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1. Introduction

Polynomials are very useful mathematical tools, as they are defined in a simple
way and they can be easily differentiated and integrated. Moreover, they can be quickly
calculated on a computer system and are used to form spline functions.

One of the main problems in applied mathematics is the computation of real functions.
In general, functions that are given as integro-differential equations cannot be explicitly
expressed in terms of the so-called elementary functions. In addition, even elementary
functions can take real values that cannot be explicitly given.

For these reasons, we often need to approximate a given function using simpler func-
tions. In 1885, Weierstass [1] proved the approximation theorem according to which any
continuous function defined on a closed and bounded interval can be uniformly approxi-
mated by a polynomial function. After this theorem, sets or sequences of polynomials were
increasingly studied (see, for example, Refs. [2,3]).

Therefore, we find classes of polynomials in different sciences. For example, orthog-
onal polynomials are frequently used in physics, in the approximation theory [4–6] and
also in the solution of differential equations. Hermite polynomials are used in statistics—
umbral polynomials in algebra and combinatorics. Particularly, binomial, Appell and
Sheffer polynomials are widely used, including more important families as Bernoulli, Euler,
Boile, falling factorials, etc. (see [7–12] and the references therein).

In [13], Lidstone generalized an Aitken theorem on interpolation and proposed a
two-point expansion of polynomials, in which the polynomial basis, called Lidstone poly-
nomials, is expressed in powers of odd and, respectively, even canonical monomials. After,
in [14,15], the authors generalized Lidstone polynomials, introduced odd and even special
polynomial sequences and gave some applications to approximation functions, boundary
value problems and cubature formulas.

In this paper, we consider other odd and even special polynomial sequences that are
connected to the δ2(·) operator, with δ(·) being the central factorial difference operator ([16],
p. 7). These polynomials can be the basis for generalized interpolation Everett-type formulas.

The outline of this paper is as follows. In Section 2, we give some preliminary defini-
tions, results and characterizations, and we formalize the problem; in Section 3, we consider
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general odd central factorial polynomial sequences and, in Section 4, we consider general
even central factorial polynomial sequences. For each kind of sequence (odd and even),
we give the matrix form, the conjugate polynomials, recurrence relations and the related
determinant forms, the generating function. Finally, we give some examples of new odd
and even polynomial sequences. Concluding remarks close the paper.

We will adopt the following abbreviations:
p.s. polynomial sequence
OLPS: odd Lidstone-type p.s., ELPS: even Lidstone-type p.s.,
GOCPS: general odd central factorial p.s., GECPS: general even central factorial p.s.,

G̃OCPS: the algebra (GOCPS,+, ·, ◦), G̃ECPS: the algebra (GECPS,+, ·, ◦).

2. Preliminaries and Problem’s Position

In order to make the work as autonomous as possible, we give some preliminary
definitions and propositions.

Let
{

pn
}

n∈IN be a polynomial sequence (p.s. in the following) [17], such that p0(x) = 1
and, for n ≥ 1, pn is a polynomial of degree n on a field IK of characteristic 0 (typically
IK = IR or IK = IC).

Definition 1. A polynomial sequence is called symmetric if and only if

∀n ∈ IN, ∀x ∈ IK, pn(−x) = (−1)n pn(x). (1)

Proposition 1. Let
{

pn
}

n∈IN be a symmetric p.s. Then, for all n ∈ IN, pn has the decomposition
in classical monomial basis only with powers xn−2k, k = 0, 1, . . . , b n

2 c.

Proof. If we set

pn(x) =
n

∑
k=0

tn,kxk, tn,k ∈ IK, tn,n 6= 0, k = 0, . . . , n,

the result follows from (1).

This suggests us to give the following definition.

Definition 2. An odd (resp. even) polynomial sequence is a polynomial sequence whose elements
have only odd (resp. even) powers in the canonical decomposition.

Of course, a symmetric polynomial involves lower computational costs than a polyno-
mial of the same degree. Moreover, every polynomial of an odd (resp. even) p.s. is an odd
(resp. even) function.

In [14,15], the authors consider the so-called odd and, respectively, even Lidstone-type
polynomial sequences.

We remember that

(a)
{

pn
}

n∈IN is an odd Lidstone-type p.s. (OLPS) if and only if{
p′′n(x) = 2n(2n + 1)pn−1(x)
pn(0) = 0, deg(pn) = 2n + 1, n ≥ 0.

(2)

(b)
{

pn
}

n∈IN is an even Lidstone-type p.s. (ELPS) if and only if{
p′′n(x) = 2n(2n− 1)pn−1(x)

p′n(0) = 0, deg(pn) = 2n, n ≥ 0.
(3)

In [15], some applications of OLPS and ELPS were proposed.
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Now, we observe that the central factorial polynomials ([17], p. 67), ([18], p. 212),
Refs. [19,20], ([16], p. 6) are classically denoted by x[n] and are defined as

x[0] = 1,

x[n] = x
n−1

∏
j=1

(
x +

n
2
− j
)

, n ≥ 1.

They satisfy the identity

δx[n] = nx[n−1], n ≥ 1,

where δ is the central operator ([16], p. 7) defined by

δ f (x) = f
(

x +
1
2

)
− f

(
x− 1

2

)
,

with f being a real function of a real variable.
The first of these polynomials are

x[0] = 1, x[1] = x,

x[2] = x2, x[3] = x3 − 1
4

x,

x[4] = x4 − x2, x[5] = x5 − 5
2

x3 +
9

16
x.

Their plots are shown in Figure 1. The figure was made using Matlab/Octave software.

Figure 1. Central factorial polynomials.

In general, it results in ([16], p. 9)

x[2ν+1] = x
(

x2 − 1
4

)(
x2 − 9

4

)
. . .

