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Abstract: This article is the further work of previous papers and also the first study to adopt the 

elliptic integral approach to solve the forced nonlinear structural acoustic problem. A previous el-

liptic integral approach, which was only used for the free vibration analyses of various nonlinear 

structural acoustic problems, is modified and custom designed for conducting this forced vibration 

analysis. The main advantage of the proposed approach is that one elliptic cosine contains various 

harmonic components, while one simple cosine term only carries one particular harmonic compo-

nent. That is why the proposed solution form can be more concise than those in the harmonic bal-

ance procedures. This is the first study to employ the proposed elliptic cosine solution form for the 

forced vibration and sound transmission of a nonlinear panel backed by a partitioned cavity. This 

study has two focuses: (1) the development of elliptic integral approach for solving the nonlinear 

structural acoustic governing equations, and (2) the effect of partitioned cavities on the forced vi-

bration response and sound transmission loss. Moreover, a set of elliptic cosine solutions is verified 

by that from the modified residue harmonic balance method. A mode convergence study and a 

harmonic contribution analysis are also conducted. 

Keywords: nonlinear panel vibration; structural dynamics; wave equation; elliptical integral; struc-

tural-acoustic interaction 
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1. Introduction 

Over the past decades, nonlinear vibration/oscillation, and sound transmission have 

been hot topics for many researchers. For example, Issac et al. [1] performed a study about 

recent advances in sound transmission loss of sandwich and composites double panels, 

in which some salient explanation of the various frequency and controlled regions were 

given. They critically examined a number of parameter effects on the sound transmission 

of sandwich and composite structures. Lin et al. [2] studied the sound transmission loss 

across orthotropic laminates in order to understand the sound-insulating capacity at var-

ious frequencies. Experiments and numerical simulations were carried out to investigate 

the sound penetrating characteristics of various material and panel configurations. Tham-

buraj and Sun [3] presented their investigations into the optimization of sound transmis-

sion loss across anisotropic sandwich beams. The material and geometric properties of the 

structure were treated as the variables to maximize the sound transmission loss. Chen and 

Lin [4] proposed a convenient technique for evaluating angular frequency in some non-

linear oscillations. In their study, it was known that once the restoring force function was 

given beforehand, the period of motion was determined by an integral. The angular fre-

quency would depend on both the period of motion and the integral. If three divisions 

were selected on the integration interval and the trapezoid quadrature rule was 
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employed, a higher accurate result for the angular frequency could be achieved. Sun et al. 

[5] studied the energy transfer between different modes of rectangular plate with 1:3 in-

ternal resonance. The ordinary differential equations of motion for the plate were devel-

oped using the Galerkin’s method. The nonlinear frequency responses and the waveforms 

under specific excitation frequencies were computed. The results showed that for in-plane 

excitation, the internal resonance between two modes occurred when the excitation fre-

quency was not close to any linear natural frequencies. Moreover, there are still limited 

studies about nonlinear panel-cavity system, which adopted the common solution meth-

ods, such as finite element method, method of multiple scales, and perturbation method 

(e.g., [6–10]), although a considerable amount of research work about linear panel-cavity 

system has been published [11–17]. Lee [18] studied the transmission loss of a nonlinearly 

vibrating perforated panel using the multi-level residue harmonic balance method. The 

effects of various parameters were investigated. However, the research problem in the 

study was not about panel-cavity system. Lee [19] also employed a similar harmonic bal-

ance method to study the effects of large-amplitude vibration on the pressure-dependent 

absorption of a structure multiple-cavity system. It was the first study to consider both 

the effects of large-amplitude vibration and pressure-dependent absorption. However, 

the work in [19] did not consider the elliptic integral approach as the solution method and 

not focus on the transmission loss of the panel cavity system. Recently, the elliptic integral 

approach was used for the free vibration analyses of various nonlinear panel-cavity sys-

tems (e.g., [20]). As aforementioned, the elliptical integral approach is modified in this 

paper and considers an elliptic cosine solution form for the forced vibration and sound 

transmission of the nonlinear panel-cavity model. 

