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Abstract: Wind power has become an indispensable part of renewable energy development in various
countries. Due to the high cost and complex structure of wind turbines, it is important to design a
method that can quickly and effectively determine the structural health of the generator set. This
research proposes a method that could determine structural damage or weaknesses in the blades at an
early stage via a model to monitor the sound of the wind turbine blades, so as to reduce the quantity
of labor required and frequency of regular maintenance, and to repair the damage rapidly in the
future. This study used the operating sounds of normal and abnormal blades as a dataset. The model
used discrete wavelet transform (DWT) to decompose the sound into different frequency components,
performed feature extraction in a statistical measure, and combined with outlier exposure technique
to train a deep neural network model that could capture abnormal values deviating from the normal
samples. In addition, this paper observed that the performance of the monitoring model on the
MIMII dataset was also better than the anomaly detection models proposed by other papers.

Keywords: anomaly detection; machine learning; wavelet transform

1. Introduction

In recent years, due to the rising awareness of environmental protection and the
increasingly serious phenomenon of global warming, countries have begun to develop
various renewable energy sources, such as solar power, wind power, and hydropower.
Among them, wind power is currently the most mature technology and the largest source
of renewable energy. Taking Taiwan’s current development of wind power generation as
an example, the Ministry of Economic Affairs has proposed that offshore wind turbines in
Taiwan will reach a capacity of 5.7 GW in five years, with an annual carbon reduction of
11.92 million metric tons. However, how to maintain offshore wind turbines has become a
great concern.

Damaged blades are the cause of the high maintenance cost of wind turbines [1]. At
present, a traditional testing method for blades includes ultrasonic testing (UT), acoustic
emission (AE) testing, and other technologies that need to be performed by professional
technicians under shutdown conditions. Liu et al. [2] mentioned that, for condition monitor-
ing and fault diagnosis (CMFD) of wind turbine blade bearings, one of the main difficulties
is that the rotation speeds of blade bearings are very slow. Latoufis et al. [3] suggested
that the main challenge for AE analysis is that the fault signals are mingled with heavy
noise, which results in expensive maintenance costs. In particular, offshore wind turbines
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must withstand the erosion of natural phenomena, such as salt and ocean currents under
high-temperature and high-humidity environments. This makes the cost of traditional
regular maintenance even more expensive. Effective preventive maintenance is planned
and scheduled based on real-time data insights [4–6], which will be an important issue.

In order to solve the above problems, this paper proposes a monitoring model integrat-
ing DWT and a deep neural network (DNN) that could detect wind turbine blade damage
without stopping the turbine, thereby achieving the effect of early repair, preventing blades
from breaking in the future.

The rest of this paper is organized as follows: Section 2 introduces the literature and
neural network architecture related to wavelet transformation and anomaly detection.
Section 3 introduces the overall architecture and process of the monitoring model. Section 4
introduces the experimental results. Section 5 is the conclusion of this paper.

2. Related Work
2.1. Deep Neural Network

The basic structure of a DNN consists of an input layer, multiple hidden layers, and an
output layer, then a neural network layer is composed of several neurons and a complete
neural network structure is formed by stacking network layers on each other. The structure
of a single neuron is shown in Figure 1. The neuron is multiplied by the weight vector for
each unit in the current layer producing the weighted sum. After adding the bias of the
neuron, the input value is calculated by the activation function F(x) to get the output value
of the neuron.
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A neural network can be categorized into three layers: an input layer, an output layer,
and a hidden layer. The input layer serves as the entrance of the entire network and is
responsible for receiving data samples for learning. The output layer serves as the final
output result of the entire model. The hidden layer provides the ability of the neural
network to process and solve the target task.

2.2. Wavelet Transform

As shown in Equation (1), the core concept of wavelet transformation is to use a
mother wavelet function ψ(t) and a scaling function φ(t) to scale or translate the original
audio wave, thereby generating various sub-wavelet functions ψa,b(t) and using these as a
basis to fit the original audio wave shape. There are two categories in wavelet transform:
continuous wavelet transforms and discrete wavelet transform. The difference depends
on whether scaling factor a and translation factor b in Equation (1) are in a continuous or
discrete distribution:

ψa,b(t) = ψ
(

t−b
a

)
(1)

Mallat proposed Mallat’s pyramid wavelet decomposition algorithm [7], which intro-
duced the concept of wavelet transform into multi-resolution analysis [7]. Multi-resolution
analysis examines the characteristics of the original information by decomposing the infor-
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mation into components of different scales. The analysis of a single resolution may change
the characteristics of the information obtained by the analysis due to changes in the original
information. For example, images may show different target proportions due to different
focal lengths and resolutions. Audio files may confuse the target information due to factors
such as recording volume and environmental noise. Through MRA (multi-resolution anal-
ysis), the interference of variables that are not related to the target characteristics can be
reduced to a certain extent.

