Article

Global Existence for an Implicit Hybrid Differential Equation of Arbitrary Orders with a Delay

Ahmed M. A. El-Sayed ${ }^{1,+(\mathbb{D}}$, Sheren A. Abd El-Salam ${ }^{2, *,+®(\mathbb{D}}$ and Hind H. G. Hashem ${ }^{1,+(\mathbb{D}}$
1 Faculty of Science, Alexandria University, Alexandria 21544, Egypt; amasayed@alexu.edu.eg (A.M.A.E.-S.); 3922@qu.edu.sa (H.H.G.H.)
2 Faculty of Sciences, Damanhour University, Damanhour 22511, Egypt
* Correspondence: shrnahmed@sci.dmu.edu.eg
\dagger These authors contributed equally to this work.

Citation: El-Sayed, A.M.A.; Abd El-Salam, S.A.; Hashem, H.H.G. Global Existence for an Implicit Hybrid Differential Equation of Arbitrary Orders with a Delay. Mathematics 2022, 10, 967. https:// doi.org/10.3390/math10060967

Academic Editor: Mieczysław Cichoń

Received: 24 February 2022
Accepted: 16 March 2022
Published: 17 March 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this paper, we present a qualitative study of an implicit fractional differential equation involving Riemann-Liouville fractional derivative with delay and its corresponding integral equation. Under some sufficient conditions, we establish the global and local existence results for that problem by applying some fixed point theorems. In addition, we have investigated the continuous and integrable solutions for that problem. Moreover, we discuss the continuous dependence of the solution on the delay function and on some data. Finally, further results and particular cases are presented.

Keywords: fractional differential equations; hybrid differential equations; Rothe fixed-point theorem; nonlinear alternative of Leray-Schauder type; Kolmogorov compactness criterion; continuous dependence

MSC: 34A08; 34A38; 34A12

1. Preliminaries and Introduction

The theory of fractional differential equations has gained a lot of circulation lately. It is of great importance because of its widespread applications in the fields of science and geometry as a mathematical model (see [1-3]).

Recently, a new class of mathematical modelings based on hybrid fractional differential equations with hybrid or non-hybrid boundary value conditions have been investigated in many papers and monographs using different techniques [2-16]. Fractional hybrid differential equations can be used in modeling and describing some non-homogeneous physical phenomena. The importance of investigations into these problems lies in the fact that they include many dynamic systems as special cases [12-14].

Implicit differential and integral equations have gained great attention, for example, Sun et al. [17] have studied a fractional hybrid boundary value problem under mixed Lipschitz and Carathéodory conditions. Benchohra et al. [5] have studied the existence of integrable solutions of an implicit differential equation with infinite delay involving Caputo fractional derivatives. Srivastava et al. [18] have studied the existence of monotonic integrable a.e. solution of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders by using the measure of noncompactness technique. El-Sayed et al. [15] have discussed the existence of a solution and continuous dependence of the solution on some data for an implicit hybrid delay functional integral equation (see [4,6,7,18-24]).

Motivated by these results, here, we shall investigate hybrid differential equations of arbitrary order

$$
\left\{\begin{array}{c}
D^{\alpha}\left(\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}\right)=f\left(t, \int_{0}^{\varphi(t)} g\left(s, D^{\gamma}\left(\frac{x(s)-h_{1}(s, x(s))}{h_{2}(s, x(s))}\right)\right) d s\right), \gamma<\alpha, \quad t \in(0, T] \tag{1}\\
\left.\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}\right|_{t=0}=0
\end{array}\right.
$$

and prove the existence of L_{1}-solutions of this problem where D^{α} refers to the fractional derivative of Riemann-Liouville of order $\alpha \in(0,1)$.

The Riemann-Liouville differential operator is very important in the modeling of many physical phenomena. In addition, we shall study the continuous dependence of the solution on the delay function ϕ. Furthermore, a case when $\alpha=\gamma$ will be studied.

2. Main Results

Let $I=[0, T]$ and the class $E=C(I)$ with supremum norm $\|z\|=\sup _{t \in I}|z(t)|$, for any $z \in E$.