2. Theory 

Figure 1 shows a nonlinear panel coupled with a partitioned cavity. The acoustic 

boundary conditions of the partitioned cavity are listed in the following equations [19]: 

𝜕𝑃

𝜕𝑥
= 0 at x = 0 or a/3 or 2a/3 or a (1) 

𝜕𝑃

𝜕𝑧
= 0 at z =c1, x = 0 to a/3 (2) 

𝜕𝑃

𝜕𝑧
= 0 at z =c2, x = a/3 to 2 a/3 (3) 

𝜕𝑃

𝜕𝑧
= 0 at z =c3, x = 2 a/3 to a (4) 

𝜕𝑃

𝜕𝑦
= 0 at y = 0 and b (5) 

𝜕𝑃

𝜕𝑧
= −

𝑎

𝜕2𝑊(𝑥,𝑦,𝑡)

𝜕𝑡2
 at z = 0 (6) 

where a and b are the panel width and length; c1, c2, and c3 are the cavity depths; a is air 

density, 1.2 kg/m3; W(x,y,t) is the nonlinear transverse displacement; P is the acoustic pres-

sure field within the cavity and the acoustic governing equation is given by [12,20]: 

∇2𝑃 −
1

𝐶𝑎
2

𝜕2𝑃

𝜕𝑡2
= 0 (7) 

where Ca is sound speed, 340 m/s. 
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Figure 1. Nonlinear panel backed by a partitioned cavity. 

By applying the boundary conditions in Equations (1)–(6) to the acoustic governing 

equation, the solution form of the acoustic pressure at a particular location can be ob-

tained. 

𝑃(𝑥, 𝑦, 𝑧, 𝑡) = ∑ ∑ (𝐿𝑢𝑣 sinh(𝜇𝑢𝑣𝑧) + 𝑁𝑢𝑣 cosh(𝜇𝑢𝑣𝑧))𝜓𝑢𝑣(𝑥, 𝑦)
𝑉
𝑣

𝑈
𝑢 cos(𝜔𝑡)  (8) 

where Luv and Nuv are the coefficients depending on the boundary conditions; 𝜓𝑢𝑣 is the 

acoustic mode function, 𝜇𝑢𝑣 =
1

𝐶𝑎
√𝜔𝑢𝑣

2 − 𝜔2 ; u and v are acoustic mode numbers; U and 

V are the numbers of modes considered; ω is the driving frequency; 𝜔𝑢𝑣 is the resonant 

frequency of the (u, v) mode. 

Next, consider multiplying the mode shape function, and taking integration over the 

panel area for the pressure field in Equation (8), and obtaining the following overall acous-

tic pressure force: 

𝑃𝑐 = 
𝑎
𝜔2∑ ∑

coth(𝜇𝑢𝑣𝑐𝑖)

𝜇𝑢𝑣

(𝜆𝑢𝑣)
2�̅�

𝜆𝜓𝑢𝑣𝜆𝜑

𝑉
𝑣

𝑈
𝑢 cos(𝜔𝑡)  (9) 

where �̅� is the nonlinear panel vibration amplitude (note that 𝑊(𝑥, 𝑦, 𝑡) = 𝐴(𝑡)𝜑(𝑥, 𝑦)); 

ω is the driving frequency of the external excitation; i = 1, 2, 3; 𝜆𝑢𝑣 = ∫ ∫ 𝜓𝑢𝑣𝜑𝑑𝑥𝑑𝑦
𝑎

0

𝑏

0
; 

𝜆𝜓𝑢𝑣
= ∫ ∫ 𝜓𝑢𝑣𝜓𝑢𝑣𝑑𝑥𝑑𝑦

𝑎

0

𝑏

0
 ; 𝜆𝜑 = ∫ ∫ 𝜑𝜑𝑑𝑥𝑑𝑦

𝑎

0

𝑏

0
. The structural and acoustic mode func-

tions are given by [19]: 

(𝑥, 𝑦) = sin (
𝜋𝑥

𝑎
) sin (

𝜋𝑦

𝑏
) (10) 

𝜓𝑢𝑣(𝑥, 𝑦) = cos (
𝑢𝜋
𝑎

3

𝑥) cos (
𝑣𝜋

𝑏
𝑦) at x = 0 to a/3 (11) 

𝜓𝑢𝑣(𝑥, 𝑦) = cos (
𝑢𝜋
𝑎

3

(𝑥 −
𝑎

3
)) cos (

𝑣𝜋

𝑏
𝑦) at x = a/3 to 2a/3 (12) 

