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Abstract: In this paper, the mean-square strong stability and stabilization of discrete-time Markov
jump systems are studied. Firstly, the definition of mean-square strong stability is given, and the
necessary and sufficient conditions for mean-square strong stability are derived. Secondly, several
necessary and sufficient conditions for mean-square strong stabilization via a state feedback controller
and an output feedback controller are obtained. Furthermore, explicit expressions for the state
feedback controller and static output feedback controller are obtained. Finally, two examples are
given to illustrate the validity of the above results.
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1. Introduction

As one of the most basic dynamic models, the Markov jump system has been stud-
ied extensively. This is mainly because these system models have many applications in
engineering and finance, such as nuclear fission and population models, immunology,
and portfolio optimization [1–3]. Therefore, research on the stability and control of these
systems has gradually become a hot topic in the field of control theory and application.
For example, the authors in [4,5] discussed the continuous-time Markov jump system and
studied its stability and stabilization. In [6], the adaptive tracking problem of stochastic
nonlinear systems with Markov switching was studied. Robust H∞ control for uncertain
discrete stochastic bilinear systems was studied in [7]. Output tracking control problems
for a class of switched linear systems were studied in [8]. In addition, the authors in [9,10]
discussed the stability analysis of different Markovian jump systems, as well as some
applications.

In practical engineering applications, the system is often required to have good tran-
sient performance and stability performance, which to a large extent limits the traditional
meaning of the mean-square stability in engineering applications. For example, excessive
equipment voltage in the power system may lead to irreversible damage to the power
equipment [11]. A large overshoot indicates that the state of the system fluctuates greatly
within a short period of time, indicating that the transient energy of the system may be too
large and causing serious consequences. Therefore, it is of great significance to study how
to restrain the overshoot response that a large overshoot indicates. Many scholars have
made considerable achievements in this field. For instance, the authors in [12] presented
the specification of optimal overshoot controllers when the controller order is fixed and
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the closed-loop system poles are at a fixed location. In [13–15], the notion of strong stabil-
ity was introduced to restrain the overshoot response in different systems. The authors
in [16] studied the problem of overcoming overshoot performance limitations for a class
of minimum-phase linear time-invariant systems with relative degree one. The authors
in [17] proposed a secondary frequency control approach to solve the problem of overshoot
in the power-imbalance allocation control of power systems. Moreover, in recent years,
the strong stability of systems with double and multiple delays has been studied [18,19].
Other relevant studies can be referred to [20,21]. However, there are few studies involving
restricting the overshoot in discrete-time Markov jump systems.

Research on the sufficient and necessary conditions for the mean-square stability of the
discrete-time Markov jump system can be traced back to 1993. The sufficient and necessary
conditions for the mean-square stability of the discrete-time Markov jump systems were
given, and these conditions could be transformed into a form suitable for solving for the
existence of a unique solution of a set of Lyapunov equations [22]. In [23], the l2 stability of
discrete-time Markov jump systems was studied, and the sufficient and necessary condi-
tions for l2 stability were given, which is essentially equivalent to the mean-square stability.
In [24], the classical theories of Markov jump systems were systematically introduced and
studied. However, in the classical study of mean-square stability, the stability and stability
problems are usually transformed into the form for solving a set of linear matrix inequalities
(LMI), which can be solved using the LMI toolbox. Although this method is effective, it
cannot give the explicit solution for the controller.

The key difficulty in solving these problems that have not been previously solved is
twofold. On the one hand, the controller should be designed so that the system produces
as little overshoot as possible under the premise of stability. On the other hand, there is the
problem of finding the analytical solution of the controller without using the LMI toolbox.
To sum up, we introduce the definition of mean-square strong stability in the discrete-
time Markov jump system for the first time. As a stronger definition, mean-square strong
stability can suppress the generation of overshoot well in the stochastic system and can
improve the transient performance of the system. The main contributions of this paper are
as follows. (i) The concept of mean-square strong stability of the discrete-time Markov jump
system with multiplicative noise is proposed, and the necessary and sufficient condition for
mean-square strong stability of the system is obtained. (ii) The design of a state feedback
controller and static output feedback controller for the discrete-time Markov jump system
is studied. Furthermore, two necessary and sufficient conditions are obtained to solve the
controller. Finally, the analytical expressions of state feedback controllers and static output
feedback controllers are given, using Finsler’s theorem.