2.3. Anomaly Detection

Anomaly detection can be divided into supervised and unsupervised methods based
on whether it is necessary to use abnormal samples for model training. Jia et al. [8]
proposed a supervised method for use on California traffic flows under normal conditions
and abnormal conditions, such as car accidents and road construction, to train the long
short-term memory network (LSTM).

Saufi et al. [9] proposed a supervised anomaly detection architecture that can achieve a
certain prediction accuracy in the context of limited data, a proper hyperparameter selection
method in an SSAE network using a particle swarm optimization algorithm. The spectrum
is used as the input, and prediction is made through a stacked sparse autoencoder (SSAE).
In particular cases, the prediction accuracy can be higher than 94% using only one sensor.
The proposed method has high efficiency but the accuracy is slightly lower than that found
in relative research. Consequently, they devised an alternative approach for architecture
using the fast kurtogram (FK) method to process the original signal. Compared to other
time-frequency transformation methods, such as short-time Fourier transform (STFT),
wavelet transform (WT), and empirical mode decomposition (EMD), the FK method has the
advantage of not requiring set parameters. In this research, the team did not combine the
data collected from multiple sensors; instead, they chose the sensor with the best prediction
accuracy as the result.

Each anomaly category in supervised anomaly detection requires a large dataset of
balanced data. Yang et al. [10] proposed a data generation method based on a generative
adversarial network (GAN) to resolve this issue. To solve the problem of dataset imbalance,
the team collected data through three accelerometers and then used fast Fourier transform
(FFT) for preprocessing to obtain the real spectrogram data and, at the same time, generated
more anomaly data using GAN. After sorting out these two different datasets, a balanced
dataset could be obtained. In addition, the team proposed a multiscale convolutional
neural network (MSCNN) to construct the anomaly detection model for a harmonic drive.
MSCNN is an improved convolutional neural network (CNN) with an additional multiscale
coarse-grained layer that can extract features with different scales from the signal data,
thereby achieving better prediction accuracy. In the case of unbalanced datasets, the multi-
class anomaly classification accuracy is as high as 98.49%. However, the proposed method
in this study needs to train MSCNN and GAN separately, so it requires more computing
resources and makes it difficult to be directly applied in real industrial environments.

The disadvantage of the supervised machine learning task is that it requires a large
number of manually labeled datasets and suffers from potential human bias interference.
Kong et al. [11] proposed an architecture combining attention-based recurrent neural net-
works and an autoencoder. The architecture can automatically find the most valuable
features through unsupervised learning and can directly use the original vibration signal
as the input instead of using data processed by time-frequency conversion. The proposed
architecture makes predictions through the combined weights of the two network architec-
tures. The accuracy of the architecture for rotating machinery anomaly detection was as
high as 99.88%, which was 8–10% higher than the CNN mechanism. At the same time, the
architecture could be used for other anomaly detection tasks. However, in this article, the
proposed method did not include heavy noise handling.

In [12], Mel-frequency cepstral coefficients (MFCCs) were used to train an autoencoder
(AE) to achieve an unsupervised anomaly detection method. Some researchers have begun
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to think about whether they can use other easily available data to replace abnormal samples.
Outlier exposure (OE), proposed by Hendrycks et al. [13], uses a model that is trained on
an auxiliary dataset of outliers. It was found that the performance of the model trained by
this method was higher than that for models trained using normal samples.

2.4. Structural Health Monitoring

Structural health monitoring mainly discusses how to evaluate the structural safety of
a structure, the damage to a structure, and the subsequent impact on the reliability of the
structure. This method mainly analyzes the health of a structure through non-destructive
testing methods. It can be divided into four stages [14]: (1) detection, based on locating
any information containing structural damage; (2) positioning, based on identifying the
location of damage using the information collected by the detection; (3) evaluation of the
severity and repairability of the damage; and (4) prediction of the prognosis and remaining
service life of the structure.