𝜓𝑢𝑣(𝑥, 𝑦) = cos (
𝑢𝜋
𝑎

3

(𝑥 −
2

3
𝑎)) cos (

𝑣𝜋

𝑏
𝑦) at x = 2a/3 to a (13) 

Over the past decades, there have been many studies about Duffing equation (or 

Duffing oscillator) e.g., [21–25]. According to [21,22], the general Duffing equation with a 

harmonic forcing term is given by: 

𝑑2𝑠

𝑑𝑡2
+ 𝛼𝑠 + 𝛽𝑠3 + 𝑐𝑜𝑠(𝜔𝑡) = 0 (14) 

where s is used as the variable in the Duffing equation; α and β are the coefficients associ-

ated with the linear and nonlinear terms, s and 𝑠3;  = excitation magnitude. 
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Fundamentally, the governing equation of a nonlinear flexible panel coupled with a 

cavity [19,20] can be exactly the same as Equation (14) by changing the following symbols: 

𝑠 = 𝐴 (15) 

𝛼 = 𝜔𝑜
2 (16) 

𝛽 =
𝐸𝜏

4(1 − 𝑣2)
(
𝜋

𝑎
)
4

[(1 + 𝛾4) (
3

4
−
𝑣2

4
) + 𝑣𝛾2] (17) 

 = 𝜅𝑐𝑔 + 𝜅 𝑔 (18) 

where 𝜔0 is structural resonant frequency of the panel; ϼ is structural density; γ is panel 

aspect ratio; τ is thickness; E is Young’s modulus; ν is Poisson’s ratio; 𝜅 is dimensionless 

external excitation parameter; g is gravity, 9.81 m/s2; 𝜅𝑐 is the normalized magnitude of 

the acoustic pressure force in Equation (4) and given by: 

𝜅𝑐 =

𝑎
𝜔2

𝑔
∑∑

coth(𝜇𝑢𝑣𝑐𝑖)

𝜇𝑢𝑣

(𝜆𝑢𝑣)
2�̅�

𝜆𝜓𝑢𝑣
𝜆𝜑

𝑉

𝑣

𝑈

𝑢

 (19) 

Let �̅� be the solution of the following Duffing equation: 

𝑑2�̅�

𝑑𝑡2
+ (𝛼 +




) �̅� + 𝛽�̅�3 + 𝑐𝑜𝑠(𝜔𝑡) = 0 (20) 

where �̅� = 𝑐𝑛(𝜔𝑡); is vibration magnitude; cn is elliptic cosine;  is a constant to be 

found. The elliptic cosine modulus is given by [20]: 

𝑘2 =
𝛽2

2 (𝛼 +


+ 𝛽2)

 (21) 

The driving frequency in Equation (14) is equal to the response frequency of �̅�, which 

is given by: 

𝜔 =
2𝜋

4

(𝛼 +


+ 𝛽2)

1/2 ∫
1

√1 − 𝑘2sin(𝜃)2
𝜋/2

0
𝑑𝜃

 
(22) 

Consider Equation (14) and rewrite it into the following form: 

𝑑2𝑠

𝑑𝑡2
+ (𝛼 +




)𝑠 + 𝛽𝑠3 −




𝑠 + 𝑐𝑜𝑠(𝜔𝑡) = 0 (23) 

Then replace 𝑠 by �̅� in Equation (23). The value on the right side is nonzero and 

considered as the residual: 

𝑑2�̅�

𝑑𝑡2
+ (𝛼 +




)�̅� + 𝛽�̅�3 − 𝑐𝑛(𝜔𝑡) + 𝑐𝑜𝑠(𝜔𝑡) = 𝑅()  

 

−𝑐𝑛(𝜔𝑡) + 𝑐𝑜𝑠(𝜔𝑡) = 𝑅() (24) 

The hth harmonic residual and overall residual are defined as: 

𝑅ℎ = ∫ 𝑅()
𝑇

0

𝑐𝑜𝑠(𝜔𝑡)𝑑𝑡 (25) 
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�̅� = √∑ (𝑅ℎ)2ℎ=1,3,5…   (26) 

Note that the overall residual in Equation (24) also depends on . Then, find the op-

timum value of  to minimize it, on the condition that the driving frequency in Equation 

(23) is equal to the response frequency of �̅� in Equation (22). Once the optimum value of 

 is found, the vibration magnitude  or �̅� can also be found. Hence, the magnitude of 

𝑃𝑐 in Equation (4) can be obtained. The transmission loss of a nonlinear flexible panel cou-

pled with a partitioned cavity is defined by: 

𝑇𝐿 = −20𝑙𝑜𝑔 (
|𝑃𝑐|

𝜅 𝑔
) (27) 

where |𝑃𝑐| is the magnitude of the acoustic pressure. 