The specific notations used in this paper are as follows. Rn: the set of all real n-
dimensional vectors. C: the set of all complex numbers. N0: N0 = N ∪ {0}. Rn×m: the set
of all n×m matrices. AT : the transpose of A. λ(A): the eigenvalue of A. ‖x‖: the Euclidean
norm of x, where x is a vector. ‖A‖: the Euclidean norm of A, where A is a matrix. E(·):
the operation of taking the mathematical expectation. A>0 (A ≥ 0, A < 0, A ≤ 0): A
is a real symmetric positive definite (positive semi-definite, negative definite, negative
semi-definite, respectively) matrix. B⊥ : the left annihilator of B is a matrix of maximal
rank such that B⊥B = 0.

2. Mean-Square Strong Stability Analysis

As important random switching systems, Markov jump systems are widely used in
system control, including in motor systems, image enhancement, medical study, etc. [25,26].
In this paper, we consider the following discrete-time Markov jump systems: x(k + 1) = A0(rk)x(k) + B0(rk)u(k) +

N

∑
n=1

(An(rk)x(k) + Bn(rk)u(k))ωn(k)

y(k) = C(rk)x(k),
(1)
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where x(k) is a n-dimensional state vector, u(k) is the control input, and y(k) is the out-
put. The definition of multiplicative noises is that ωn(k) ∈ R , n = 1, 2, · · · , N are se-
quences of real random variables defined on a complete probability space (Ω, F , P)
and are independent wide-sense, stationary, second-order processes with E[ωn(k)] = 0,
E[ωm(s)ωn(t)] = δmn, where δmn is a Kronecker function defined by δmn = 1 if m = n or
δmn= 0 if m 6= n. Furthermore, for rk = i, An(rk), Bn(rk), and C(rk) , n = 1, 2, · · · , N are
constant matrices of appropriate dimension, denoted by An,i, Bn,i, and Ci, respectively, for
simplicity. rk represents a discrete-time, discrete-state ergodic Markov chain taking values
in S with the transition probability πij, πij > 0 and ∑s

j=1 πij = 1, ∀i ∈ S , S = {1, 2, · · · ,
s}. The initial distribution of the Markov chain is qi with qi 6= 0, for the case where ∀i ∈ S .
ωn(k) and rk are mutually independent.

Next, we introduce the concept of the mean-square strong stability of the discrete-time
Markov jump system.

Definition 1. The discrete-time Markov jump system (1) is said to be mean-square strongly stable,
if it satisfies the following condition:

E‖x(k + 1)‖2 < E‖x(k)‖2, (2)

for all k ∈ N0 when x(k) 6= 0 [14].

Remark 1. Definition 1 shows that the norm of the state vector in system (1) monotonically
decreases from E‖x(0)‖2 6=0 to E‖x(k0)‖2=0. Clearly, the mean-square strong stability prohibits
the overshoot behavior of the system (1) for arbitrary initial conditions in the state space.

Remark 2. According to the definition in [22,24], mean-square stability cannot guarantee that
systems have good performance in a short time. This is because mean-square stability only limits
the changing trend of the state when time tends to infinity, but not the state during the change
process, which may cause the system to have large overshoots in a short time. Compared with the
mean-square stable system, the mean-square strongly stable system has smaller overshoots.

First, we introduce the following useful lemma. It is a corollary of Finsler’s theorem
and is quoted from [27].

Lemma 1. Suppose that matrices B and symmetric matrices Q are given. Then the following two
descriptions are equivalent:

• There is a symmetric matrix X such that

Q + BXBT > 0. (3)

• One of the following two conditions is true

B⊥QB⊥T > 0 or BBT > 0. (4)

In the following theorem, we aim to give a sufficient and necessary condition for the
mean-square strongly stable open-loop system (1) with u(k) ≡ 0.

Theorem 1. The discrete-time Markov jump system (1) is mean-square strongly stable if and only if

‖Ai‖ < 1, (5)
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where

Ai =


A0,i
A1,i

...
AN,i


for each i ∈ S .

Proof. Necessity: From Definition 1, we can obtain the result that the mean-square strong
stability of a discrete-time Markov jump system (1) is equivalent to

E‖x(k + 1)‖2 − E‖x(k)‖2 < 0. (6)

Furthermore, it is also equivalent to the following sequences of inequalities:

s

∑
j=1

E[x(k + 1)Tx(k + 1)1r(k+1)=j]−
s

∑
i=1

E[x(k)Tx(k)1r(k)=i] < 0.