3. The Proposed Approach

This section introduces the architecture and processing flow of the monitoring model. In
Section 3.1, the model architecture is introduced. In Section 3.2, the data pre-processing flow
of the monitoring model is introduced. The DNN architecture is introduced in Section 3.3.

3.1. Monitor Model Architecture Diagram

The design process of this paper’s monitoring model architecture is shown in Figure 2.
This paper used two datasets to evaluate the effectiveness of the model: the recording
files of the mechanical noise generated by operating the wind turbines and the MIMII
dataset [12]. For the MIMII dataset, the outlier exposure method was used to create the
training set. In the blade sound features part, data pre-processing was performed first by
segmenting the blade recordings to increase the number of samples. After segmentation,
discrete wavelet transform (DWT) was performed for each recording sample. Each sample
was decomposed into a total of eight audio signals with different frequency intervals so
that the model could analyze the information contained in different frequencies. Finally,
we calculated the mean, variance, root mean square, root sum square, standard deviation,
sample kurtosis, and spectral entropy of each audio signal as the feature vectors required
by DNN, and concatenated the feature vectors of each audio signal to a 56-dimensional
feature vector.

After data pre-processing, the structure of the DNN model was defined. The training
process used the Adam optimization algorithm. At the same time, batch normalization and
L2 regularization were used to avoid overfitting, and learning rate decay and batch size
scaling large batch training were used.

3.2. Dataset

Two different datasets were used in this research—the MIMII dataset and the wind
turbine dataset. We used the MIMII dataset to evaluate the anomaly detection performance
of the proposed method at first, then used the wind turbine blade dataset to train the model
to reach the goal of monitoring turbine blade damages.

The MIMII dataset [12] includes four common industrial machinery types, such as valves,
pumps, fans, and slide rails. Each type of machinery was divided into seven different product
models and recorded for 10 s at a distance of 50 cm from the machinery through an array
microphone. In addition to the sound samples of the normal operation of the machinery, the
dataset also recorded samples of abnormal conditions by adding different types of faults to
the machinery, such as clogged valves, damaged fan bearings, etc.

To make the sound samples closer to the actual factory operating environment,
Purohit et al. [12] used the background noise obtained from the factory recording and
the machine sound to synthesize three kinds of data, for which the SNR values were 0 dB
(Lin), −6 dB (Lin), and 6 dB (Lin).
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Figure 2. Monitoring model architecture.

The wind turbine blade dataset was collected by our research members; we used
highly sensitive recording devices to acquire the sound raw data, then let the domain
experts mark the dataset according to whether the blades had cracked. The type of anomaly
only included crack blades.

The detail of the blade sounds recording process is as below, the wind turbine models
were Enercon E70-7 and Gamesa G80-2MW, recorded as 32-bit audio clips at 44.1 kHz,
mono-channel audio. The signal-to-noise ratio (SNR) of the samples was −11.7 dB (Lin).
Recording devices were kept at a distance of 67 m from the blades.

3.3. Data Preprocessing

This paper used two different methods to segment sound raw data in the wind turbine
blade dataset: a fixed-length segmentation experiment on a sound file with a length of 10 s
and a segmentation experiment in which the original sound was segmented into individual
blade sounds. The number of samples in the fixed-length segmentation experiment is
shown in Table 1.

Table 1. The samples used for fixed-length segmentation.

Normal Abnormal

The number of samples 596 143

For the single-blade segmentation experiment, this paper categorized each blade
sound segmented from the whole original sound as either a normal or abnormal blade
sound. The number of individual samples is shown in Table 2.
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Table 2. The number of individual segments.

Normal Abnormal

The number of samples 539 221

After segmentation, this paper used DWT for denoising by decomposing the original
audio into components with different frequency intervals.

The audio decomposition process is shown in Figure 3. Firstly, the sample was de-
composed using seven-level discrete wavelet decomposition to get seven detail coefficients
and one approximation coefficient. The detail coefficient represented a higher frequency
relative to the approximate coefficient, and the approximate coefficient represented the
low-frequency component of the signal. After decomposition, each coefficient was recon-
structed by wavelet reconstruction. After wavelet reconstruction, eight audio files with
different frequency ranges remained.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 13 
 

 

3.3. Data Preprocessing 
This paper used two different methods to segment sound raw data in the wind tur-

bine blade dataset: a fixed-length segmentation experiment on a sound file with a length 
of 10 s and a segmentation experiment in which the original sound was segmented into 
individual blade sounds. The number of samples in the fixed-length segmentation exper-
iment is shown in Table 1. 