Consider the following assumptions
(i) $f, g: I \times \mathbb{R} \rightarrow \mathbb{R}$ satisfy Carathéodory conditions and there exist two bounded measurable functions m_{i} and $b_{i} \geq 0, i=1,2$. Moreover

$$
|f(t, x)| \leq m_{1}(t)+b_{1}|x|, \quad|g(t, x)| \leq m_{2}(t)+b_{2}|x|, \quad t \in I, \quad x \in \mathbb{R}
$$

Let

$$
M=\max \left\{\sup _{t \in I} m_{1}(t), \sup _{t \in I} m_{2}(t)\right\} .
$$

(ii) $\quad h_{i}: I \times \mathbb{R} \rightarrow \mathbb{R}, i=1,2$ satisfy Carathéodory conditions and there exist $m_{j} \in L_{1}(I)$ and $b_{j} \geq 0, j=3,4$ such that

$$
\left|h_{i}(t, x)\right| \leq m_{j}(t)+b_{j}|x|, \quad t \in I, \quad x \in \mathbb{R}
$$

(iii) $\varphi: I \rightarrow I$ is continuous and monotonic nondecreasing.
(iv) $\frac{b_{1} b_{2} T^{1+\alpha-\gamma}}{\Gamma(1+\alpha-\gamma)}<1$.

Taking

$$
y(t)=\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}
$$

then

$$
\begin{equation*}
x(t)=h_{1}(t, x(t))+y(t) h_{2}(t, x(t)), \quad t \in I, \tag{2}
\end{equation*}
$$

and

$$
\left\{\begin{array}{c}
D^{\alpha} y(t)=f\left(t, \int_{0}^{\varphi(t)} g\left(s, D^{\gamma} y(s)\right) d s\right), \quad t \in(0, T] \tag{3}\\
y(0)=0
\end{array}\right.
$$

from (3), we get

$$
\begin{equation*}
y(t)=I^{\alpha} f\left(t, \int_{0}^{\varphi(t)} g\left(s, D^{\gamma} y(s)\right) d s\right) . \tag{4}
\end{equation*}
$$

Operating by $I^{1-\gamma}$ on both sides of the last equation, then

$$
I^{1-\gamma} y(t)=I^{1+\alpha-\gamma} f\left(t, \int_{0}^{\varphi(t)} g\left(s, D^{\gamma} y(s)\right) d s\right) .
$$

Differentiating both sides, we get

$$
\frac{d}{d t} I^{1-\gamma} y(t)=I^{\alpha-\gamma} f\left(t, \int_{0}^{\varphi(t)} g\left(s, D^{\gamma} y(s)\right) d s\right)
$$

Let $z(t)=D^{\gamma} y(t)$, then

$$
\begin{equation*}
z(t)=I^{\alpha-\gamma} f\left(t, \int_{0}^{\varphi(t)} g(s, z(s)) d s\right), \quad t \in I \tag{5}
\end{equation*}
$$

Now, we shall prove the existence of a continuous solution of the integral Equation (5) by applying a nonlinear alternative of Leray-Schauder type [9].

Theorem 1. Let assumptions (i), (iii) and (iv) hold, then Equation (5) has at least a solution $z \in C(I)$.

Proof. Define the operator F_{1} on Ω by

$$
F_{1} z(t)=I^{\alpha-\gamma} f\left(t, \int_{0}^{\varphi(t)} g(s, z(s)) d s\right), \quad t \in I
$$

where $\Omega=\{z \in C(I):\|z\| \leq m\}$.
Let

$$
A=\frac{b_{1} b_{2} T^{1+\alpha-\gamma}}{\Gamma(1+\alpha-\gamma)}
$$

and

$$
B=\frac{T^{\alpha-\gamma} M}{\Gamma(1+\alpha-\gamma)}\left(1+b_{1} T\right) .
$$