⇔ E[x(k)T
s

∑
j=1

s

∑
i=1

πij(AT
0,i A0,i + AT

0,i

N

∑
n=1

An,iωn(k) +
N

∑
n=1

AT
n,iωn(k)A0,i+

N

∑
n=1

AT
n,iωn(k)

N

∑
n=1

An,iωn(k))x(k)1r(k)=i]−
s

∑
i=1

E[x(k)Tx(k)1r(k)=i] < 0.

⇔ E[x(k)T
s

∑
i=1

(
s

∑
j=1

πij(AT
0,i A0,i + AT

0,i

N

∑
n=1

An,iωn(k) +
N

∑
n=1

AT
n,iωn(k)A0,i+

N

∑
n=1

AT
n,iωn(k)

N

∑
n=1

An,iωn(k))− I)x(k)1r(k+1)=j1r(k)=i] < 0

(7)

for each i, j ∈ S , where the indicator function 1r(k)=i is defined in the usual way, that is

1r(k) =

{
1 if rk = i
0 otherwise,

for ∀rk ∈ S . Then, based on the assumptions
s
∑

j=1
πij, i, j ∈ S , (7) is equivalent to

E[x(k)T
s

∑
i=1

(AT
0,i A0,i + AT

0,i

N

∑
n=1

An,iωn(k) +
N

∑
n=1

AT
n,iωn(k)A0,i +

N

∑
n=1

AT
n,iωn(k)

·
N

∑
n=1

An,iωn(k)− I)x(k)1r(k)=i] < 0.

(8)

According to the previous assumption, E[ωn(k)] = 0, E[ωm(s)ωn(t)] = δmn (8) is
equivalent to

E[x(k)T
s

∑
i=1

(AT
0,i A0,i +

N

∑
n=1

AT
n,i An,i − I)x(k)1r(k)=i] < 0. (9)

Since (9) holds for ∀k ∈ N, one obtains

E[x(0)T
s

∑
i=1

(AT
0,i A0,i +

N

∑
n=1

AT
n,i An,i − I)x(0)1r(0)=i] < 0. (10)
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when k = 0. Because x(0) is not a random variable, one obtains

x(0)T
s

∑
i=1

(AT
0,i A0,i +

N

∑
n=1

AT
n,i An,i − I)1r(0)=ix(0) < 0. (11)

Due to the arbitrariness of x(0), (11) can be written as:

s

∑
i=1

(AT
0,i A0,i +

N

∑
n=1

AT
n,i An,i − I)1r(0)=i < 0.

⇔
s

∑
i=1

(
[

AT
0,i AT

1,i . . . AT
N,i

]
A0,i
A1,i

...
AN,i

− I)1r(0)=i < 0.

⇔
s

∑
i=1

(A T
i Ai − I)1r(0)=i < 0.

⇔
s

∑
i=1

A T
i Ai1r(0)=i −

s

∑
i=1

I1r(0)=i < 0.

⇔
s

∑
i=1

A T
i Ai1r(0)=i − I < 0.

⇔
s

∑
i=1
‖Ai‖1r(0)=i < 1,

(12)

which is equivalent to the condition in (5), assuming the initial distribution qi 6= 0, i ∈ S .
Sufficiency: From Schur’s complement and (12), which gives a set of inequalities that

are equivalent to each other, we obtain that (5) is equivalent to the following inequality:

s

∑
i=1

(AT
0,i A0,i +

N

∑
n=1

AT
n,i An,i − I)1r(k)=i < 0 (13)

For any k∈N, if x(k) 6=0, then (9) holds. The following proof requires only the reverse
derivation of (8) and (7), which are sets of inequalities that are equivalent to each other.
Therefore, one obtains

s

∑
j=1

E[x(k + 1)Tx(k + 1)1r(k+1)=j]−
s

∑
i=1

E[x(k)Tx(k)1r(k)=i] < 0, (14)

which is also equivalent to the definition of the mean-square strong stability.

3. Mean-Square Strong Stabilization via State Feedback

In this section, we aim to design a state feedback controller such that the resulting
closed-loop system is mean-square strongly stable.

Definition 2. The system in (1) is said to show mean-square strong stabilization if there are
state feedback controllers u(k) = K(rk)x(k) which are denoted by Ki, while rk = i for simplicity,
such that

x(k + 1) = A0(rk)x(k) + B0(rk)Kix(k) +
N

∑
n=1

(An(rk)x(k) + Bn(rk)Kix(k))ωn(k) (15)

satisfies Definition 1 [14].
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Next, a necessary and sufficient condition for the mean-square strong stabilization of
the system (15) is given.