(
x2 − (2ν− 1)2

4

)
, (4a)

x[2ν] = x2
(

x2 − 1
)

. . .
(

x2 − (ν− 1)2
)

. (4b)
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Remark 1. It is known that
{

x[ν]
}

ν∈IN
is a binomial type sequence ([17], p. 66). It has the

following decomposition:

x[ν] =
ν

∑
k=0

bν,kxk, ∀ν ∈ IN,

where the bν,k are calculated by Algorithm 2.1.1 in ([17], p. 7).
In the literature (see for example [17–19] and references therein), the numbers bν,k are denoted

by t(ν, k) and are called central factorial numbers of the first kind. There is a wide amount of
literature on these numbers (see, for example, [17,21–26] and references therein).

We note that the elements of the subsequence
{

x[2ν+1]}
ν∈IN satisfy the following

properties:

(1o) x[2ν+1] contains only odd powers of the variable x and deg x[2ν+1] = 2ν + 1;

(2o) δ2x[2ν+1] = δ
(

δx[2ν+1]
)
= 2ν(2ν + 1) x[2ν−1];

(3o) x[2ν+1](0) = 0, x[2ν+1]
(

1
2

)
= 0, ν ≥ 1.

Similarly, the elements of the subsequence
{

x[2ν]
}

ν∈IN satisfy:

(1e) x[2ν] contains only even powers of the variable x and deg x[2ν] = 2ν;

(2e) δ2x[2ν] = δ
(

δx[2ν]
)
= 2ν δx[2ν−1] = 2ν(2ν− 1) x[2ν−2];

(3e) x[2ν](0) = 0,
(

x[2ν]
)′
(0) = 0, x[2ν](1) = 0, ν ≥ 1.

Hence, the subsequences
{

x[2ν+1]}
ν∈IN and

{
x[2ν]

}
ν∈IN are respectively an odd and

an even p.s. We call the subsequences
{

x[2ν+1]}
ν∈IN and

{
x[2ν]

}
ν∈IN odd and even central

factorial p.s., respectively.
The previous considerations suggest generalizing the problem: we look for, if there

exists, the odd p.s.
{

dn
}

n∈IN such that{
δ2dn(x) = 2n(2n + 1)dn−1(x), n ≥ 1,

dn(0) = 0, deg(dn) = 2n + 1, n ≥ 0.
(5)

Analogously, we look for, if there exists, the even p.s.
{

en
}

n∈IN such that{
δ2en(x) = 2n(2n− 1)en−1(x), n ≥ 1,

e′n(0) = 0, deg(en) = 2n, n ≥ 0.
(6)

If these polynomial sequences exist, we call
{

dn
}

n∈IN general odd central factorial p.s.
(GOCPS) and

{
en
}

n∈IN general even central factorial p.s. (GECPS).

Remark 2. Note that (5) and (6) differ from (2) and (3) in the operator: in (5) and (6), there is the
discrete central finite difference operator δ2, while, in (2) and (3), there is the differential operator
d2

dx2 ≡ D2.

3. General Odd Central Factorial Polynomial Sequences

To study problem (5), proceeding by induction, we note that every term dn of the
sequence

{
dn
}

n∈IN is determined by the previous term dn−1 and a constant. The following
proposition provides an explicit expression for dn in terms of central factorial polynomials.
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Proposition 2. Let
{

dn
}

n∈IN be an odd p.s. It is a GOCPS, that is, it satisfies (5) if and only if
there exists a numerical sequence (α2n)n∈IN, with α0 6= 0, such that

dn(x) =
n

∑
k=0

(
2n + 1
2k + 1

)
α2(n−k)

2(n− k) + 1
x[2k+1]. (7)

Proof. If (7) holds, from the linearity of the operator δ2(·) and from property (2o), dn satisfies

δ2dn(x) = 2n(2n + 1) dn−1(x).

Moreover, it results in dn(0) = 0, d0(x) = α0x and deg(dn) is 2n + 1.
Vice versa, we can obtain the result by mathematical induction, taking into account

that every odd polynomial can be expressed as a linear combination of x[2i+1], i ≥ 0.

Remark 3. From (4a), for k > 0,

(
x[2k+1]

)′
(0) = (−1)k

k

∏
i=1

(2i− 1)2

4
.

Hence, from (7), for n > 0 it results in

d′n(0) =
n

∑
k=0

(
2n + 1
2k + 1

)
α2(n−k)

2(n− k) + 1
(−1)k

k

∏
i=1

(2i− 1)2

4
. (8)

Proposition 3. Let
{

dn
}

n∈IN be a GOCPS. Then, for j = 0, . . . , n, we obtain

(1) δ2jdn(x) =
(2n + 1)!

(2(n− j) + 1)!
dn−j(x);

(2) δ2j+1dn(x) =
(2n + 1)!

(2(n− j) + 1)!
δdn−j(x);

(3) δ2jdn(0) = 0, δ2j+1dn(0) =
(2n + 1)!

(2(n− j) + 1)!
δdn−j(0).

Proof. The proof follows easily from (5) after some calculations.

Corollary 1. Let
{

dn
}

n∈IN be a GOCPS. Then, ∀n, j ∈ IN with j < n, and we obtain

2j

∑
k=0

(
2j
k

)
(−1)kdn(x + j− k) =

(2n + 1)!
(2(n− j) + 1)!

dn−j(x),

2j+1

∑
k=0

(
2j + 1

k

)
(−1)kdn

(
x + j− k +

1
2

)
=

(2n + 1)!
(2(n− j) + 1)!

δdn−j(x).

Proof. The proof follows from Proposition 3 and the known identities on operator δ.

3.1. Matrix Form

Let
{

dn
}

n∈IN be the GOCPS related to the numerical sequence (α2n)n∈IN, α0 6= 0,
that is, a p.s. as in Proposition 2. The relation (7) suggests to consider the lower infinite
triangular matrix V∞ =

(
vi,j
)

with

vi,j =


(

2i + 1
2j + 1

)
α2(i−j)

2(i− j) + 1
, i ≥ 0, j = 0, 1, . . . , i,

0 i < j.
(9)

We note that V∞ is a Lidstone-type matrix as defined in [14].
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Let
¬
X∞ and D∞ be the infinite vectors

¬
X∞ =

[
x[1], x[3], . . . , x[2ν+1], . . .