Now, consider finding the peak frequency of damped case. According to the har-

monic balance approximation approach in [19], the peak frequency can be found by the 

following equations: 

 =
′

𝛼′ +
3
4𝛽2 + 𝑗(2𝜉𝜔𝜔𝑝)

 (28) 

Let  = 𝐶 + 𝑗𝐷: 

𝐶 + 𝑗𝐷 =
′

𝛼′ +
3
4𝛽

(𝐶2 − 𝐷2) + 𝑗(2𝜉𝜔𝜔𝑝 +
3
2𝛽𝐶𝐷)

 (29) 

where C and D are the real and imaginary parts of ; 𝜔𝑝 is the peak resonant frequency; 

𝜉 is the damping factor; and j is complex number, √−1. Note that when considering a 

nonlinear flexible panel coupled with a partitioned cavity to find the peak frequency: 

𝛼′ =𝜔𝑜
2 + 𝜀𝜔2 (30) 

′ = 𝜅 𝑔 (31) 

𝜀 = 

𝑎
𝜔2


∑∑

coth(𝜇𝑢𝑣𝑐𝑖)

𝜇𝑢𝑣

(𝜆𝑢𝑣)
2

𝜆𝜓𝑢𝑣
𝜆𝜑

𝑉

𝑣

𝑈

𝑢

 (32) 

Consider that the magnitude of  is maximum when 𝜔 = 𝜔𝑝. Hence, 

𝛼′ +
3

4
𝛽(𝐶2 − 𝐷2) = 0 (33) 

Thus, Equation (29) is purely imaginary ( C = 0) 

𝛼′ −
3

4
𝛽𝐷2 = 0 (34) 

𝑖𝐷 =
′

𝑖(2𝜉𝜔𝜔𝑝)
 (35) 

Hence, the peak frequency 𝜔𝑝, can be obtained by solving Equations (34) and(35). 

3. Results and Discussion 

Figure 2 shows the comparison between the frequency response curves obtained 

from the proposed method and the modified residue harmonic balance method [18]. The 

results obtained from the two methods reasonably agree with each other. The main dis-

crepancy occurs (1) at very low frequency (𝝎 0.6√𝜶 ), where the two solution curves 

intercept; and (2) at very high frequency (𝝎> 5√𝜶 ), the nonlinear solution curve from the 

proposed method is slightly lower. It is noted that the super harmonic solution of the 
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proposed method is obtained by setting the response frequency equal to 3 × driving fre-

quency. In the following case studies, the configurations and material properties of the 

nonlinear panel are: 200 mm × 200 mm × 1 mm aluminum panel, Young’s modulus E = 7 

× 1010 N/m2, Poisson’s ratio ν = 0.3, and panel mass density  = 2700 kg/m3. Tables 1 and 2 

show the mode convergences and harmonic contributions for various driving frequencies. 

It can be seen that the nine-mode approximation can achieve three digital accuracies. When 

the driving frequency is higher, the higher harmonic components of the elliptic cosine solution 

form are more significant. In Table 2, it is found that when the driving frequency is near or 

above the first resonant frequency, the fundamental harmonic component is always dominant 

(over 90%); when the driving frequency is far below the first resonant frequency and the exci-

tation level is higher (e.g., k = 150) and the higher harmonic components would be more sig-

nificant. When a harmonic balance method is adopted for such case, there would be more 

nonlinear coupled equations generated in the harmonic balance procedures. It is due to more 

harmonic terms being required. As aforementioned, the main advantage of the proposed 

approach is that one elliptic cosine contains various harmonic components, while one sim-

ple cosine term carries one particular harmonic component. That is why the proposed 

solution form can be more concise than those in the harmonic balance procedures. Figures 