Theorem 2. System (15) shows mean-square strong stabilization if and only if there are state
feedback matrices Ki such that

‖Ai +BiKi‖ < 1, (16)

where

Ai =


A0,i
A1,i

...
AN,i

, Bi =


B0,i
B1,i

...
BN,i


for each i ∈ S .

Proof. The proof of this theorem can be obtained directly from the proof of Theorem 1.

Next, the following theorem gives the necessary and sufficient condition for the
system in (15) to show mean-square strong stabilization, and the design of its state feedback
controller can also be obtained.

Theorem 3. Suppose that, for each i ∈ S , Bi has full column rank. Then, system (15) shows
mean-square strong stabilization via a state feedback controller if and only if the following equations
are true: {

B⊥i (I −AiA
T

i )B⊥T
i > 0 (if Bi /∈ Rn×n),

BiB
T
i > 0 (if Bi ∈ Rn×n).

(17)

The explicit form of the state feedback matrix Ki when rk = i can be obtained as follows:

Ki = −(BT
i Bi)

−1BT
i Ai + (BT

i Bi)
−1/2PiΘ

1/2
i , (18)

where
Θi = I −A T

i Ai +A T
i Bi(B

T
i Bi)

−1BT
i Ai, (19)

and Pi is an arbitrary matrix where ‖Pi‖ < 1 for each i ∈ S .

Proof. The following is divided into two steps for proving the feasibility of this theorem.
Step 1: In the first step, let us prove that condition (17) is equivalent to Θi > 0.

First, Θi > 0 is equivalent to there being a Ui > 0 such that the following inequality
sequence holds:

I −A T
i Ai +A T

i Bi(B
T
i Bi + Ui)

−1BT
i Ai > 0

⇔ I −A T
i (I −Bi(B

T
i Bi + Ui)

−1BT
i )Ai > 0.

(20)

Using the matrix inversion lemma, we find that there is a Ui > 0 such that

I −A T
i (I +BiU−1

i BT
i )
−1Ai > 0. (21)

Then, using the Shur complement lemma, we find that it is also equivalent to there
being a Ui > 0 such that

I +BiU−1
i BT

i −AiA
T

i > 0. (22)

Finally, according to Lemma 1, this is equivalent to

B⊥i (I −AiA
T

i )B⊥T
i > 0 or BiB

T
i > 0. (23)

Step 2: In the second step of the proof, we only need to prove that Θi > 0 is equivalent
to the result that the system (15) can be strongly stabilized by Theorem 2.



Mathematics 2022, 10, 979 7 of 16

Necessity: First, to prove the necessity, we only need to prove that the condition in (16)
implies Θi > 0. Hence, we consider the following sequences of inequalities:

‖Ai +BiKi‖ < 1.

⇔ (Ai +BiKi)
T(Ai +BiKi) < I.

⇔ A T
i Ai +A T

i BiKi + KT
i BT

i Ai + KT
i BT

i BiKi < I.

⇔ A T
i Bi(B

T
i Bi)

−1BT
i Ai +A T

i BiKi + KT
i BT

i Ai + KT
i BT

i BiKi

< I −A T
i Ai +A T

i Bi(B
T
i Bi)

−1BT
i Ai.

⇔ (Ki + (BT
i Bi)

−1BT
i Ai)

T(BT
i Bi)(Ki + (BT

i Bi)
−1BT

i Ai)

< I −A T
i Ai +A T

i Bi(B
T
i Bi)

−1BT
i Ai = Θi.

(24)

Then, since Bi has full column rank, we have BT
i Bi > 0 and (BT

i Bi)
−1 > 0. Further-

more, since the left side of the above inequality is non-negative, Θi > 0 can be obtained.

Sufficiency: Since Θi > 0, one obtains that there are values of Θ−
1
2

i and Ki such that

‖Pi‖ < 1,

Pi , (BT
i Bi)

− 1
2 (Ki + (BT

i Bi)
−1BT

i Ai)Θ
− 1

2
i .

(25)

Hence, the solution can be obtained that:

Ki = −(BT
i Bi)

−1BT
i Ai + (BT

i Bi)
−1/2PiΘ

1/2
i , (26)

which proves the theorem.

