and the suboptimal alternative is
Ajz in the TSFWIBM operator. There are slight differences in ranking for different k, [. A, is
ranked third, and A; is ranked fourthink =2,/ = 2 and k = 2,1 = 3. With the increasing k
and [, A; is ranked third, and A; is ranked fourth.

For the TSFWIGBM operator used in the aggregation process in Step 3, the T-spherical
fuzzy aggregated results are shown in Table 5, and the ranking results are shown in Table 6
In most cases, the optimal alternative is A4, and the suboptimal alternative is A3 except
for k = 2,1 = 3, in which the optimal alternative is A3, and the suboptimal alternative
is A4. Ajp is ranked third, As is ranked fourth, and A; is ranked last in all cases. The
optimal alternative is different in the TSFWIBM operator and the TSFWIGBM operator
due to different characteristics of the geometric Bonferroni mean and geometric Bonferroni
mean operator.

Table 3. Aggregated results of the TSFWIBM operator.

k=21=2

k=21=3

k=31=3

k=31=4

a1
[L%]
a3
Xy
a5

< 0.2816,0.1957,0.2127 >
< 0.3603,0.2519,0.2571 >
< 0.3507,0.2444,0.2160 >
< 0.4428,0.2560,0.2048 >
< 0.3047,0.2013,0.2489 >

< 0.2847,0.2042,0.2627 >
< 0.3657,0.2634,0.3225 >
< 0.3542,0.2494,0.2552 >
< 0.4674,0.2581, 0.2550 >
< 0.3205,0.2059, 0.3208 >

< 0.2839,0.1975,0.2824 >
< 0.3666,0.2563,0.3459 >
< 0.3532,0.2467,0.2747 >
< 0.4468,0.2580,0.2738 >
< 0.3123,0.2054, 0.3448 >

< 0.2868,0.2038,0.2916 >
< 0.3727,0.2652,0.3585 >
< 0.3568,0.2509,0.2816 >
< 0.4676,0.2609,0.2918 >
< 0.3259,0.2098,0.3599 >
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Table 4. Ranking results of the TSFWIBM operator.

S(a1)  S(a2) S(az)  S(aq)  S(as) Ranking Results Optimal Alternative
k=2,1=2 05026 05069 05092 0.5307 05024 Ay> Az>Ar > A1 > As Ay
k=2,1=3 04982 04986 05062 0.5342 04956 Ay > Az > Ay > Ay > As Ay
k=3,1=3 04963 04955 05042 0.5258 0.4904 Ay > Az > A1 > Ay > As Ay
k=3,1=4 04952 04935 0.5037 0.5298 04894 Ay > Az > A1 > Ay > As Ay
k=51=5 05027 05073 05089 0.5086 0.5023 A4 > Az > A1 > Ap > As Ay

Table 5. Aggregated results of the TSFWIGBM operator.
k=21=2 k=21=3 k=31=3 k=31=4
;< 0.2797,0.1936,0.2075 > < 0.2796,0.2009,0.2101 > < 0.2793,0.1940,0.2079 > < 0.2791,0.1994,0.2099 >
xy < 0.5740,0.2684,0.2581 > < 0.4611,0.2680,0.2521 > < 0.3526,0.2526,0.2414 > < 0.3543,0.2594,0.2446 >
x3 < 0.5841,0.2548,0.2189 > < 0.4759,0.2459,0.2105 > < 0.3533,0.2336,0.2015 > < 0.3539,0.2356,0.2027 >
ag < 0.6248,0.2932,0.2147 > < 0.4755,0.2663,0.1937 > < 0.4218,0.2658,0.1933 > < 0.4347,0.2733,0.1987 >
as < 0.5275,0.2106,0.2478 > < 0.4170,0.2089,0.2482 > < 0.3038,0.2020,0.2336 > < 0.3084,0.2043,0.2386 >
Table 6. Ranking results of the TSFWIGBM operator.