Then, according to condition (iv), we deduce that $A<1$. It is also clear that $B>0$. Take $m=B(1-A)^{-1}$ and suppose that $z \in \partial \Omega, \lambda>1$ such that $F_{1} z=\lambda z$, then

$$
\begin{align*}
\lambda m & =\lambda\|z\|=\left\|F_{1} z\right\|=\sup _{t \in I}\left|\left(F_{1} z\right)(t)\right| \\
& \leq \sup _{t \in I}\left|I^{\alpha-\gamma} f\left(t, \int_{0}^{\varphi(t)} g(s, z(s)) d s\right)\right| \\
& \leq \sup _{t \in I} \int_{0}^{t} \frac{(t-s)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left|f\left(s, \int_{0}^{\varphi(s)} g(u, z(u)) d u\right)\right| d s \\
& \leq \sup _{t \in I} \int_{0}^{t} \frac{(t-s)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(m_{1}(s)+b_{1} \int_{0}^{\varphi(s)}|g(u, z(u))| d u\right) d s \\
& \leq \sup _{t \in I} \int_{0}^{t} \frac{(t-s)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(m_{1}(s)+b_{1} \int_{0}^{\varphi(s)}\left[m_{2}(u)+b_{2}|z(u)|\right] d u\right) d s \\
& \leq \int_{0}^{t} \frac{(t-s)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(M+b_{1} \int_{0}^{T}\left[M+b_{2}|z(u)|\right] d u\right) d s \\
& \leq \int_{0}^{t} \frac{(t-s)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(M+b_{1} T\left[M+b_{2}| | z \|\right]\right) d s \\
& \leq \frac{T^{\alpha-\gamma}}{\Gamma(1+\alpha-\gamma)}\left(M+b_{1} T\left(M+b_{2}\|z\|\right)\right) \\
& \leq \frac{T^{\alpha-\gamma} M}{\Gamma(1+\alpha-\gamma)}\left(1+b_{1} T\right)+\frac{b_{1} b_{2} T^{1+\alpha-\gamma}}{\Gamma(1+\alpha-\gamma)}\|z\| \\
& =B+A\|z\|=B+A m . \tag{6}
\end{align*}
$$

Therefore,

$$
\lambda \leq \frac{B}{m}+A=\frac{B}{B(1-A)^{-1}}+A=(1-A)+A=1
$$

this contradicts $\lambda>1$. Therefore, if $F_{1}: \bar{\Omega} \rightarrow E$ is a completely continuous operator, then it has a fixed point $z \in \bar{\Omega}$.

Now, we shall prove that F_{1} is a completely continuous operator. For any $z \in \bar{\Omega}$, let $t_{1}, t_{2} \in I, t_{1}<t_{2}$, then we have

$$
\begin{aligned}
& \left|F_{1} z\left(t_{2}\right)-F_{1} z\left(t_{1}\right)\right|=\left|I^{\alpha-\gamma} f\left(t_{2}, \int_{0}^{\varphi\left(t_{2}\right)} g(s, z(s)) d s\right)-I^{\alpha-\gamma} f\left(t_{1}, \int_{0}^{\varphi\left(t_{1}\right)} g(s, z(s)) d s\right)\right| \\
& =\left\lvert\, \int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)} f\left(s, \int_{0}^{\varphi(s)} g(u, z(u)) d u\right) d s\right. \\
& -\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)} f\left(s, \int_{0}^{\varphi(s)} g(u, z(u)) d u\right) d s \\
& \leq \int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\alpha-\gamma-1}-\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left|f\left(s, \int_{0}^{\varphi(s)} g(u, z(u)) d u\right)\right| d s \\
& +\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left|f\left(s, \int_{0}^{\varphi(s)} g(u, z(u)) d u\right)\right| d s \\
& \leq \int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\alpha-\gamma-1}-\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(m_{1}(s)+b_{1} \int_{0}^{\varphi(s)}|g(u, z(u))| d u\right) d s \\
& +\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(m_{1}(s)+b_{1} \int_{0}^{\varphi(s)}|g(u, z(u))| d u\right) d s \\
& \leq \int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\alpha-\gamma-1}-\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(m_{1}(s)\right. \\
& \left.+b_{1} \int_{0}^{\varphi(s)}\left(m_{2}(u)+b_{2}|z(u)|\right) d u\right) d s \\
& +\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(m_{1}(s)+b_{1} \int_{0}^{\varphi(s)}\left(m_{2}(u)+b_{2}|z(u)|\right) d u\right) d s \\
& \leq \int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\alpha-\gamma-1}-\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(M+b_{1} \int_{0}^{T}\left(M+b_{2}|z(u)|\right) d u\right) d s \\
& +\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(M+b_{1} \int_{0}^{T}\left(M+b_{2}|z(u)|\right) d u\right) d s \\
& \leq \int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{\alpha-\gamma-1}-\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(M+b_{1} T M+b_{1} b_{2} T| | z| |\right) d s \\
& +\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left(M+b_{1} T M+b_{1} b_{2} T\|z\|\right) d s \\
& \leq \frac{2\left(t_{2}-t_{1}\right)^{\alpha-\gamma}+t_{2}^{\alpha-\gamma}-t_{1}^{\alpha-\gamma}}{\Gamma(\alpha-\gamma+1)}\left(M+b_{1} T M+b_{1} b_{2} T m\right) \text {. }
\end{aligned}
$$