3 and 4 show the panel amplitude and transmission loss plotted against the excitation 

frequency for various excitation magnitudes, respectively. In Figures 3 and 4, the peak 

frequency increases with the excitation magnitude. The bigger the excitation magnitude 

is, the longer the nonlinear solution curve extends. In the case of small excitation magni-

tude, the amplitude peak and transmission loss dip are much more symmetric. In Figure 

3, the differences between the amplitude curves of the four different excitation magni-

tudes are obvious. On contrary, in Figure 4, the differences between the transmission loss 

curves of the four different excitation magnitudes are almost undetectable in the linear 

and low frequency nonlinear cases. The tips of the nonlinear solution curves are far from 

each other. Note that according to the linear theory, the resonant peak frequencies and trans-

mission loss dips are independent of excitation magnitude. In Figure 3, the nonlinear solution 

curve of k = 50 appears as a straight line with a shallow slope (note the excitation magnitude 

in this case is very large). The super harmonic solution curve is the longest one. There is an 

interesting finding in Figure 4. The overall slopes of the nonlinear and super harmonic trans-

mission curves of k = 50 are also quite shallow. Unlike those of other curves, the upper and 

lower limits of them are only about ±8 dB. It is implied that under very large excitation, the 

nonlinear panel sound transmission would not vary largely for different driving frequencies. 

Besides, it is found that in the case of the smallest excitation magnitude, there is a narrower 

transmission loss dip and a higher dip value; and in the case of the biggest excitation magni-

tude, the nonlinear vibration would widen the transmission loss dip and decrease the dip 

value. From this observation, for wideband excitation, the nonlinear vibration would make 

the overall transmission loss worse; and for narrowband excitation (near the resonant fre-

quency), the linear vibration would make the overall transmission loss worse. The negative 

effect of the super harmonic response would be minimal when the excitation magnitude is 

small. Figures 5 and 6 show the panel amplitude and transmission loss plotted against the 

excitation frequency for various cavity depths, respectively. It is found that a longer cavity 

depth would induce a lower transmission loss peak frequency, and a higher transmission loss 

dip value. In the linear amplitude solution cases, the three curves are drawing closer when the 

driving frequency is higher. Unlike those in Figure 5, the linear transmission loss curves in 

Figure 6 are nearly parallel to each other for their frequency range. In the case of the shortest 

cavity depth, the tip values of the super harmonic amplitude and transmission loss curves are 

significantly smaller. It is due to the damping effect, which depends on the corresponding dip 

frequency, that it is much stronger. Besides, the nonlinear amplitude curve and linear trans-

mission loss solution curve are the lowest. It is implied that the amplitude is the smallest due 

to the highest stiffness for that low frequency range, and the sound reduction capacity of the 

panel is the weakest for the high frequency range. Note that the nonlinear transmission loss 

solution curve is the lowest only for the dimensionless driving frequency less than one and 
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higher than two. The linear amplitude solution curve is the highest one. This is implied that 

the overall stiffness is the weakest in the linear solution case. 

 

Figure 2. Comparison between the frequency response curves obtained from the proposed method 

and [18] (α = 1, β = 2,  = 6). 

 

Figure 3. Amplitude ratio versus excitation frequency for various excitation magnitudes (c/a = 0.5, ξ 

= 0.02, single cavity). 
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Figure 4. Transmission loss ratio versus excitation frequency for various excitation magnitudes (c/a = 

0.5, ξ = 0.02, single cavity). 

 

Figure 5. Amplitude ratio versus excitation frequency for various cavity depths (k = 5, ξ = 0.02, single 

cavity). 
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Figure 6. Transmission loss ratio versus excitation frequency for various cavity depths (k = 5, ξ = 0.02, 

single cavity). 

Table 1. Vibration amplitude convergence for various driving frequencies and number of modes 

used (c/a = 0.5, k = 10, ξ = 0). 