S(w1)  S(a2) S(az)  S(aa)  S(as) Ranking Results Optimal Alternative
k=21=2 05028 05763 0.5861 0.6044 0.5611 Ag> Az > Ar > As > A Ay
k=2,1=3 05022 05314 05418 05407 05241 Az > Ax> Ay > As > A Aj
k=3,1=3 05027 05068 05116 0.5245 0.5035 Ay> Az > Ay > As > A Ay
k=31=4 05023 05062 05115 05270 0.5036 Ag> Az > Ay >~ As > A Ay
k=51=5 05025 05060 05111 05198 05037 Ag> Az > Ay > As > Ay Ay

In the TSFWDBM operator and the TSFWGDBM operator, there are more parameters,
including -, k, I, which are more flexible comparing with the TSFWIBM operator and the
TSFWIGBM operator. If the TSFWDBM operator or the TSFWGDBM operator is used in the
aggregation process in Step 3, we only present the scores and ranking results for space limit.
We consider v =1,2,3,4,5and k,I = 2, 3,4, respectively. For the TSFWDBM operator, the
results are shown in Table 7.

The optimal alternative is A3 in most cases. With the increasing of v, k, I, the ranking
becomes A3 - Ay = As = A1 = Arand A3 = As = Ay = A1 = Ap. If v = 11in the
TSFWDBM operator, the optimal alternative is A; and the suboptimal alternative is A4 or
As. Ay is the optimal alternative if v = 2,k = 2,1 = 2 in the TSFWDBM operator.

For the TSFWGDBM operator, the results are shown in Table 8. A3, A4, A, are the
top three alternatives and ranking of A1, As is different for different parameters. Since
each operator has its own characteristics and focuses on each aspect of the problem, the
different rankings are reasonable. For example, the 7, k, | can be seen as the risk attitude of
the decision maker. Decision makers are more risk seeking with the increasing of v, k, I.
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Table 7. Ranking results of the TSFWDBM operator.