]T
, D∞ = [d0(x), d1(x), . . . , dν(x), . . . ]T .

Then, from (7), we obtain D∞ = V∞
¬
X∞, or, for simplicity,

D = V
¬
X, (10)

where, of course, D = D∞, V = V∞,
¬
X =

¬
X∞.

If, in (9), we consider i = 0, . . . , n, n ∈ IN, we obtain the principal submatrix of order

n + 1 of V that we denote by Vn. Analogously,
¬
Xn and Dn are the principal subvectors with

n + 1 components of
¬
X∞ and D∞, respectively.

Then, from (10),

Dn = Vn
¬
Xn. (11)

We call the relation (11) (or (10)) the first matrix form of the GOCPS
{

dn
}

n∈IN.
It is known [14] that the matrix V can be factorized as

V = W Tα W−1,

where W = diag{(2i + 1)! | i ≥ 0} and Tα is the lower triangular Toepliz matrix with

elements tα
i,j =

α2(i−j)

(2(i− j) + 1)!
.

The matrix V is invertible and V−1 =
(
v−1

i,j
)

i,j∈IN, with

v−1
i,j =


(

2i + 1
2j + 1

)
β2(i−j)

2(i− j) + 1
, i ≥ 0, j = 0, 1, . . . , i,

0 i < j,

(β2n)n∈IN being the numerical sequence implicitly defined by [14]

i

∑
j=0

β2jα2(i−j)

(2j + 1)!(2(i− j) + 1)!
= δi0, i ≥ 0, (12)

and δij is the Kronecker symbol.

Remark 4. The (12) is as an infinite linear system for the calculation of the numerical sequence(
β2k
)

k∈IN. By applying Cramer’s rule, the first n + 1 equations in (12) give

β0 =
1
α0

β2i =
3! 5! · · · (2i + 1)!

(−1)iαi+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α2
3!

α0
3! 0 · · · · · · 0

α4
5!

α2
3!3!

α0
5! 0 · · · 0

...
...

...
. . .

...
...

...
...

. . . . . .
...

α2(i−1)
(2i−1)!

α2(i−2)
(2i−3)!3!

α2(i−3)
(2i−5)!5! · · · α0

(2i−1)!
α2i

(2i+1)!
α2(i−1)

(2i−1)!3!
α2(i−2)

(2i−3)!5! · · · · · · α2
3!(2i−1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, i = 1, . . . , n.

(13)

Furthermore,
V−1 = W Tβ W−1,
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where Tβ is the lower triangular Toepliz matrix with elements tβ
i,j =

β2(i−j)

(2(i− j) + 1)!
.

3.2. Conjugate Polynomials

Let (α2n)n∈IN, α0 6= 0 be an assigned numerical sequence and (β2n)n∈IN the sequence
related to (α2n)n∈IN by (12). Let

{
dn
}

n∈IN be the GOCPS related to the sequence (α2n)n∈IN.
For any k ∈ IN, we can consider the polynomial

d̂k(x) =
k

∑
j=0

(
2k + 1
2j + 1

)
β2j

2(k− j) + 1
x[2(k−j)+1] =

k

∑
j=0

(
2k + 1
2j + 1

)
β2(k−j)

2(k− j) + 1
x[2j+1]. (14)

From (14) and Proposition 2, the sequence
{

d̂k
}

k∈IN is a GOCPS. We call the sequences{
dk
}

k∈IN,
{

d̂k
}

k∈IN conjugate odd central polynomial sequences.

By setting D̂ = D̂∞ =
[
d̂0(x), d̂1(x), . . . , d̂ν(x), . . .

]T
and A = V−1 =

(
ai,j
)

with

ai,j =


(

2i + 1
2j + 1

)
β2(i−j)

2(i− j) + 1
, i ≥ 0, j = 0, 1, . . . , i,

0 i < j,

from (14), we have

D̂ = A
¬
X

and D̂n = An
¬
Xn, ∀n ∈ IN.

If we set V2 = V V =
(

v∗i,j
)

, and A2 = A A =
(

a∗i,j
)

, after easy calculations, we obtain{
D = V2 D̂

D̂ = A2 D
and, ∀n ∈ IN,

{
Dn = V2

n D̂n

D̂n = A2
n Dn.

Moreover,

dn(x) =
n

∑
j=0

v∗n,jd̂j(x), d̂n(x) =
n

∑
j=0

a∗n,jdj(x), ∀n ∈ IN.

3.3. Recurrence Relation and Related Determinant Form

The elements of a GOCPS satisfy some recurrence relations. In addition, they can
be represented as Hessenberg determinants. From the identity (11), being An = V−1

n , we
obtain

¬
Xn = An Dn

and

x[2k+1] =
k

∑
j=0

(
2k + 1
2j + 1

)
β2(k−j)

2(k− j) + 1
dj(x), k = 0, . . . , n. (15)

Theorem 1 ( Recurrence relation). Let
{

dn
}

n∈IN be an odd p.s. It is a GOCPS if and only if there
exist numerical sequences (α2n)n∈IN, (β2n)n∈IN, with α0 6= 0, β0 6= 0, satisfying the relation (12),
such that

dk(x) =
1
β0

[
x[2k+1] −

k−1

∑
j=0

(
2k + 1
2j + 1

)
β2(k−j)

2(k− j) + 1
dj(x)

]
, ∀k ≥ 1.

Proof. The proof follows from (15).
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Theorem 2 (Determinant form). Let
{

dn
}

n∈IN be a GOCPS as in Theorem 1. Then,

d0(x) =
1
β0

x,

dk(x) =
(−1)k

βk+1
0

k

∏
i=1

(2i− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x[1] x[3] · · · x[2k−1] x[2k+1]

β0 β2 · · · β2(k−1) β2k

0 3!β0 · · · (2k−1)!
(2k−3)! β2(k−2)

(2k+1)!
(2k−1)! β2(k−1)

...
. . . . . .

...
...

...
. . .

...
...

0 · · · · · · (2k− 1)!β0
(2k+1)!