The above inequality shows that

$$
\begin{equation*}
\left|F_{1} z\left(t_{2}\right)-F_{1} z\left(t_{1}\right)\right| \rightarrow 0 \text { as } t_{2} \rightarrow t_{1} \tag{7}
\end{equation*}
$$

then $F_{1} z$ is uniformly continuous in I, and hence $F_{1}: \bar{\Omega} \rightarrow E$ is well-defined. We deduce from (6) and (7) that the family $F_{1} z$ is uniformly bounded and equicontinuous, thus the Arzela-Ascoli Theorem [8] guarantees that $F_{1}: \bar{\Omega} \rightarrow E$ is compact operator, which completes the proof.

Consequently, we can deduce an existence result for Equation (4).
Since $\|z\| \leq m$ and $z(t)=D^{\gamma} y(t) \Rightarrow y(t)=I^{\gamma} z(t)$, we have $\|y\| \leq \frac{m T^{\gamma}}{\Gamma(\gamma+1)}$.
Corollary 1. Suppose that assumptions of Theorem 1 hold, then there exists a solution $y \in C(I)$ for Equation (4) which satisfies $\|y\| \leq k$, where $k=\frac{m T^{\gamma}}{\Gamma(\gamma+1)}$.

Proof. From $z(t)=D^{\gamma} y(t)$, we get $y(t)=I^{\gamma} z(t)$, and

$$
\begin{aligned}
|y(t)| & \leq \int_{0}^{t} \frac{(t-s)^{\gamma-1}}{\Gamma(\gamma)}|z(s)| d s \\
& \leq m \int_{0}^{t} \frac{(t-s)^{\gamma-1}}{\Gamma(\gamma)} d s \\
& \leq \frac{m T^{\gamma}}{\Gamma(\gamma+1)} .
\end{aligned}
$$

Now, we shall investigate the existence of integrable solution x for the quadratic integral Equation (2).

Let $B_{r}=\left\{x \in L_{1}(I):\|x\|_{L_{1}} \leq r, r>0\right\}$.
Theorem 2. Let the assumptions of Corollary 2 be satisfied in addition to assumption (ii). If $b_{3}+k b_{4}<1$, then Equation (2) has a solution $x \in L_{1}(I)$.

Proof. Let x be an arbitrary element in B_{r}. The operator F_{2} is given by

$$
\begin{equation*}
F_{2} x(t)=h_{1}(t, x(t))+y(t) h_{2}(t, x(t)) . \tag{8}
\end{equation*}
$$

Then from the assumptions (ii), we have

$$
\begin{aligned}
\left\|F_{2} x\right\|_{L_{1}} & =\int_{0}^{T}\left|F_{2} x(t)\right| d t \\
& =\int_{0}^{T}\left|h_{1}(t, x(t))+y(t) h_{2}(t, x(t))\right| d t \\
& \leq \int_{0}^{T}\left(m_{3}(t)+b_{3}|x(t)|\right) d t+\int_{0}^{T} y(t)\left(m_{4}(t)+b_{4}|x(t)|\right) d t \\
& \leq\left\|m_{3}\right\|_{L_{1}}+b_{3}\|x\|_{L_{1}}+k\left(\left\|m_{4}\right\|_{L_{1}}+b_{4}\|x\|_{L_{1}}\right)
\end{aligned}
$$

The last estimate shows that the operator F_{2} maps $L_{1}(I)$ into $L_{1}(I)$. Next, for $x \in \partial B_{r}$, so, $\|x\|_{L_{1}}=r$, then

$$
\left\|F_{2} x\right\|_{L_{1}} \leq\left\|m_{3}\right\|_{L_{1}}+b_{3} r+k\left(\left\|m_{4}\right\|_{L_{1}}+b_{4} r\right)
$$