S(x1) S(a2) S(as) S(aa)  S(as) Ranking Results Optimal Alternative
y=1 k=2,1=2 03565 02658 0.3474 0.3512 0.3493 A; > Ay As > Az > Aj Aq
k=2,1=3 03360 02380 03263 03294 03298 A; > As> Ay = Az = Ay Ay
k=3,1=4 03491 02516 03397 03428 03417 A, = Ay = As = Az = Ay Ay
k=4,1=4 03565 02658 03474 03512 03493 A, = Ay = As = Az = Ay A
y=2 k=21=2 04320 03671 04368 04381 04253 Ay = A3 = A = As = Ay A,
k=2,1=3 04135 03916 04574 04527 04402 As > Ag> As>= A} = Ay As
k=3,1=4 04424 04131 04690 04649 04542 A; = Ay = As = Ay = A As
k=4,1=4 04399 04108 04651 04600 04522 Az = Ay>= As= A} = Ay As
y=3 k=21=2 04691 04496 0.4958 0.4865 04850 As;>= Ay = As>= A; = Ay As
k=2,1=3 04618 04465 04936 04837 04831 A;> Ay> As>= A; = Ay As
k=3,1=4 04737 04609 05010 04914 04860 Az > Ag> As>= A; = Ay As
k=4,1=4 04703 04555 04969 04879 04819 Az = Ay>= As>= A} = Ay As
vy=4 k=2,1=2 04833 04741 05162 05009 0.5048 Az~ As> Ayz>= A1 > Ay Aj
k=2,1=3 04795 04732 05139 04989 05039 Az = As> Ay = Ay = Ay As
k=3,1=4 04867 04828 05209 05049 05052 Az > As> Ay = A} = Ay As
k=4,1=4 04842 04787 05177 05019 05028 Az > As>= Ay = A} = Ay As
y=5 k=21=2 04925 04902 05295 05095 05179 As;>= As> Ag> A; = Ay As
k=2,1=3 04931 04909 05300 05099 05184 As>= As> Ay = Ay = Ay As
k=3,1=4 04928 04905 05298 05097 05181 Az > As> Ay = A} = Ay As
k=4,1=4 04925 04902 05295 05095 05179 Az > As> Ay = A} = Ay As
Table 8. Ranking results of the TSFWGDBM operator.
S(x1)  S(a2) S(az) S(ms) S(as) Ranking Results Optimal Alternative
=1 k=21=2 06267 07062 07157 07110 0.6439 As>= Ay > Ay = As = A As
k=2,1=3 06435 07233 07282 07310 06611 As = Ag> Ar = As = A As
k=3,1=4 06117 06903 07024 0.6944 0.6290 Az = Ay = Ay = As = A; As
k=4,1=4 06261 0.7062 0.7157 0.7110 0.6439 A3z > Az > Ay > As = Aq Aj
y=2 k=2,1=2 05400 05788 05983 05876 05434 A= Ag> Ay > As = A, As
k=2,1=3 05456 05862 0.6002 05953 05491 Az = Ay = Ay = As = A As
k=3,1=4 05364 05760 0.5961 0.5861 0.5422 Az > Ag> Ay > As > Aq Aj
k=4,1=4 05400 05788 05983 05876 05434 Az = Ay > Ay = As = A As
vy=3 k=2,1=2 05159 05360 0.5570 0.5463 0.5149 Az > Agz> Ay > As > Ay Aj
k=2,1=3 05190 05408 05580 05505 05177 As>= Ay>= Ay = A; = As As
k=3,1=4 05132 05317 05550 05427 05123 As > Ay > Ay = Ap = As As
k=4,1=4 05159 05360 05570 05463 05149 As>= Ay > Ay = A, = As As
y=4 k=2,1=2 05043 05145 05354 05235 05013 Az~ Ay > Ay = As = A As
k=21=3 05065 05180 0.5360 0.5261 0.5031 Az > Ag> Ap > As > Ay Aj
k=3,1=4 05024 05114 05340 05210 04996 As > Ag> Ar = As = A, As
k=4,1=4 05043 0.5145 0.5354 0.5235 0.5013 Az > Ay > Ay = As = Aq Aj
y=5 k=2,1=2 04973 05012 05221 05085 04928 Az > As> Ay = As = A, As
k=2,1=3 04990 05040 05226 05104 04941 As> Ay > Ay = A; = As As
k=3,1=4 04958 0.4988 05210 05066 04915 Az>= Ay>= Ay = A; = As As
k=4,1=4 04973 05012 05221 05085 04928 As > Ay > Ay = A} = As As

8. Advantages and Comparison Analysis

Advantages
The T-SFS can be reduced to some other fuzzy sets, including the spherical fuzzy set,
Pythagorean fuzzy set, g-rung orthopair fuzzy set, picture fuzzy set, intuitionistic fuzzy
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set etc. Then, the proposed operators can be reduced to some other fuzzy aggregation
operators.

1. If all the values satisfy 0 < p'; + 7 +v%; < 1,t = 2, then the TSFIBM operator
becomes the spherical fuzzy interaction Bonferroni mean (SFIBM) operator, the TSFIGBM
operator becomes the spherical fuzzy interaction geometric Bonferroni mean (SFIGBM) op-
erator. Other T-spherical fuzzy Bonferroni mean operators also reduce to the corresponding
spherical fuzzy Bonferroni mean operators.

2. If all the values satisfy 0 < yfq + 77% + v% < 1,t = 1, then the TSFIBM operator
becomes the picture fuzzy interaction Bonferroni mean (PFIBM) operator, and the TSFIGBM
operator becomes the picture fuzzy interaction geometric Bonferroni mean (PFIGBM) oper-
ator. Other T-spherical fuzzy Bonferroni mean operators also reduce to the corresponding
picture fuzzy Bonferroni mean operators.