Remark 3. According to the assumption of Theorem 3, matrix Bi is full column rank and BT
i Bi

is non-singular. Therefore, the inverse and square root of matrix BT
i Bi in (16) and (17) both exist

and are both unique.

Remark 4. The matrix B⊥ can be obtained by singular value decomposition. Let B have a singular
value decomposition as follow:

B =
[
U1 U2

][Σ
0

]
VT , (27)

where Σ ∈ Rm×m is a diagonal matrix composed of a singular value and U1 ∈ Rn×m, U2 ∈
Rn×n−m, and V ∈ Rm×n are unitary matrices. Since all left annihilators of B can be written as
XUT

2 , with X representing arbitrary nonsingular matrices, B⊥ can be taken as UT
2 .

Remark 5. Compared with the traditional controller for mean-square stabilization, which requires
a set of LMIs to be solved [22,24], Theorem 3 gives the explicit expression of the controller Ki that
makes the system mean-square strongly stabilized.

4. Mean-Square Strong Stabilization via Output Feedback

Although state feedback can improve the system performance more effectively than
output feedback, the state variables cannot be measured directly from outside the system,
which often makes the technical implementation of state feedback more complicated than
output feedback. In contrast, output feedback has significant advantages in technical
implementation.

In this section, we consider the output feedback problem for the discrete-time Markov
jump system (1). The system (1) is said to be mean-square strongly stabilized via an output
feedback controller if there are output feedback matrices

u(k) = F(rk)y(k) = F(rk)Cx(k),
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denoted by Fi, while rk = i for simplicity, such that
x(k + 1) = A0(rk)x(k) + B0(rk)F(rk)C(rk)x(k) +

N

∑
n=1

(An(rk)x(k)+

Bn(rk)F(rk)C(rk)x(k))ωn(k)
y(k) = C(rk)x(k)

(28)

satisfies Definition 1.
The following theorem gives a necessary and sufficient condition for the system to

show mean-square strong stabilization.

Theorem 4. System (28) is mean-square strongly stabilized if and only if there are output feedback
matrices Fi such that

‖Ai +BiFCi‖ < 1, (29)

where

Ai =


A0,i
A1,i

...
AN,i

, Bi =


B0,i
B1,i

...
BN,i


for each i ∈ S .

Proof. The proof of this theorem can be obtained directly from the proof of Theorem 1.

The following theorem gives a necessary and sufficient condition for mean-square
strong stabilization via an output feedback controller and the explicit expressions of the
output feedback matrix Fi.

Theorem 5. Suppose that for each i ∈ S , Bi has full column rank and that Ci has full row rank.
Then, the system in (28) shows mean-square strong stabilization via an output feedback controller if
and only if the following two equations are true:

(i)

{
B⊥i (I −AiA

T
i )B⊥T

i > 0 (if Bi /∈ Rn×n)

BiB
T
i > 0 (if Bi ∈ Rn×n),

(30)

and

(ii)

{
CT⊥

i (I −A T
i Ai)CT⊥T

i > 0(if Ci /∈ Rn×n)

CT
i Ci > 0 (if Ci ∈ Rn×n).

(31)

The explicit expression for the output feedback matrix Fi, when rk = i, can be obtained as
follows:

Fi =− (BT
i ΦiBi)

−1BT
i ΦiAiCT

i (CiCT
i )
−1 + (BT

i ΦiBi)
−1/2LiΨ

1/2
i , (32)

where
Φi = (I −AiA

T
i +AiCT

i (CiCT
i )
−1CiA

T
i )−1, (33)

Ψi =(CiCT
i )
−1 − {(CiCT

i )
−1CiA

T
i (Φi −ΦiBi(B

T
i ΦiBi)

−1BT
i Φi)AiCT

i (CiCT
i )
−1} (34)

and Li is an arbitrary matrix with ‖Li‖ < 1.

Proof. The following is divided into two steps to prove the feasibility of this theorem.
Step 1: In the first step, let us prove that conditions (30) and (31) are equivalent to

Φi > 0 and Ψi > 0, respectively. First, Φi > 0 is equivalent to there being a Vi > 0 such that

I −AiA
T

i +AiCT
i (CiCT

i + Vi)
−1CiA

T
i > 0. (35)
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Next, according to the matrix inversion lemma, this is equivalent to there being a
Vi > 0 such that

I −Ai(I + CT
i V−1

i Ci)
−1A T

i > 0. (36)

Using the Shur complement lemma, it is also equivalent to there being a Vi > 0 such
that

I + CT
i V−1

i Ci −A T
i Ai > 0. (37)

Finally, according to Lemma 1, this is equivalent to (30). The proof of (31) is similar to
the above procedure.