Table 1. The samples used for fixed-length segmentation. 

 Normal Abnormal 
The number of samples 596 143 

For the single-blade segmentation experiment, this paper categorized each blade 
sound segmented from the whole original sound as either a normal or abnormal blade 
sound. The number of individual samples is shown in Table 2. 

Table 2. The number of individual segments. 

 Normal Abnormal 
The number of samples 539 221 

After segmentation, this paper used DWT for denoising by decomposing the original 
audio into components with different frequency intervals. 

The audio decomposition process is shown in Figure 3. Firstly, the sample was de-
composed using seven-level discrete wavelet decomposition to get seven detail coeffi-
cients and one approximation coefficient. The detail coefficient represented a higher fre-
quency relative to the approximate coefficient, and the approximate coefficient repre-
sented the low-frequency component of the signal. After decomposition, each coefficient 
was reconstructed by wavelet reconstruction. After wavelet reconstruction, eight audio 
files with different frequency ranges remained. 

 
Figure 3. The audio decomposition process. 

The filter used in this paper was constructed by the Sym10 wavelet in the symlet 
wavelet family. Figure 4 is a diagram of the multi-level wavelet decomposition. Taking 
level 2 as an example, the original audio x[n] is a fixed-length one-dimensional real num-
ber array that passes through a high-pass filter (h[k]) of length K and a low-pass filter (g[k]) 
to separate the high-frequency signal component and the low-frequency signal in Equa-
tions (2) and (3): 

Figure 3. The audio decomposition process.

The filter used in this paper was constructed by the Sym10 wavelet in the symlet wavelet
family. Figure 4 is a diagram of the multi-level wavelet decomposition. Taking level 2 as an
example, the original audio x[n] is a fixed-length one-dimensional real number array that
passes through a high-pass filter (h[k]) of length K and a low-pass filter (g[k]) to separate the
high-frequency signal component and the low-frequency signal in Equations (2) and (3):

cA1[n] =
K−1

∑
k=0

x[n + 1 − k]g[k] (2)

cD1[n] =
K−1

∑
k=0

x[n + 1 − k]h[k] (3)

Next, the signal component is subjected to a down-sampling filter with a down-
sampling factor of two to obtain the first level of detail and approximate coefficients cD1
and cA1.

After the end of the first level, the approximate coefficient, cA1, is used as the input
audio in the second level to execute a single-level wavelet decomposition to obtain the
two-level coefficients cD2 and cA2. Therefore, the audio investigation will obtain the
coefficient set S = {cD1, cD2, cD3, cD4, cD5, cD6, cD7, cA7} after seven stages of wavelet
decomposition, which represents the signal components of the original audio files.
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The next stage is signal reconstruction. Figure 5 is a diagram of the reconstruction
process. Here, only the audio of a specific frequency is retained. Therefore, when per-
forming wavelet reconstruction, except for the coefficient to be reconstructed, the other
missing correlation coefficients are used with zeros substituted into the array to complete
the reconstruction. As an example, Equation (4) represents the reconstruction of the signal
component of the second-level cD2 detail coefficient as an example:

cA1[n] =
K−1
∑

k=0
cA2[n + 1 − k]g∗[k]

+
K−1
∑

k=0
cD2[n + 1 − k]h∗[k]

(4)
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After the cD2 and the approximate coefficients are increased via an upsampling filter
with an upsampling factor of two, they are added through the high-pass and low-pass
reconstruction filters, h*[k] and g*[k], to obtain the first level approximation coefficient cA1.
After that, single-level wavelet reconstruction is performed to restore the signal component
of cD2 to the original audio type. By performing seven-level wavelet reconstruction on
each coefficient element in coefficient set S, we can obtain eight signal components of the
original audio in different frequency intervals.

Finally, the statistical indicators of the audio are calculated and composed as the input
feature vector of the DNN model. Statistical indicators are calculated for each time-series
audio component to obtain the mean, variance, standard deviation, root mean square (RMS),
root sum square (RSS), spectral entropy (SE), sample kurtosis, and a total of seven values as
features of the component, as shown in Equations (5)–(11). Suppose time-series signal X is a
one-dimensional array of length n, mean M can be calculated using Equation (5).

M =
∑n

i=1 xi

n
(5)

Var = ∑n
i=1(xi − µ)2

n
(6)

S =

√
∑n

i=1(xi − µ)2

n
(7)

In Equations (6) and (7), Var is the variance of the audio file and S is the standard
deviation. Both use the mean µ to obtain the values for Var and S.