3. If all the values satisfy 0 < p'; +7'; +v/; < 1,and 174 = 0, then the TSFIBM operator
becomes the g-rung orthopair fuzzy interaction Bonferroni mean (q-ROFIBM) operator, the
TSFIGBM operator becomes the g-rung orthopair fuzzy interaction geometric Bonferroni
mean (q-ROFIGBM) operator. Other T-spherical fuzzy Bonferroni mean operators also
reduce to the corresponding q-rung orthopair fuzzy Bonferroni mean operators.

4. If all the values satisfy 0 < ]’lii + 7’]% + qu <1,t =2and 4 = 0, then the TSFIBM
operator becomes the Pythagorean fuzzy interaction Bonferroni mean (PyFIBM) operator,
the TSFIGBM operator becomes the Pythagorean fuzzy interaction geometric Bonferroni
mean (PyFIGBM) operator. Other T-spherical fuzzy Bonferroni mean operators also reduce
to the corresponding Pythagorean fuzzy Bonferroni mean operators.

5. If all the values satisfy 0 < p'; + 7 +v5 <1,t = Tand 574 = 0, then the TSFIBM
operator becomes the intuitionistic fuzzy interaction Bonferroni mean (IFIBM) operator, and
the TSFIGBM operator becomes the intuitionistic fuzzy interaction geometric Bonferroni
mean (IFIGBM) operator. Other T-spherical fuzzy Bonferroni mean operators also reduce
to the corresponding intuitionistic fuzzy Bonferroni mean operators.

Here, an example from He and He [74] is taken to illustrate the advantages of the
proposed algorithm. Consider the alternative set {Aj, Ay, A3, A4, As} and attribute set
{C1,Cy,C3}. The decision matrix is shown in Table 9. The data can be expressed as T-
spherical fuzzy values shown in Table 10. Since all the values in Table 10 can satisfy
0< y% + 17ii + 1/ii <1,t =1, we take t = 1. The weight vector is taken as (0.30,0.50, 0.20)
and p = g = 1, which is the same as that in reference [74].

Then, the aggregated values using the TSFIWBM, ; operator are as a1 = TSFIWBM] ;
(0611, X12, (X13) =< 0.2546,0,0.2028 >, ap =< 0.1956,0,0.0816 >, a3 =< 0.2198,0,0.2606 >,
ng =< 0.2636,0,0.2009 >, a5 =< 0.26110,0.2093 >. The scores can be calculated as
S(ay) = 0.05176, S(ap) = 0.1140, S(az) = —0.0408, S(ap) = 0.0627, S(az) = 0.05183.
Then, the alternatives can be ranked as A, > A4 > As > A; > As. The proposed results
are the same as that in [74]. Hence, the proposed algorithm is the generalization of the
existing work and it can solve the problems more broadly than the existing one. Other
fuzzy structures can be used similarly if the conditions are satisfied.

Table 9. Intuitionistic decision matrix.

(&} (6)) G
Aq <03,04 > < 07,02 > < 05,03 >
Ay < 05,02 > <04,01 > <0.7,01 >
Ajz <04,05 > < 07,02 > <04,04 >
Ay <0.2,0.6 > < 0.8,0.1 > < 08,02 >
As < 09,01 > < 0.6,0.3 > <0.2,05 >
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Table 10. T-spherical fuzzy decision matrix.

Cq C G
Aq <03,0,04 > <0.7,0,0.2 > <05,0,0.3 >
Aj < 0.5,0,0.2 > <04,0,0.1 > <0.7,0,0.1 >
Aj <04,0,0.5 > <0.7,0,0.2 > <04,0,04 >
Ay <0.2,0,0.6 > < 0.8,0,0.1 > <0.7,0,0.2 >
As <0.8,0,0.1 > < 0.6,0,0.3 > <0.2,0,0.5 >

Comparison analysis

In order to further illustrate the proposed method, we compare it with some other
decision making methods, including the method base on the T-spherical fuzzy weighted
aggregation operators, T-spherical fuzzy TOPSIS, T-spherical fuzzy VIKOR method and T-
spherical fuzzy TODIM method. The attribute weight vector is also taken as (0.1661,0.2028,
0.1956, 0.1329, 0.3025), which is the same as in the above section. The decision matrix is
also the same as that in Table 1.