Step 2: In the second step, we only need to prove that Φi > 0 and Ψi > 0 are the same
things as in (29).

Necessity: To prove the necessity, we only need to prove that the following inequality

‖(Ai +BiFiCi)
T‖ < 1 (38)

implies Φi > 0 and Ψi > 0 for ∀i ∈ S by Theorem 4 and the properties of singular values.
Hence, let us consider the following sequences of inequalities:

(Ai +BiFiCi)(Ai +BiFiCi)
T < I.

⇔ AiA
T

i +AiCT
i FT

i BT
i +BiFiCiA

T
i +BiFiCiCT

i FT
i BT

i < I.

⇔BiFiCiCT
i FT

i BT
i +BiFiCiA

T
i +AiCT

i FT
i BT

i +AiCT
i (CiCT

i )
−1CiA

T
i

< I −AiA
T

i +AiCT
i (CiCT

i )
−1CiA

T
i .

⇔ (BiFi +AiCT
i (CiCT

i )
−1)(CiCT

i )(BiFi +AiCT
i (CiCT

i )
−1)T

< I −AiA
T

i +AiCT
i (CiCT

i )
−1CiA

T
i = Φ−1

i .

(39)

Next, since Ci has full row rank, we have CiCT
i > 0 and (CiCT

i )
−1 > 0. Then, according

to the Schur complement lemma, (39) and (CiCT
i )
−1 > 0 are equivalent to

(BiFi +AiCT
i (CiCT

i )
−1)TΦi(BiFi +AiCT

i (CiCT
i )
−1) < (CiCT

i )
−1 (40)

and Φi > 0. Once again, we can compute this formula in a similar way to the previous
procedure in (38), and we obtain that (40) is equivalent to

(Fi + (BT
i ΦiBi)

−1BT
i ΦiAiCT

i (CiCT
i )
−1)T(BT

i ΦiBi)

· (Fi + (BT
i ΦiBi)

−1BT
i ΦiAiCT

i (CiCT
i )
−1) < Ψi.

(41)

Thus, Φi > 0 and Ψi > 0 are true for the existing Fi satisfying (38).
Sufficiency: We suppose that Φi > 0 and Ψi > 0. Hence, (41) can be written as

‖Li‖ < 1,

Li = (BT
i ΦiBi)

− 1
2 (Fi + (BT

i ΦiBi)
−1BT

i ΦiAiCT
i (CiCT

i )
−1)Ψ−

1
2

i .
(42)

Then, one obtains

Fi = − (BT
i ΦiBi)

−1BT
i ΦiAiCT

i (CiCT
i )
−1 + (BT

i ΦiBi)
− 1

2 LiΨ
− 1

2
i , (43)

which proves the sufficiency.

Remark 6. The study of mean-square strong stability in Markov jump systems is still ongoing. For
example, the conclusion of this paper can be extended to a broader context such as semi-Markov jump
systems [28], monotone evolutions for the state vectors [29], and so on. In addition, the conditions of
Theorems 3 and 5 can also be optimized for different aspects, in order to obtain a broader conclusion.
These directions will be studied in the future.
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5. Simulation

First, a mean-square strongly stable system is given, which can be verified by Theo-
rem 1.

Example 1. Consider a discrete-time Markov jump system (1) with two modes. The system
parameters are given by

A0,1 =

[
0.2 −0.2
0 −0.5

]
, A1,1 =

[
0.8 −0.2
0 0.4

]
, A2,1 =

[
0.1 0.3
0 0.2

]
,

A0,2 =

[
0.2 −0.2
0.2 −0.4

]
, A1,2 =

[
0.5 −0.2
−0.1 0.4

]
, A2,2 =

[
0.2 0.3
0.1 0.2

]
,

with initial distribution q1 = 0.5, q2 = 0.5, and the transition probability matrix

(πij)2×2 =

[
0.3 0.7
0.5 0.5

]
.

According to Theorem 1, the following can be obtained:

‖A1‖ =

∥∥∥∥∥∥
A0,1
A1,1
A2,1

∥∥∥∥∥∥ = 0.91 < 1,

and

‖A2‖ =

∥∥∥∥∥∥
A0,2
A1,2
A2,2

∥∥∥∥∥∥ = 0.81 < 1.