Then $F_{2}\left(\partial B_{r}\right) \subset \bar{B}_{r}\left(\right.$ closure of $\left.B_{r}\right)$ if

$$
\left\|F_{2} x\right\|_{L_{1}} \leq\left\|m_{3}\right\|_{L_{1}}+b_{3} r+k\left(\left\|m_{4}\right\|_{L_{1}}+b_{4} r\right) \leq r .
$$

Therefore

$$
r \leq \frac{\left\|m_{3}\right\|_{L_{1}}+k\left\|m_{4}\right\|_{L_{1}}}{1-\left(b_{3}+k b_{4}\right)}
$$

Using inequality $b_{3}+k b_{4}<1$, then we deduce that $r>0$.
From assumption (ii) we have that $F_{2}: B_{r} \rightarrow L_{1}(I)$ is continuous.

In what follows, we show that F_{2} is compact, and to reach this purpose we will apply Kolmogorov compactness criterion [10]. So, let Ω be a bounded subset of B_{r}. Then, $F_{2}(\boldsymbol{\Omega})$ is bounded in $L_{1}(I)$, i.e., condition (i) of Kolmogorov compactness criterion [10] is verified. Now, we prove that $\left(F_{2} x\right)_{h} \rightarrow F_{2} x \in L_{1}(I)$ as $h \rightarrow 0$, uniformly with respect to $F_{2} x \in F_{2} \Omega$. Then

$$
\begin{aligned}
\left\|\left(F_{2} x\right)_{h}-F_{2} x\right\|_{L_{1}}= & \int_{0}^{T}\left|\left(F_{2} x\right)_{h}(t)-\left(F_{2} x\right)(t)\right| d t \\
= & \int_{0}^{T}\left|\frac{1}{h} \int_{t}^{t+h}\left(F_{2} x\right)(s) d s-\left(F_{2} x\right)(t)\right| d t \\
\leq & \int_{0}^{T}\left(\frac{1}{h} \int_{t}^{t+h}\left|\left(F_{2} x\right)(s)-\left(F_{2} x\right)(t)\right| d s\right) d t \\
\leq & \left.\int_{0}^{T} \frac{1}{h} \int_{t}^{t+h} \right\rvert\,\left(h_{1}(s, x(s))+y(s) h_{2}(s, x(s))\right) \\
& \quad-\left(h_{1}(t, x(t))+y(t) h_{2}(t, x(t))\right) \mid d s d t
\end{aligned}
$$

Since $h_{i} \in L_{1}(I), i=1$, 2 , we have (see [25])

$$
\frac{1}{h} \int_{t}^{t+h}\left|\left(h_{1}(s, x(s))+y(s) h_{2}(s, x(s))\right)-\left(h_{1}(t, x(t))+y(t) h_{2}(t, x(t))\right)\right| d s \rightarrow 0
$$

for a.e. $t \in(0, T]$. Therefore, $F_{2}(\boldsymbol{\Omega})$ is relatively compact, i.e., F_{2} is a compact operator.
Hence, applying Rothe fixed-point Theorem [9] implies that F_{2} has a fixed point. This completes the proof.

Next, in order to have a global solution for the quadratic integral equation of fractional order, we have the following result.

Theorem 3. Let the assumptions of Theorem 2 be satisfied in addition to the following assumption:
(v) Assume that every solution $x \in L_{1}(I)$ of the equation

$$
x(t)=\eta\left(h_{1}(t, x(t))+y(t) h_{2}(t, x(t))\right) \text { a.e. on }(0, T], \eta \in(0,1)
$$

satisfies $\|x\|_{L_{1}} \neq r$ (r is fixed and arbitrary $)$.
Then, Equation (2) has a solution $x \in L_{1}(I)$.
Proof. Let x be an arbitrary element in the open set $\mathbb{B}_{r}=\left\{x:\|x\|_{L_{1}}<r, r>0\right\}$. Then, from the assumption (ii), we have

$$
\left\|F_{2} x\right\|_{L_{1}} \leq\left\|m_{3}\right\|_{L_{1}}+b_{3}\|x\|_{L_{1}}+k\left(\left\|m_{4}\right\|_{L_{1}}+b_{4}\|x\|_{L_{1}}\right) .
$$

The above inequality means that the operator F_{2} maps \mathbb{B}_{r} into $L_{1}(I)$. Moreover, as a consequence of Theorem 2. we get that F_{2} maps \mathbb{B}_{r} continuously into $L_{1}(I)$ and F_{2} is compact.