 ω/ωo = 1 =2 =3 

1 acoustic mode 0.2666 1.6386 2.8236 

4 acoustic modes 0.2681 1.6442 2.8312 

9 acoustic modes 0.2681 1.6443 2.8313 

16 acoustic modes 0.2681 1.6443 2.8314 

Table 2. Harmonic contributions of the elliptic cosine solution form for various driving frequencies 

(c/a = 0.5, ξ = 0). 

k = 10 ω/ωo = 1/3 =1 =2 

1st harmonic (h = 1) 99.5090 99.7035 97.1538 

2nd harmonic (h = 3) 0.4887 0.2957 2.7674 

3rd harmonic (h = 5) 0.0024 0.0009 0.0767 

4th harmonic (h = 7) 0.0000 0.0000 0.0021 

k = 150 ω/ωo = 1/3 =1 =2 

1st harmonic (h = 1) 61.9037 93.1036 95.7717 

2nd harmonic (h = 3) 26.2178 6.4492 4.0565 

3rd harmonic (h = 5) 8.9249 0.4198 0.1651 

4th harmonic (h = 7) 2.9536 0.0274 0.0067 

Figures 7 and 8 show the panel amplitude and transmission loss plotted against the 

excitation frequency for various partitioned cavity cases, respectively. The average cavity 

depths in the three cases are the same. The patterns of the solution curves in Figures 7 and 

8 are very similar to those in Figures 5 and 6. The solution curves of the partitioned cavity 

with unequal cavity depths and the partitioned cavity with equal cavity depths are anal-

ogous to those of the shortest and second shortest cavity depths in Figure 5 and 6, 
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respectively. The depths of the partitioned cavity with unequal cavity depths are 50 mm, 

200 mm, and 50 mm respectively. There are two partitioned cavities with depth of 50 mm, 

where the stiffnesses are much stronger and thus, the overall stiffness is also the strongest. 

Besides, the overall stiffness of three smaller cavities is higher than that of one big cavity. 

That is why the solution curves of the partitioned cavity with equal cavity depths in be-

tween those of other two cases. 

 

Figure 7. Amplitude ratio versus excitation frequency for various cavity cases (c/a = 0.5, k = 5, ξ = 

0.02). 

 

Figure 8. Transmission loss versus excitation frequency for various cavity cases (c/a = 0.5, k = 5, ξ = 

0.02). 
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Figures 9–11 show the waveform differences for various cases, respectively. It can be 

seen that in the nonlinear solution case of k =50, the maximum difference between the 

elliptic cosine and simple cosine is about 40%. It is much bigger than that in the linear case 

(smaller than 0.1%). As aforementioned, one elliptic cosine contains various harmonic 

components, while one simple cosine just carries one particular harmonic component. 

That is why the solution form in the proposed method can be more concise than those in 

other harmonic balance methods which need more sine or cosine terms. Figure 12 shows 

the elliptic cosine waveforms of different excitation magnitudes. It can be seen that the 

waveform of k =50 looks like a triangle; and the troughs in the waveforms of k =100 and 

150 are very narrow. All these waveforms are very different from the simple cosine (i.e., k 

=0) and contain significant higher harmonic components. 

 

Figure 9. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 5, w/wo = 3, ξ = 0.02, single 

cavity, nonlinear solution). 
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Figure 10. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 5, w/wo = 3, ξ = 0.02, single 

cavity, linear solution). 

 

Figure 11. Difference between elliptic cosine and simple cosine (c/a = 0.5, k = 50, w/wo = 3, ξ = 0.02, single 

cavity, nonlinear solution). 
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Figure 12. Elliptic cosine waveform (c/a = 0.5, w/wo = 3, ξ = 0.02, single cavity, nonlinear solution). 

4. Conclusions 

This study has analyzed the forced vibration and transmission loss of a nonlinearly 

vibrating panel backed by a partitioned cavity. The proposed elliptic integral method is 

newly applied to this nonlinear vibro-acoustic problem. The nonlinear structural/acoustic 

modal formulation has been developed from the well-known wave equation and Duffing 

equation. The results obtained from the proposed method and modified residue harmonic 

balance method are reasonably consistent. The effects of some parameters on the vibration 

responses and transmission loss performances are investigated. The main findings include 

(1) for wideband excitation, the nonlinear vibration would make the overall transmission loss 

worse, (2) for narrowband excitation (near the resonant frequency), the linear vibration would 

make the overall transmission loss worse; and (3) the stiffness of a system with a partitioned 

cavity with unequal cavity depths is the strongest among the three cases considered. It is the 

easiest for a sound pressure to transmit through the panel, so that the transmission loss per-

formance is generally the worst. 
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