3! β2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, k ≥ 1.

(16)

Proof. The relation (15), for k = 0, . . . , n, can be considered as a linear system in the
unknowns dj(x), j = 0, . . . , n. Solving this system by Cramer’s rule provides the result.

By means of the determinant form (16), we can prove some properties using elementary
linear algebra tools. One of these is the following orthogonality conditions.

Proposition 4. Let X be a linear space of regular real value functions and L be a linear functional
on X such that L[x] 6= 0 (by normalization L[x] = 1). Moreover, let L

([
x[2k+1]

])
= β2k, k ≥ 0.

If
{

dL
k
}

k∈IN is the GOPS defined as in (16), then the following orthogonality conditions hold

L
([

δ(2i)dL
k

])
= (2k + 1)!δik, i = 0, . . . , k.

Proof. The proof follows from the linearity of the functional L and from Theorem 2.

Remark 5. Proposition 4 expresses the biorthogonality of the system
({

dL
k
}

k∈IN,
{

Lk
}

k∈IN

)
,

where
Li(·) = L

(
δ2i(·)

)
, ∀i ∈ IN∪ {0}.

With the same techniques used to prove Theorems 1 and 2, we can prove the following
relations for the conjugate sequence

{
d̂n
}

n∈IN:

d̂n(x) =
1
α0

[
x[2k+1] −

k−1

∑
j=0

(
2k + 1
2j + 1

)
α2(k−j)

2(k− j) + 1
d̂j(x)

]
and

d̂0(x) =
1
α0

x,

d̂k(x) =
(−1)k

αk+1
0

k

∏
i=1

(2i− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x[1] x[3] · · · x[2k−1] x[2k+1]

α0 α2 · · · α2(k−1) α2k

0 3!α0 · · · (2k−1)!
(2k−3)! α2(k−2)

(2k+1)!
(2k−1)! α2(k−1)

...
. . . . . .

...
...

...
. . .

...
...

0 · · · · · · (2k− 1)!α0
(2k+1)!

3! α2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, k ≥ 1.

(17)

Remark 6. We note that the determinants in (16) and (17) are Hessenberg determinants. It is
known [17] that, for their numerical calculation, the Gaussian elimination without pivoting is stable.
Furthermore, Proposition 4 shows that (16) is also used for theoretical tools.
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3.4. The Linear Space G̃OCPS

We can extend the classical umbral composition [14,17,19,20] to the set of general odd
central factorial polynomial sequences.

Definition 3. Let
{

dk
}

k∈IN and
{

d∗k
}

k∈IN be the general central polynomial sequences related to
the numerical sequences (ρ2k)k∈IN and (σ2k)k∈IN, respectively. That is,

dk(x) =
k

∑
j=0

(
2k + 1
2j + 1

)
ρ2(k−j)

2(k− j) + 1
x[2j+1], ∀k ∈ IN,

d∗k (x) =
k

∑
j=0

(
2k + 1
2j + 1

)
σ2(k−j)

2(k− j) + 1
x[2j+1], ∀k ∈ IN.

The umbral composition of dk(x) and d∗k (x) is defined as

zk(x) := (dk ◦ d∗k )(x) =
k

∑
j=0

(
2k + 1
2j + 1

)
ρ2(k−j)

2(k− j) + 1
d∗j (x), ∀k ∈ IN. (18)

Remark 7. It’s easy to verify that

1.
{

zk
}

k∈IN =
{

dk ◦ d∗k
}

k∈IN is a GOCPS;

2. ∀k ∈ IN,
(

dk ◦ d̂k

)
(x) = x[2k+1].

Theorem 3. Let "+" and "·" be, respectively, the usual sum and product for a scalar on the set of
odd polynomial sequences and "◦" the umbral composition defined in (18). The algebraic structure
G̃OCPS = (GOCPS,+, ·, ◦) is an algebra.

Proof. The sequence
{

ik
}

k∈IN with ik = x[2k+1] is a GOCPS and, for every
{

dk
}

k∈IN ∈
GOCPS, we obtain dk ◦ ik = dk. Moreover, if

{
dk
}

k∈IN and
{

d̂k
}

k∈IN are conjugate central
factorial polynomial sequences, then dk ◦ d̂k = ik. Hence, we can consider the algebraic

structure G̃OCPS. It is endowed with the identity
{

ik
}

k∈IN and the inverse
{

d̂k
}

k∈IN. This
concludes the proof.

3.5. Generating Function

In order to determine a generating function for a GOCPS, we begin by considering the
generating function for odd central polynomial sequences.

Let H(t) be the power series

H(t) =
∞

∑
n=0

(−1)n

(
n

∏
k=1

(2k− 1)2

4

)
t2n+1

(2n + 1)!
.

Theorem 4. The following identity is true:

sinh(x H(t)) =
∞

∑
ν=0

x[2ν+1] t2ν+1

(2ν + 1)!
.

Proof. Taking into account that

sinh(x H(t)) =
∞

∑
k=0

(xH(t))2k+1

(2k + 1)!
,

after some calculations (see also Proposition 2.1 in ([17], p. 8) and ([17], pp. 69–71)), we
obtain the polynomials x[2k+1] as expressed in (4a).
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After this theorem, we can say that the function

g(x, t) = sinh(x H(t))

is the generating function of the odd central factorial p.s.
{

x[2ν+1]
}

ν∈IN
.

In order to determine the generating function of the GOCPS
{

dk
}

k∈IN related to the
numerical sequence (α2k)k∈IN, we set

l(t) =
∞

∑
k=0

α2k
t2k

(2k + 1)!
. (19)

Theorem 5. Let
{

dk
}

k∈IN be the GOCPS related to (α2k)k∈IN. Then, the function

F(x, t) = l(t) g(x, t)

is its generating function, that is,

l(t) sinh(x H(t)) =
∞

∑
k=0

dk(x)
t2k+1

(2k + 1)!
.

Proof. Taking into account the previous theorem, relations (19) and (7), the proof follows
by standard calculations.