Then, in the view of assumption $(v), F_{2}$ has a fixed point. This completes the proof.

3. Continuous Dependence of the Solution

In order to study the continuous dependence of the solution on some data, we assume the following assumptions:
$\left(i i^{*}\right)\left|h_{i}\left(t, u_{1}\right)-h_{i}\left(t, u_{2}\right)\right| \leq l_{i}\left|u_{1}-u_{2}\right|, i=1,2 \forall u_{1}, u_{2} \in \mathbb{R}$ and $t \in I$.
(vi) $\left|f\left(t, u_{1}\right)-f\left(t, u_{2}\right)\right| \leq b_{1}^{\prime}\left|u_{1}-u_{2}\right|, \forall u_{1}, u_{2} \in \mathbb{R}$ and $t \in I$.
(vii) $\left|g\left(t, u_{1}\right)-g\left(t, u_{2}\right)\right| \leq b_{2}^{\prime}\left|u_{1}-u_{2}\right|, \forall u_{1}, u_{2} \in \mathbb{R}$ and $t \in I$.

Theorem 4. Let the assumptions of Theorem 1 be satisfied with replacing condition (i) by (vi) and (vii). If $\frac{b_{1}^{\prime} b_{2}^{\prime} T^{\alpha-\gamma}}{\Gamma(\alpha-\gamma+1)}<1$, then the functional integral Equation (5) has a unique solution.

Proof. Let z_{1}, z_{2} be solutions of Equation (5), then

$$
\begin{aligned}
\left|z_{1}(t)-z_{2}(t)\right| & =\left|I^{\alpha-\gamma} f\left(t, \int_{0}^{\varphi(t)} g\left(s, z_{1}(s)\right) d s\right)-I^{\alpha-\gamma} f\left(t, \int_{0}^{\varphi(t)} g\left(s, z_{2}(s)\right) d s\right)\right| \\
& \leq I^{\alpha-\gamma}\left|f\left(t, \int_{0}^{\varphi(t)} g\left(s, z_{1}(s)\right) d s\right)-f\left(t, \int_{0}^{\varphi(t)} g\left(s, z_{2}(s)\right) d s\right)\right| \\
& \leq b_{1}^{\prime} I^{\alpha-\gamma}\left|\int_{0}^{\varphi(t)} g\left(s, z_{1}(s)\right) d s-\int_{0}^{\varphi(t)} g\left(s, z_{2}(s)\right) d s\right| \\
& \leq b_{1}^{\prime} I^{\alpha-\gamma} \int_{0}^{t}\left|g\left(s, z_{1}(s)\right)-g\left(s, z_{2}(s)\right)\right| d s \\
& \leq b_{1}^{\prime} b_{2}^{\prime} I^{\alpha-\gamma} \int_{0}^{t}\left|z_{1}(s)-z_{2}(s)\right| d s \\
& \leq b_{1}^{\prime} b_{2}^{\prime} \int_{0}^{t} \frac{(t-s)^{\alpha-\gamma-1}}{\Gamma(\alpha-\gamma)}\left|z_{1}(s)-z_{2}(s)\right| d s \\
& \leq b_{1}^{\prime} b_{2}^{\prime}| | z_{1}-z_{2}| | \frac{T^{\alpha-\gamma}}{\Gamma(\alpha-\gamma+1)} \\
& \Rightarrow\left(1-b_{1}^{\prime} b_{2}^{\prime} \frac{T^{\alpha-\gamma}}{\Gamma(\alpha-\gamma+1)}\right)\left|\mid z_{1}-z_{2} \| \leq 0 .\right.
\end{aligned}
$$

Since $\frac{b_{1}^{\prime} b_{2}^{\prime} T^{\alpha-\gamma}}{\Gamma(\alpha-\gamma+1)}<1$, we have $z_{1}=z_{2}$. Hence the solution of the problem (5) is unique. Similarly, we can prove a uniqueness result for Equation (4). Hence for (2), we have the following Theorem

Theorem 5. Let the assumptions of Theorems 2 and 4 be satisfied with replacing condition (ii) by (ii*) equipped with $\left(l_{1}+k l_{2}\right)<1$. Then, the solution $x \in L_{1}(I)$ of the functional Equation (2) is unique.