Therefore, the system is mean-square strongly stable.
Taking x(0) = [1 − 1]T , the system state curves are shown in Figure 1. It can be seen that

the norm of the system state is convergent.

Figure 1. The norm E‖xk‖2 curve of the system state with respect to the iteration step k in Example 1.

Next, a system that is not mean-square strongly stable is given, and the design prob-
lems of the state feedback controller and output feedback controller are discussed.
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Example 2. Consider a discrete-time Markov jump system (1) with two modes, where the parame-
ters of the system are given by

A0,1 =

[
0.8 −0.5

0.15 0.9

]
, A1,1 =

[
0.2 −0.5
0 0.2

]
, A2,1 =

[
0.1 −0.8
0 0.1

]
,

B0,1 =

[
0.6 −0.2 0.5
−0.6 0 0.3

]
, B1,1 =

[
0.3 0.1 0.3
0 0.5 0

]
, B2,1 =

[
0.2 0.2 0
0 0.8 0.1

]
,

A0,2 =

[
0.85 −0.3

0 0.8

]
, A1,2 =

[
0.1 −0.5
0.3 0.1

]
, A2,2 =

[
0.1 0.5
0.5 0.2

]
,

B0,2 =

[
0.6 −0.2 0.5
−0.6 0 0.3

]
, B1,2 =

[
0.5 −0.1 0.3
0.1 0.5 0.1

]
, B2,2 =

[
0.7 0.2 0.1
0.1 0.5 0.1

]
,

with initial distribution q1 = 0.5, q2 = 0.5, and the transition probability matrix

(πij)2×2 =

[
0.3 0.7
0.5 0.5

]
.

According to Theorem 1, the following can be obtained:

‖A1‖ =

∥∥∥∥∥∥
A0,1
A1,1
A2,1

∥∥∥∥∥∥ = 1.46 > 1,

and

‖A2‖ =

∥∥∥∥∥∥
A0,2
A1,2
A2,2

∥∥∥∥∥∥ = 1.16 > 1.

Therefore, the system is not mean-square strongly stable.
Taking x(0) = [1 − 1]T , the system state curves are shown in Figure 2. It can be seen that

the norm of the system state is divergent.

Figure 2. The norm E‖xk‖2 curve of the system state with respect to the iteration step k in Example 2.

Next, we consider the problems of mean-square strong stabilization by state feedback
and output feedback with respect to Example 2.

Firstly, to consider the problems of state feedback controller design, the preconditions
of (17) of Theorem 2 should be satisfied, and then the verification process is as follows.
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According to Remark 4, the singular decomposition of Bi is as follows.
In mode 1:

U1,1 =



0.55 0.56
−0.25 −0.38
0.11 0.41
−0.42 0.27
−0.07 0.27
−0.66 0.47

, U1,2 =



−0.40 0.27 −0.05 0.39
−0.86 0.07 0.22 0
−0.26 −0.39 −0.08 −0.77
0.04 0.79 −0.11 −0.32
0.15 −0.01 0.95 −0.01
−0.09 −0.38 −0.17 0.39

,

Σ1 =



1 0 0
0 0.96 0
0 0 0.59
0 0 0
0 0 0
0 0 0

, V1 =

 0.5 0.78 0.39
−0.85 0.52 0.05
0.17 0.36 −0.92

.

Then, we take
B⊥1 = UT

1,2,

and obtain

B⊥1 (I −A1A
T

1 )B⊥T
1 =


0.44 0.21 −0.27 0.17
0.21 0.91 0.12 −0.07
−0.27 0.12 0.71 0.08
0.17 −0.07 0.08 0.95

,

which is a positive definite matrix because

λ(B⊥1 (I −A1A
T

1 )B⊥T
1 ) = {0.15, 0.87, 1, 1}.