3.6. Connection to the Basic Monomials x2i+1

In order to write a GOCPS as a linear combination of odd monomials x2i+1, we observe
that, from Remark 1,

x[k] =
k

∑
i=0

t(k, i) xi. (20)

Then,

x[2k+1] =
k

∑
i=0

t(2k + 1, i) x2i+1.

By setting Wt =
(
wt

i,j
)

i,j∈IN, with

wt
i,j =

{
t(2i + 1, j) i ≥ j
0 i < j,

we have
¬
X = Wt X̃, (21)

where X̃ =
[
x, x3, . . . , x2ν+1, . . .

]T .
Let

{
dk
}

k∈IN be the GOCPS related to the numerical sequence
(
α2k
)

k∈IN and D as in
(10). Then, by substituting the relation (21) in (10), we obtain

D =
(
V Wt)X̃,

that is,

dn(x) =
n

∑
j=0

zn,jx2j+1, ∀n ∈ IN, (22)

with zn,j =
n

∑
k=0

vn,kwt
k,j.

Remark 8. Observe that d′n(0) = zn,0, ∀n ∈ IN.
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For the calculation of the coefficients zn,j, j = 0, . . . , n, in (22), a direct algorithm can
be applied. It is described in the following theorem.

Theorem 6. Let
(
zn,0
)

n∈IN be an assigned numerical sequence. Then, the sequence
{

dn
}

n∈IN with
dn as in (22) is a GOCPS if and only if the coefficients zn,j, j = 0, 1, . . . , n are the solution of the
upper triangular linear system

n

∑
i=j+1

(
2i + 1
2j + 1

)
zn,i = n(2n + 1)zn−1,j, ∀n ≥ 1, j = 0, . . . , n− 1. (23)

Proof. The polynomial dn as in (22) satisfies the first of (5) if and only if

n−1

∑
j=0

x2j+1
n

∑
i=j+1

(
2i + 1
2j + 1

)
zn,i = n(2n + 1)

n−1

∑
j=0

zn−1,jx2j+1.

Relation (23) follows by applying the principle of identity of polynomials, observing
that zn,n = zn−1,n−1 = · · · = z0,0 = 1.

Remark 9. From Theorem 6, by means of backward substitutions, we have

zn,j =
n(2n + 1)
j(2j + 1)

zn−1,j−1 −
1

j(2j + 1)

n

∑
i=j+1

(
2i + 1
2j− 1

)
zn,i, j = n− 1, . . . , 1. (24)

If V Wt = Z =
(
zi,j
)

i,j∈IN, then, from (22), we obtain the second matrix form for the

sequence
{

dn
}

n∈IN:
D = Z X̃. (25)

From (25), Z being invertible,

X̃ = Z−1 D =
(
Wt)−1V−1D.

If Z−1 =
(
z−1

i,j
)

i,j∈IN, then

x2j+1 =
j

∑
i=0

z−1
j,i di(x).

3.7. Examples

Now, we give some examples of general odd central factorial polynomial sequences.
Given a numerical sequence (α2n)n∈IN, α0 6= 0, we determine the related GOCPS{

dn
}

n∈IN. From Proposition 2, the elements of
{

dn
}

n∈IN are such that

dn(x) =
n

∑
k=0

(
2n + 1
2k + 1

)
α2(n−k)

2(n− k) + 1
x[2k+1], ∀n ∈ IN.

In order to write the odd central factorial p.s. in terms of the monomials x2j+1, given a
numerical sequence (zn,0)n∈IN, from Theorem 6, we obtain the sequence

{
dn
}

n∈IN. For all
n ∈ IN, the elements of

{
dn
}

n∈IN have the form

dn(x) =
n

∑
j=0

zn,jx2j+1, (26)

where the coefficients zn,j, n ≥ 1, j = 0, . . . , n − 1 can be calculated by the recurrence
relations (24).
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Example 1 (Odd Fibonacci-central factorial p.s.). We will determine the GOCPS
{

dn
}

n∈IN
such that

d′n(0) = Fn, ∀n ∈ IN, (27)

where
(

Fn
)

n∈IN is the well-known Fibonacci [27,28] numerical sequence given by

F0 = F1 = 1, Fk = Fk−1 + Fk−2, k ≥ 2.

Hence, the elements of this p.s. satisfy{
δ2dn(x) = 2n(2n + 1)dn−1(x)

dn(0) = 0, d′n(0) = Fn.

We call
{

dn
}

n∈IN odd Fibonacci-central factorial p.s., and we denote it by
{

Fc
n
}

n∈IN.
The conditions (8) and (27) give

n

∑
k=0

(
2n + 1
2k + 1

)
α2(n−k)

2(n− k) + 1
(−1)k

k

∏
i=1

(2i− 1)2

4
= Fn, n ≥ 0.

From this, we obtain the coefficients α2k, k = 0, . . . , n.
For example, for n = 4, we obtain

α0 = 1, α2 =
5
4

, α4 =
119
48

, α6 =
1139
192

, α8 = −3427
1280

.

Hence, the first five odd Fibonacci-central factorial polynomials in the basis x[2k+1] are

Fc
0(x) = x[1], Fc

1(x) = x[3] +
5
4

x[1], Fc
2(x) = x[5] +

25
6

x[3] +
119
48

x[1],

Fc
3(x) = x[7] +

35
4

x[5] +
833
48

x[3] +
1139
192

x[1],

Fc
4(x) = x[9] + 15x[7] +

2499
16

x[5] +
1139

16
x[3] − 3427

1280
x[1].

Figure 2 shows the plot of these polynomials.

Figure 2. Odd Fibonacci-central factorial polynomials.

The conditions
zn,0 = Fn, n = 0, 1, . . . ,
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and the relation (24) allow for obtaining the polynomials written in the monomial basis.
For example, for n = 0, . . . , 5, we have

Fc
0(x) = x, Fc

1(x) = x3 + x, Fc
2(x) = x5 +

5
3

x3 + 2x,

Fc
3(x) = x7 +

35
3

x3 + 3x,

Fc
4(x) = x9 − 6x7 +

273
5

x5 − 44x3 + 5x,

Fc
5(x) = x11 − 55

3
x9 + 231x7 − 913x5 +

3377
3

x3 + 8x.