RMS =

√
∑n

i=1(xi)
2

n
(8)

RSS =

√
n

∑
i=1

(xi)
2 (9)

kurtosis =
∑n

i=1(xi − µ)4

n ∗ Var(x)2 − 3 (10)

SE = −
n

∑
i=1

P(i) ∗ log2P(i) (11)

In Equation (11), P(i) is the power spectral density.
After calculating the seven statistical indicators of each time-series component, the

program concatenates the features of each time-series component into a seven-dimensional
vector, as shown in Figure 6.

The vectors of all components are then concatenated from high frequency to low
frequency in sequence. Finally, a 56-dimensional feature vector is achieved, which is then
used as the input of the DNN model.

3.4. Neural Network Architecture

This paper used a deep neural network to build a machine learning model for training.
The model architecture is shown in Table 3. Size represents the number of neurons in the
network layer, and activation represents the activation function used in this layer. The
first layer has 56 input neurons as the input of the neural network. The neurons in the
hidden layer will gradually decrease. Hidden layer activation function uses ReLU, and
batch normalization is interspersed between the hidden layers. The last layer has an output
neuron in the output layer, and its activation function uses the sigmoid function. All hidden
layers use L2 regularization, and the regularization parameter is 0.01.
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Table 3. Neural network model architecture.

Layer Size Activation

Input 56 None
Hidden Layer 40 ReLU

BatchNormalization None None
Hidden Layer 40 ReLU

BatchNormalization None None
Hidden Layer 30 ReLU

BatchNormalization None None
Hidden Layer 20 ReLU

BatchNormalization None None
Hidden Layer 10 ReLU

Output 1 Sigmoid

4. Experiment

This section introduces the experimental process and results. Section 4.1 describes the
network model used and compared in the experiment and the learning parameters of the
training process. Section 4.2 describes the process of using the classification accuracy and AUC
to evaluate the difference between the model’s performance and the experimental results.

4.1. Experimental Process

This paper compared the monitoring model constructed using discrete wavelet trans-
form and fully connected DNN with the monitoring model constructed using a log-mel
spectrogram and the convolutional neural network (CNN) model in [15]. The CNN model
was tested with ResNet18 and ResNet50, respectively. The window function length of the
log-mel spectrogram was 1024, the overlap length was 512, and the Mel frequency band-
width was 64. The number of iterations for the training process was set to 200 rounds, and
the model parameters with the lowest loss of the validation set were saved as the model in
the final test stage. The Adam algorithm was used for optimization, the learning parameter
β was 0.9, β2 was 0.999, and the learning rate decay was set. After every 10 epochs, if the
loss of the validation set changed by less than 0.001, the learning rate was 0.9. The batch
size was set at 32 in the MIMII dataset and five in the wind turbine audio dataset.



Mathematics 2022, 10, 972 10 of 13

4.2. Experimental Result

This study used the MIMII dataset to train the monitoring model and compare the
experimental results with the best experimental results [12,16,17] to measure the ability
of anomaly detection. As the related experiments did not use abnormal samples in the
training process, in order to make the benchmark as close as possible, this study referred
to [13,18] to train the model using the outlier exposure method.

As shown in Figure 7, for each model of each different machine type, all abnormal
samples and the same number of normal samples were taken as the test set. For the
training set, the remaining normal samples were combined with normal samples taken
from different models of the same machine type, and normal samples of other models were
regarded as abnormal samples. The AUC experimental result comparison between the
methods used in this research and other models is shown in Table 4.
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Table 4. Performance of different monitoring models.

This Paper log-Mel Spectrogram
+ResNet50

log-Mel Spectrogram
+ResNet18

fan 0.7481 0.7537 0.6872
pump 0.7632 0.7282 0.7505
slider 0.8507 0.7497 0.8806
valve 0.9419 0.9406 0.8436

average 0.8260 0.7931 0.7905

From Table 4, it could be found that the average AUC of the monitoring model
proposed in this study was better than ResNet18 and ResNet50. However, in the training
stage, the time cost of the monitoring model in this paper was less than 50% of that for
other models, as shown in Table 5.

Table 5. Average epoch time for different models.