Hence, by testing the conditions that B1 has full column rank and

B⊥1 (I −A1A
T

1 )B⊥T
1 > 0

in Theorem 3, mode 1 satisfies the conditions of mean-square strong stabilization. Then,
we can take

P1 =

0.5 0
0 0.4
0 0.6


without loss of generality, and hence

Θ1 =

[
0.95 −0.03
−0.03 0.63

]
, K1 =

 0.26 1.35
0.13 0.32
−1.14 0.33


from (18) and (19) in Theorem 3. According to Theorem 2, one obtains

‖A1 +B1K1‖ = 0.84 < 1.
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In mode 2:

U2,1 =



−0.56 0.36
0.38 0.04
−0.44 0.2
−0.12 −0.62
−0.56 −0.22
−0.12 −0.62

, U2,2 =



−0.45 0.35 −0.32 0.35
−0.8 −0.01 0.46 −0.01
−0.20 −0.6 −0.03 −0.60
−0.22 0.49 −0.22 −0.51
0.16 0.12 0.76 0.12
−0.22 −0.51 −0.22 0.49

,

Σ2 =



1.26 0 0
0 0.77 0
0 0 0.58
0 0 0
0 0 0
0 0 0

, V2 =

 −0.95 0.02 0.31
−0.06 −0.99 −0.12
−0.30 0.14 −0.94

.

Then, we take
B⊥2 = UT

2,2,

and obtain

B⊥2 (I −A2A
T

2 )B⊥T
2 =


0.54 0.15 0.1 0.3
0.15 0.94 −0.1 −0.1
0.1 −0.1 0.22 −0.1
0.3 −0.1 −0.11 0.8

,

which is a positive definite matrix because

λ(B⊥2 (I −A1A
T

1 )B⊥T
1 ) = {0.08, 0.41, 1, 1}.

Hence, by testing the conditions that B2 has full column rank and

B⊥2 (I −A2A
T

2 )B⊥T
2 > 0

in Theorem 3, mode 2 satisfies the conditions for mean-square strong stabilization. Then,
we can take

P2 =

0.4 0
0 0.7

0.4 0.1


without loss of generality, and hence

Θ2 =

[
0.72 0.18
0.18 0.24

]
, K2 =

 −0.01 0.51
−0.28 −0.25
−0.55 −0.29


from (18) and (19) in Theorem 3. According to Theorem 2, one obtains

‖A2 +B2K2‖ = 0.95 < 1.

Taking x(0) = [1 − 1]T , the closed-loop system state curves are shown in Figure 3. It
can be seen that the system is mean-square strongly stabilized via state feedback control.
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Figure 3. The norm E‖xk‖2 curve of the closed-loop system state with respect to the iteration step k
in Example 2.

Next, we consider the problem of designing the static output feedback controller in
the above example. First, we consider Example 2 with the output matrices Ci as follows:

C1 =

[
1 1
0 1

]
, C2 =

[
0.2 0.8
1 0.1

]
.

According to the above analysis, the system in Example 2 also satisfies the condition
of (30) in Theorem 5. Hence, we only need to verify condition (31) in Theorem 5. As C and
Ĉ are square matrices, we consider the following procedure:

CT
1 C1 =

[
1 1
1 2

]
, CT

2 C2 =

[
1 1
1 2

]
,

The eigenvalues of the above matrices are {0.38, 2.62} , {0.52, 1.17}, respectively, and
CT

1 C1 > 0, CT
2 C2 > 0. Hence we can design the output feedback controller for this system

using Theorem 5, according to (32)–(34), and taking matrices Li as

L1 =

 0.5 −0.2
−0.1 0
0.3 0.3

, L2 =

0.5 0.1
0.2 0.2
0.4 −0.1

,

without loss of generality. The explicit expressions for output feedback controllers can be
obtained as follows:

Ψ1 =

[
0.95 −0.98
−0.98 1.63

]
, F1 =

 0.26 1.17
0.05 −0.08
−0.98 1.63

,

Ψ2 =

[
0.24 0.66
0.66 0.68

]
, F2 =

 0.86 −0.24
−0.66 −0.02
−0.15 −1.06

.

Taking x(0) = [1 − 1]T , the closed-loop system curves are shown in Figure 4. It can
be seen that the system is mean-square strongly stabilized via output feedback control.
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Figure 4. The norm E‖xk‖2 curve of the closed-loop system state with respect to the iteration step k
in Example 2.

6. Conclusions

In this paper, the definition of the mean-square strong stability of discrete-time Markov
jump systems was proposed, and the necessary and sufficient conditions for mean-square
strong stability were obtained. Furthermore, several necessary and sufficient conditions
guaranteeing mean-square strong stabilization via a state feedback controller and a static
output feedback controller were derived. Moreover, the explicit expressions for the state
feedback controller and static output feedback controller were provided. In future work,
the conclusions of this paper could be extended to a broader context such as semi-Markov
jump systems, monotone evolutions for the state vectors, and so on. In addition, Theorems
3 and 5 can also be optimized for some aspects, in order to obtain a broader conclusion.
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