In [27], the Fibonacci p.s.
{

fn
}

n∈IN was analyzed. Note that the p.s.
{

fn
}

n∈IN has an odd
polynomial subsequence { f2n+1}n∈IN. This subsequence differs from

{
Fc

n
}

n∈IN.

Example 2 (Odd Hermite-central factorial polynomial sequence). Let
{
Hn
}

n∈IN be the well-
known Hermite p.s. ([17], p. 135), ([29], p. 187). We consider the monic Hermite p.s.

{
Hn
}

n∈IN
and determine the GOCPS

{
dn
}

n∈IN such that

d′0(0) = 1, d′n(0) = H′n(0) =

(−1)n
(

3
2

)
n

for even n > 0

0 for odd n > 0.
(28)

The elements of this p.s. satisfy{
δ2dn(x) = 2n(2n + 1)dn−1(x)

dn(0) = 0, d′n(0) = H′n(0), n > 0.

We call this sequence odd Hermite-central factorial p.s., and we denote it by
{

Hc
n
}

n∈IN.
From (8) and (28), for any n ∈ IN, we obtain α2k, k = 0, . . . , n.
For example, for n = 4, we have

α0 = 1, α2 =
5
4

, α4 =
23
48

, α6 = −397
192

, α8 = −4259
1280

.

The first five odd Hermite-central factorial polynomials are

Hc
0(x) = x[1], Hc

1(x) = x[3] +
5
4

x[1], Hc
2(x) = x[5] +

25
6

x[3] +
23
48

x[1],

Hc
3(x) = x[7] +

35
4

x[5] +
161
48

x[3] − 397
192

x[1],

Hc
4(x) = x[9] + 15x[7] +

483
40

x[5] − 397
16

x[3] − 4259
1280

x[1].

Figure 3 shows the plot of these polynomials.
By the relations (24) and (26), we obtain the polynomials written in the monomial basis.
For example, for n = 0, . . . , 5, they are

Hc
0(x) = x, Hc

1(x) = x3 + x, Hc
2(x) = x5 +

5
3

x3,

Hc
3(x) = x7 − 7

3
x3 − 3

2
x,

Hc
4(x) = x9 − 6x7 +

21
5

x5 − 14x3,

Hc
5(x) = x11 − 55

3
x9 + 99x7 − 286x5 + 297x3 +

15
4

x.
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Figure 3. Odd Hermite-central factorial polynomials.

4. General Even Central Factorial Polynomial Sequences

Now, analogous with the odd case, we consider the general even central factorial
polynomial sequences, that is, the polynomial sequences

{
en
}

n∈IN whose elements are
polynomials of degree 2n satisfying{

δ2en(x) = 2n(2n− 1)en−1(x)

e′n(0) = 0, e0(x) = 1.
(29)

Since all the proofs of the results concerning this type of polynomial sequences are
similar to those of the odd case, we omit them.

Proposition 5. Let
{

en
}

n∈IN be an even p.s. It is a GECPS, that is, it satisfies (29) if and only if a
numerical sequence (γ2n)n∈IN, with γ0 6= 0, exists such that ∀n ∈ IN, ∀x ∈ IK,

en(x) =
n

∑
k=0

(
2n
2k

)
γ2(n−k)x

[2k].

Proposition 6. Let
{

en
}

n∈IN be a GECPS. Then, for j = 0, . . . , n, we obtain

(1) δ2jen(x) =
(2n)!

(2(n− j))!
en−j(x);

(2) δ2j+1en(x) =
(2n)!

(2(n− j))!
δen−j(x);

(3) δ2j+1en(0) = 0, δ2jen(0) =
(2n)!

(2(n− j))!
δen−j(0).

Corollary 2. For a GECPS
{

en
}

n∈IN, ∀n, j ∈ IN with j < n, the following identities hold:

2j

∑
k=0

(
2j
k

)
(−1)ken(x + j− k) =

(2n)!
(2(n− j))!

en−j(x);

2j+1

∑
k=0

(
2j + 1

k

)
(−1)ken

(
x + j− k +

1
2

)
=

(2n)!
(2(n− j))!

δen−j(x).
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4.1. Matrix Form

Given a numerical sequence
(
γ2k
)

k∈IN, γ0 6= 0, let us consider the lower infinite
triangular matrix U∞ =

(
ui,j
)

with

ui,j =


(

2i
2j

)
γ2(i−j), i ≥ 0, j = 0, 1, . . . , i

0 i < j

The first matrix form of a GECPS is:

E∞ = U∞
�
X∞, or E = U

�
X, (30)

where U = U∞,

�
X =

�
X∞ =

[
1, x[2], . . . , x[2ν], . . .

]T
, E = E∞ = [e0(x), e1(x), . . . , eν(x), . . . ]T .

The matrix U can be factorized [14] as U = G Tfl G−1, where G = diag{(2i)! | i ≥ 0}
and Tγ is a lower triangular Toepliz matrix with elements tγ

i,j =
γ2(i−j)

(2(i− j))!
.