If T-spherical fuzzy weighted aggregation operators are used, aggregation results
are shown in Table 11 and ranking results are shown in Table 12. If the TSFWA operator
is used in the aggregation step, the ranking result is Ay >~ Az > Ay >~ As > A;. If
the TSFWGA operator is used, the ranking result is Ay >~ Ay = A3 = A; = As. The
optimal alternative is the same for these two operators, but the ranking is different for
other alternatives. If the TSFIWA operator or the TSFIGWA operator is used in Step 3, the
ranking is A4 = A3 = Ay = As > A;1. In the TSFIWA operator or the TSFIGWA operator,
the interaction operations are considered.

If the T-spherical fuzzy TOPSIS method is used to solve the problem, the first two
steps are the same. The T-spherical fuzzy weighted decision matrix is calculated as
D’ = (aj;) = (wja;). The T-spherical fuzzy positive ideal solution a ™ = (af 0y ,...,ad) =
(maxwj;, maxagp, ..., maxe;s) = (< 0.4069,0.1864,0.1252 >, < 0.5135,0.1425,0.2159 >
,< 0.5078,0.2127,0.1432 >, < 0.3787, 0.0576,0.1740 >, < 0.6885,0.0910,0.1827 >). The
T-spherical fuzzy negative ideal solution = = (a;,a&,,...,045 ) = (mina;;, minagp, ...,
minw;s) = (< 0.1655,0.2822,0.2327 >, < 0.2990, 0.3789, 0. 1980 >, < 0.1748,0.2360,0.1794 >
, < 0.1537,0.2078,0.2679 >, < 0.2706, 0.3465,0.2846 >). The collective distances of each
alternative to the a™ and a~ are defined as

5
Z 061],

dr =

1

5
3 (0 = (0 P11, ) = 1 L) = (41,

(m»—\
U1\>—‘
T
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—
U‘I\*—‘
e

Il
—

(1t ) = ()1 + 1) = (gL 1 () = (v )
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5
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d and d; can be calculated as d; = 0.3738, dy = 0.3645, d7 = 0.3646, d} = 0.3213,ds =
0.3494, dl_ = 0.3121,d, = 0.1823, d; = 0.2914, d4_ = 0.2538, d5_ = 0.2752. Calculate the

d* d* to obtain C; = 0.4550, C, = 0.3334,

C3 = 0.4442, C4 = 0.4413, C5 = 0.4406. The alternatives can be ranked as A1 = Az = Ay >~
As = Aj and the optimal alternative is A;.

If the T-spherical fuzzy VIKOR method is used, the first two steps are also the same.
The utility index S; is calculated by the following equation

d i1/ h d i2s ; d i5/ s
k) | o) | diesnd)
d(ay,ay) d(ay, ay ) d(as , a5 )

T-spherical fuzzy closeness coefficients by C; =

S,':wl
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S, = 0.7617, S, = 0.6718, S3 = 0.6553, S4 = 0.6104, S5 = 0.7373. We rank alternatives
according to S; to obtain Ay >~ A3 > Ay > As > Aj. The regret index is calculated by the
following equation

d(Oél'l, DCIF) w2d(0(1'2, 0(;_) 5(1(06;’5, OC;_) }
d(eg,ay)" “day,ay) " T d(ad, as)

R; = max {w;