This Paper log-Mel Spectrogram
+ResNet50

log-Mel Spectrogram
+ResNet18

Average epoch time 4.39 s 24.21 s 14.12 s
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In this study, the monitoring model constructed by wavelet transform and fully con-
nected layer neural network and the monitoring model constructed by Mel log-spectrogram
and CNN model have been used for comparison [15]. The CNN model was tested using
ResNet18 and ResNet50, respectively. Table 6 is the comparison between the experimen-
tal results of this study and the CNN model [12]. It can be seen from the table that the
monitoring model proposed in this research had the best average AUC among the four
different machine structures. The results indicate that, in the face of different materials and
architectures, the monitoring model could still maintain better prediction accuracy. Among
the four types of machines, only the AUC of the slider was lower than the experimental
results of the others. This may be because the resolution of the discrete wavelet transforms
in the high frequency range was lower and the frequency range was low, which made it
difficult for the extracted sound features to retain the complete characteristics of the slider
in an abnormal state and resulted in a lower AUC.

Table 6. Comparison with other papers.

This Paper Ribeiro et al. [12] Müller et al. [16] Purohit et al. [17]

fan 0.7481 0.6678 0.6805 0.6625
pump 0.7632 0.7207 0.7404 0.66
slider 0.8507 0.9177 0.854 0.7
valve 0.9419 0.7883 0.6852 0.555

average 0.8260 0.7736 0.7400 0.6443

The overall monitoring also suggests that the model proposed in this study has an
accuracy of 98% and AUC of 0.99 in judging whether the fan contains abnormal blades,
and 96% accuracy and AUC of 0.96 in judging whether a single blade is abnormal, which
can effectively distinguish whether there is an abnormality in the fan blades.

On the other hand, for the MIMII dataset, the average AUC index of the model was
also higher than the abnormality detection model proposed by other researchers.

In this study, the operating sounds recorded from actual operating wind turbines were
used for training. Of the data, 60% of the normal samples and abnormal samples containing
blade damage were taken as the training set, 20% were taken as the validation set, and 20%
were taken as the test set. The fixed-length segmentation experiment result is shown in Table 7.

Table 7. Fixed-length segmentation experimental results.

Accuracy AUC

This paper 98.04% 0.9932
log-mel spectrogram+ResNet18 99.85% 0.9894
log-mel spectrogram+ResNet50 98.14% 0.9980

The accuracy of the monitoring model on the test set was 98.04%, and the AUC was
0.99. On the whole, the monitoring model proposed in this study could indeed effectively
distinguish whether the wind turbine contained damaged blades.

The single-blade segmentation experiment was used to test whether the model could
classify an abnormal blade sound with damage. The single-blade segmentation experiment
results are shown in Table 8.

Table 8. Single-blade sound segmentation experimental results.

Accuracy AUC

This paper 96.04% 0.9664
log-mel spectrogram+ResNet18 95.62% 0.9650
log-mel spectrogram+ResNet50 96.40% 0.9720
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In terms of the model performance, the accuracy of the monitoring model in this
study was higher than ResNet18 and lower than ResNet50, while the AUC was higher than
ResNet18 and slightly lower than ResNet50. Overall, the monitoring model of this study
could effectively diagnose a blade’s health status using the sound wave data of a single
blade. Considering that the model architecture and complexity of this study were much
simpler than those of the other two models, the performance of the monitoring model
could be improved by trying different network models.

5. Conclusions

This research combined discrete wavelet transformation with deep neural networks
to construct a model that could monitor wind turbine blade damage from the running
sound. Statistical methods, such as RMS and RSS, were used to extract features, which
greatly reduced the complexity and training time of the network models. Discrete wavelet
transformation was used to decompose the original audio into components of different
frequency ranges, and the neural network self-learned and analyzed the key signal infor-
mation. Finally, the outlier exposure method was used so that the model would not need to
use abnormal samples for training.

With the growth of the scale of wind power generation, the large number of land-based
and offshore wind turbines have made it difficult for maintenance manufacturers to follow
traditional high-cost manual inspection and repair procedures. The automatic monitoring
of the health of the blades through the monitoring model could ensure that damage is
repaired at an early stage, thus avoiding the deterioration of the wind turbine structure
due to damage over time. In addition, for various machines with special operating sounds,
the monitoring model could also properly distinguish whether a machine is operating
normally or not.

The monitoring model of this study was based solely on the operating sound of the
machine as the source for structural damage judgment. If the damage to the machine
does not impact the operating sound, it will be difficult for the model to correctly identify
damage. Therefore, the use of data sources other than sound, such as structural vibrations
or images, etc., could improve the accuracy of the monitoring model.
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