U is invertible and U−1 = G Tı G−1, where Tı is a lower triangular Toepliz matrix

with elements tβ
i,j =

ζ2(i−j)

(2(i− j))!
,
(
ζ2k
)

k∈IN being the numerical sequence defined by

i

∑
j=0

γ2jζ2(i−j)

(2j)!(2(i− j))!
= δi0, i ≥ 0. (31)

Let Un be the principal submatrix of order n+ 1 of U and let
�
Xn and En be the principal

subvectors with n + 1 components of
�
X∞ and E∞, respectively. Then, from (30),

En = Un
�
Xn. (32)

4.2. Conjugate Even Polynomials

Let
(
γ2k
)

k∈IN, γ0 6= 0, be a given numerical sequence and
(
ζ2k
)

k∈IN the related se-
quence defined as in (31). For any k ∈ IN, we can consider the polynomial

êk(x) =
k

∑
j=0

(
2k
2j

)
ζ2jx[2(k−j)] =

k

∑
j=0

(
2k
2j

)
ζ2(k−j)x

[2j]. (33)

From this identity and Proposition 5, the sequence
{

êk
}

k∈IN is a GECPS. We call the
sequences

{
ek
}

k∈IN,
{

êk
}

k∈IN conjugate even central polynomial sequences.
By setting B =

(
bi,j
)
, with

bi,j =


(

2i
2j

)
ζ2(i−j), i ≥ 0, j = 0, 1, . . . , i

0 i < j,

and Ê = Ê∞ = [ê0(x), ê1(x), . . . , êν(x), . . . ], from (33), we have

Ê = B
�
X and Ên = Bn

�
Xn, ∀n ∈ IN.
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Moreover, {
E = U2 Ê

Ê = B2 E
and

{
En = U2

n Ên

Ên = B2
n En,

∀n ∈ IN,

where U2 = U U =
(

u∗i,j
)

, and B2 = B B =
(

b∗i,j
)

. Finally, ∀n ∈ IN,

en(x) =
n

∑
j=0

u∗n,j êj(x), ên(x) =
n

∑
j=0

b∗n,jej(x).

4.3. Recurrence Relation and Related Determinant Form

From the identity (32), we have

�
Xn = U−1

n En,

and, for k = 0, . . . , n,

x[2k] =
k

∑
j=0

(
2k
2j

)
ζ2(k−j)ej(x).

Theorem 7 (Recurrence relation). Let
{

en
}

n∈IN be an even p.s. It is a GECPS if and only if there
exist numerical sequences

(
γ2k
)

k∈IN,
(
ζ2k
)

k∈IN, with γ0 6= 0, ζ0 6= 0, satisfying the relation (31),
such that, ∀k ≥ 1,

ek(x) =
1
ζ0

[
x[2k] −

k−1

∑
j=0

(
2k
2j

)
ζ2(k−j)ej(x)

]
.

Remark 10. For the elements of the conjugate sequence
{

ên
}

n∈IN, the first recurrence relation is

ên(x) =
1

γ0

[
x[2k] −

k−1

∑
j=0

(
2k
2j

)
γ2(k−j) êj(x)

]
.

Theorem 8 (Determinant form). Let
{

en
}

n∈IN be a GECPS as in Theorem 7. Then,

e0(x) =
1
ζ0

,

ek(x) =
(−1)k

ζk+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x[2] x[4] · · · x[2k−2] x[2k]

ζ0 ζ2 ζ4 · · · ζ2(k−1) ζ2k

0 ζ0 (4
2)ζ2 · · · (2k−2

2 )ζ2(k−2) (2k
2 )ζ2(k−1)

...
. . . . . .

...
...

...
. . .

...
...

...
...

...
0 · · · · · · ζ0 ( 2k

2(k−1))ζ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ≥ 1.
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The elements of the conjugate sequence
{

ên
}

n∈IN are such that

ê0(x) =
1

γ0
,

êk(x) =
(−1)k

γk+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x[2] x[4] · · · x[2k−2] x[2k]

γ0 γ2 γ4 · · · γ2(k−1) γ2k

0 γ0 (4
2)γ2 · · · (2k−2

2 )γ2(k−2) (2k
2 )γ2(k−1)

...
. . . . . .

...
...

...
. . .

...
...

...
...

...
0 · · · · · · γ0 ( 2k

2(k−1))γ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ≥ 1.

4.4. The Linear Space G̃ECPS

Definition 4. Let
{

ek
}

k∈IN and
{

e∗k
}

k∈IN be the general central polynomial sequences related to
the numerical sequences

(
η2k
)

k∈IN and
(
υ2k
)

k∈IN, respectively. That is, ∀k ∈ IN,

ek(x) =
k

∑
j=0

(
2k
2j

)
η2(k−j)x

[2j], e∗k (x) =
k

∑
j=0

(
2k
2j

)
υ2(k−j)x

[2j].

For all k ∈ IN, the umbral composition of ek(x) and e∗k (x) is

wk(x) := (ek ◦ e∗k )(x) =
k

∑
j=0

(
2k
2j

)
η2(k−j)e

∗
j (x).

It is easy to verify that

1.
{

wk
}

k∈IN =
{

ek ◦ e∗k
}

k∈IN is a GECPS;
2. ∀k ∈ IN, (ek ◦ êk)(x) = x[2k].

Moreover, if "+" and "·" are, respectively, the usual sum and product for a scalar on the

set of even polynomial sequences, then G̃ECPS = (GECPS,+, ·, ◦) is an algebra.

4.5. Generating Function

Let G(t) be the power series

G(t) = t +
∞

∑
n=1

(−1)n

(
n

∏
k=1

(2k− 1)2

4

)
t2n+1

(2n + 1)!
.

Then, taking into account that

cosh x(x G(t)) =
∞

∑
k=0

(x G(t))2k

(2k)!
,

we have

cosh(x G(t)) =
∞

∑
ν=0

x[2ν] t2ν

(2ν)!
.

Hence, the function
g(x, t) = cosh(x G(t))

is the generating function of even central factorial polynomials x[2ν].
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Theorem 9. The generating function of a GECPS related to the numerical sequence (γ2k)k∈IN is

F(x, t) = l(t) g(x, t),

with

l(t) =
∞

∑
k=0

γ2k
t2k

(2k)!
.

4.6. Connection to the Basic Monomials x2i

From (20),

x[2k] =
k

∑
i=0

t(2k, i)x2i.

If Ωt =
(
ωt

i,j
)

i,j∈IN, with

ωt
i,j =

{
t(2i, j) i ≥ j
0 i < j,

then
�
X = Ωt X̃̃, (34)

where X̃̃ =
[
1, x2, . . . , x2ν, . . .