R; = 0.3025, Rp = 0.3025, R3 = 0.2475, R4 = 0.2028, R5 = 0.2475. Rank alternatives
according to R; to obtain A4 >~ Az ~ As = Aj ~ Ajp. The collective index can be calculated

by

S;— S+t R, — R*
Qi :UW+(1—0)W,
where ST = minS;, S~ = max$;, R* = minR;, R~ = maxR;. Ifv = 05, Q; = 1,

Q, = 07029, Q3 = 0.3726, Q4 = 0, Qs = 0.6435. The alternatives can be ranked as
Ay = Az = As = Ay = Aq. If otherv = 0,0.2,0.4,0.6,0.8,1.0 are used, Q; can be calculated
and results are shown in Table 13. The optimal alternative is always A4 and suboptimal
alternative is Az. There are slightly differences in the ranking of As and A, for different v.

If the T-spherical fuzzy TODIM method is used in decision making, the first two
steps are the same as other methods. The relative weights are calculated as wj, = Zj—i,
wy = max;j{w;}. wyx = 0.5490, wor = 0.6704, w3 = 0.6466, wy = 0.4393, w5, = 1.0. The
dominant degree of A; over A; with regard to Cy is defined as

w; .
\/71]2,].,{‘1@‘%/ wjg),  if S(ax) > S(ajk)
or(Ai, Aj) =10, if S(ai) = S(ajx) (25)
Yo w;
—1\/ oA aje),

Here, T = 1. Then, ¢ (A;, A]-) = 22=1 or(A;, Aj). The results are shown in Table 14. The
prospect value ¢(A; (i =1,2,...,5)) can be calculated by

if S(Dél'k) < S(Dc]'k)

1 9(Ai Aj) — mini<ics {T) ) ¢(A; A
(A = i1 <P5( j) — ming < _.5{2]_1 4’(5 i)Y ‘ 26)
maxy <j<s {171 ¢(Ai, Aj)} —min<i<s {17 (Ar, Aj)}

Then, (A1) = 0.5065, p(Ay) = 0.8018, (A3) = 0, (As4) = 1.0, p(As) = 0.1966. The
alternatives can be ranked as Ay >~ Ay = A1 = As > As.

Table 11. Aggregated results of different operators.

TSFWA TSFWGA TSFIWA TSFIGWA
a; < 0.4741,0.3023,0.3268 > < 0.3507,0.3262,0.3524 > < 0.4741,0.3233,0.3473 > < 0.4703,0.3253,0.3524 >
ay < 0.5968,0.3718,0.3813 > < 0.4978,0.4161,0.4089 > < 0.5968,0.4004,0.3985 > < 0.5839,0.4171,0.4089 >
x3 < 0.5830,0.3626,0.2680 > < 0.4154,0.3886,0.3416 > < 0.5830,0.3895,0.3386 > < 0.5813,0.3910,0.3419 >
xgy < 0.7160,0.2696,0.2790 > < 0.5253,0.4266,0.3189 > < 0.7160,0.3809,0.2965 > < 0.6963,0.4279,0.3189 >
x5 < 0.5115,0.2907,0.3673 > < 0.4050,0.3378,0.3996 > < 0.5115,0.3299,0.4003 > < 0.5090, 0.3366,0.3996 >

Table 12. Ranking results of different operators.
S(w1)  S(a2)  S(as) S(aq) S(as) Ranking Results Optimal Alternative

TSFWA 05220 0.5539 0.5656  0.6629  0.5298 Ay > Az = Ay = As = Ay Ay
TSFWGA 04823 04915 04866 05174 04820 Ay > Ay > Az = A1 > As Ay
TSFIWA 0.5154 0.5425 0.5501 0.6429 05169 As > Az > Ay = A5 = A Ay
TSFIGWA  0.5129  0.5291 0.5484  0.6134 05150 Ay > Az = Ay = As = Ay Ay
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Comparison summary

The main difference between the existing methods and the proposed methods are
summarized in Table 15. The evaluation values are given as TSF values, which are more
flexible and powerful. The interrelation between T-spherical fuzzy input arguments are
considered using the Bonferroni mean. The interaction operations between the membership
degree, the abstinence degree and the non-membership degree are considered.