]T .
Let

{
ek
}

k∈IN be the GECPS related to the numerical sequence
(
γ2k
)

k∈IN. Let E be as in
(30). Then, by substituting (34) in (30), we obtain

E =
(
U Wt)X̃̃,

that is,

en(x) =
i

∑
j=0

sn,jx2j with sn,j =
n

∑
k=0

un,kwt
k,j. (35)

Remark 11. The following identity holds

en(0) = sn,0, n ≥ 0. (36)

Theorem 10. Let
(
sn,0
)

n∈IN be an assigned numerical sequence. Then, the sequence
{

en
}

n∈IN
with en as (35) is a GECPS if and only if the coefficients, sn,j, j = 0, 1, . . . , n, are the solution of
the system

n

∑
i=j+1

(
2i
2j

)
sn,i = n(2n− 1)sn−1,j, j = 0, . . . , n− 1.

Remark 12. From backward substitutions,

sn,j =
n(2n− 1)
j(2j− 1)

sn−1,j−1 −
1

j(2j− 1)

n

∑
i=j+1

(
2i

2j− 2

)
sn,i, j = n− 1, . . . , 1. (37)

4.7. Examples

Now, we give some examples of general even central factorial polynomial sequences.
Firstly, from Proposition 5, if

(
γ2k
)

k∈IN, γ0 6= 0, is an assigned numerical sequence, we
determine the related GECPS, that is, the p.s.

{
en
}

n∈IN such that

en(x) =
n

∑
k=0

(
2n
2k

)
γ2(n−k)x

[2k], ∀n ∈ IN, ∀x ∈ IK.
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Then, we write en in the monomial basis x2i, according to (35). It satisfies (36).

Example 3 (Even Fibonacci-central factorial p.s.). We will determine the GECPS
{

en
}

n∈IN
such that

en(0) = Fn, ∀n ∈ IN, (38)

where
(

Fn
)

n∈IN is the Fibonacci numerical sequence.
The elements of this p.s. satisfy{

δ2en(x) = 2n(2n− 1)en−1(x)

e′n(0) = 0, en(0) = Fn.

In this case, we call
{

en
}

n∈IN even Fibonacci-central factorial p.s. and we denote it by{
Fe

n
}

n∈IN.
For every n ∈ IN, the conditions (38) give the coefficients γ2k = Fk, k = 0, . . . , n.
For example, for n = 0, . . . , 4, we obtain the polynomials

Fe
0(x) = x[0], Fe

1(x) = x[2] + x[0], Fe
2(x) = x[4] + 6x[2] + 2x[0],

Fe
3(x) = x[6] + 15x[4] + 30x[2] + 3x[0],

Fe
4(x) = x[8] + 28x[6] + 140x[4] + 84x[2] + 5x[0].

Figure 4 shows the plot of these polynomials.

Figure 4. Even Fibonacci-central factorial polynomials.

From the relations (36) and the conditions

Fe
n(0) = sn,0 = Fn, n = 0, 1, . . . ,

we obtain the polynomials Fe
n written into the even monomial basis.

For example, for n = 5, we have

Fe
0(x) = 1, e1(x) = x2 + 1, Fe

2(x) = x4 + 5x2 + 2,

Fe
3(x) = x6 + 10x4 + 19x2 + 3,

Fe
4(x) = x8 + 14x6 + 49x4 + 20x2 + 5,

Fe
5(x) = x10 + 15x8 + 63x6 − 85x4 + 231x2 + 8.
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Example 4 (Even Hermite-central factorial p.s.). Now, we determine the GECPS
{

en
}

n∈IN
such that

e0(0) = 1, en(0) = Hn(0) =

(−1)n
(

1
2

)
n

for even n > 0

0 for odd n > 0,
(39)

{
Hn
}

n∈IN being the monic Hermite p.s. ([17], p. 135).
The elements of

{
en
}

n∈IN satisfy{
δ2en(x) = 2n(2n + 1)en−1(x)

en(0) = 0, en(0) = Hn(0).

We call
{

en
}

n∈IN even Hermite-central factorial p.s., and we denote it by
{

He
n
}

n∈IN.
From (39), for any n ∈ IN, we obtain γ2n = Hn(0).
The first five odd Hermite-central factorial polynomials are

He
0(x) = x[0], He

1(x) = x[2], He
2(x) = x[4] − 1

2
x[0],

He
3(x) = x[6] − 15

2
x[2],

He
4(x) = x[8] − 35x[4] +

3
4

x[0].

Figure 5 shows the plot of these polynomials.

Figure 5. Even Hermite-central factorial polynomials.

Written in the monomial basis, they become

He
0(x) = 1, He

1(x) = x2, He
2(x) = x4 − x2 − 1

2
,

He
3(x) = x6 − 5x4 − 7

2
x2,

He
4(x) = x8 − 14x6 + 14x4 − x2 +

3
4

.
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5. Conclusions

In this paper, we considered the operator δ2(·), where δ(·) is the known central
difference operator. The general polynomial solutions of the following two problems{

δ2dn(x) = 2n(2n + 1)dn−1(x), n ≥ 1

dn(0) = 0, deg(dn) = 2n + 1, n ≥ 0

and {
δ2en(x) = 2n(2n− 1)en−1(x), n ≥ 1

e′n(0) = 0, deg(en) = 2n, n ≥ 0,

have been studied.
These solutions were called general odd (respectively, even) central factorial polynomial

sequences and denoted by GOCPS and GECPS, respectively. Each polynomial has been
written both in the basis x[2i+1] (resp. x[2i]) and in the basis x2i+1 (resp. x2i). The matrix and
determinant forms and a recurrence formula have been provided. The generating functions
for the two kinds of polynomial sequences have also been obtained. An interesting property
of biorthogonality has been demonstrated. Finally, two new general odd (even) central
factorial p.s., called Fibonacci central factorial and Hermite central factorial p.s., have
been given.

Future research in this direction, both theoretical and computational, is possible. For
example, the general operator of the type Qy = ∑∞

k=1 cky(2k), c1 6= 0 can be considered and
the associated odd and even polynomial sequences can be determined. Computational ap-
plications, such as linear interpolation, quadrature formulas and approximation functions,
can be studied. Boundary and initial value problems for difference equations can also be
considered.
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