The Dombi and Bonferroni mean are used at the same time in T-spherical fuzzy
environments to make aggregation more flexible. Existing T-spherical fuzzy methods do
not have all these characteristics.

Table 13. Q; values of different v and compromise solutions.

v Aq Aj A3 Ay As Ranking Results Compromise Solutions
Q(v) 0 1.0 1.0 0.4484 0.0 04484  Ag > Az~ A5 > Ay ~ A Ay
Q(v) 0.2 1.0 0.8812  0.4181 0.0 05264 Ay > Az > As = Ay - Aq Ay
Q(v) 04 1.0 0.7633  0.3877 0.0 0.6045 Ay > Az > As > Ay - Aq Ay
Q(v) 0.6 1.0 0.6435 0.3574 0.0 0.6825 Ay > Az > Ay > As - Ay Ay
Q(v) 0.8 1.0 0.5247  0.3271 0.0 0.7606 Ay > Az > Ay = As ~ Aq Ay
Q(v) 1.0 1.0 0.4058  0.2968 0.0 0.8386 Ay > Az > Ay > A5~ Aq Ay
Table 14. Global dominance of A; over 4;.
Aq Az A3z Ay As
Aq 0.0 —3.8964 —0.9154 —4.1311 —3.4218
Aj —2.4244 0.0 —1.5323 —3.9547 —2.2853
As —5.5283 —4.3000 0.0 —3.6430 —2.6115
Ay —2.4980 —3.1172 —-1.7797 0.0 —1.3468
As —2.7504 —4.4510 —2.9578 —4.4807 0.0
Table 15. Comparison of TSF aggregation method with other methods.
Methods Information by TFS Whether the Interrelationships Whether a Parameter Existing
Fuzzy Values Are Considered between Arguments to Manipulate the Results
TSFWA [7] Yes No No
TSFWGA Yes No No
TSFIWA [14] Yes No No
TSFIWGA [14] Yes No No
TSE-TOPSIS [9] Yes No No
TSF-VIKOR Yes No No
TSF-TODIM [14] Yes No No
Karaaslan and Dawood [34]  Yes No Yes
Park et al. [44] No No No
Wei et al. [45] No Yes No
TSFWIBM Yes Yes No
TSFWIGBM Yes Yes No
TSFWDBM Yes Yes Yes
TSFWGDBM Yes Yes Yes

9. Conclusions

In this paper, some T-spherical fuzzy Bonferroni mean aggregation operators were
developed. The main findings are as follows. By considering interaction laws, T-spherical
fuzzy Bonferroni mean aggregation operators were developed, including the TSFIBM
operator, the TSFIGBM operator, the TSFIWBM operatror and the TSFIWGBM operator.
The properties of the operators were studied, including the idempotency and boundedness.

Then, T-spherical fuzzy Dombi Bonferroni mean aggregation operators were devel-
oped using the Dombi mean and Bonferroni mean, including the TSFDBM operator, the
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TSFGDBM operator, the TSFWDBM operator and the TSFWGDBM operator. New T-
spherical fuzzy entropy and cross-entropy measures were defined, and an attribute weight
determining method based on these was developed. The new T-spherical fuzzy multiple
attribute decision making method based on the T-spherical fuzzy Bonferroni mean oper-
ators were defined, and the dormitory furniture procurement problem was presented to
illustrate the algorithm.

The weakness of the method is that it cannot deal with problems with multiple types
of decision information. In the future, we will study some useful tools to model uncertain
information and related concepts, including the properties, set-theoretic operations and
axiomatic results of the refined Pythagorean Fuzzy Sets. We will study further T-spherical
fuzzy decision making methods to deal with decision problems with special characteristics.
We will also apply newly developed algorithms to deal with more real complicated decision
problems.
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