Proof. Firstly, Theorem 2 proved that the functional integral Equation (2) has at least one solution.

Now, let $x_{1}, x_{2} \in L_{1}(I)$ be two solutions of (2). Then, for $t \in I$, we have

$$
\begin{aligned}
\left|x_{1}(t)-x_{2}(t)\right| & =\left|h_{1}\left(t, x_{1}(t)\right)+y(t) h_{2}\left(t, x_{1}(t)\right)-h_{1}\left(t, x_{2}(t)\right)-y(t) h_{2}\left(t, x_{2}(t)\right)\right| \\
& \leq\left|h_{1}\left(t, x_{1}(t)\right)-h_{1}\left(t, x_{2}(t)\right)\right|+|y(t)|\left|h_{2}\left(t, x_{1}(t)\right)-h_{2}\left(t, x_{2}(t)\right)\right| \\
& \leq l_{1}\left|x_{1}(t)-x_{2}(t)\right|+|y(t)| l_{2}\left|x_{1}(t)-x_{2}(t)\right| .
\end{aligned}
$$

Then, for $t \in I$, and $|y(t)|<k$, we get

$$
\begin{aligned}
\left\|x_{1}-x_{2}\right\| & \leq l_{1} \int_{0}^{T}\left|x_{1}(t)-x_{2}(t)\right| d t+k l_{2} \int_{0}^{T}\left|x_{1}(t)-x_{2}(t)\right| d t \\
& \leq l_{1}\left\|x_{1}-x_{2}\right\|+k l_{2}\left\|x_{1}-x_{2}\right\| \leq\left(l_{1}+k l_{2}\right)\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

Hence

$$
\left[1-\left(l_{1}+k l_{2}\right)\right]\left\|x_{1}-x_{2}\right\| \leq 0
$$

and then the solution of (2) is unique.
Now, we are in position to state an existence result for the uniqueness of the solution for the hybrid implicit functional differential Equation (3).

Theorem 6. Let the assumptions of Theorems 3 and 4 be satisfied. Then the solution $x \in L_{1}(I)$ of the implicit hybrid delay functional differential Equation (3) is unique.

Theorem 7. Suppose that assumptions (iii)-(iv) of Theorem 1 are satisfied in addition to (vi) and (vii). If $\frac{b_{1}^{\prime} b_{2}^{\prime} T^{\alpha-\gamma+1}}{\Gamma(\alpha-\gamma+1)}<1$, then the solution z of Equation (5) depends continuously on the delay function φ.

Proof. Let $\forall \varepsilon>0$, there exists $\delta(\varepsilon)>0$, we shall show that

$$
\left|\varphi(t)-\varphi^{*}(t)\right| \leq \delta \Rightarrow\left\|z-z^{*}\right\| \leq \epsilon
$$

where

$$
z^{*}(t)=I^{\alpha-\gamma} f\left(t, \int_{0}^{\varphi^{*}(t)} g\left(s, z^{*}(s)\right) d s\right)
$$

Now

$$
\begin{aligned}
\left|z(t)-z^{*}(t)\right| & =\left|I^{\alpha-\gamma} f\left(t, \int_{0}^{\varphi(t)} g(s, z(s)) d s\right)-I^{\alpha-\gamma} f\left(t, \int_{0}^{\varphi^{*}(t)} g\left(s, z^{*}(s)\right) d s\right)\right| \\
& \leq I^{\alpha-\gamma}\left|f\left(t, \int_{0}^{\varphi(t)} g(s, z(s)) d s\right)-f\left(t, \int_{0}^{\varphi^{*}(t)} g\left(s, z^{*}(s)\right) d s\right)\right| \\
& =I^{\alpha-\gamma} \mid f\left(t, \int_{0}^{\varphi(t)} g(s, z(s)) d s\right)-f\left(t, \int_{0}^{\varphi^{*}(t)} g\left(s, z^{*}(s)\right) d s\right) \\
& -f\left(t, \int_{0}^{\varphi(t)} g\left(s, z^{*}(s)\right) d s\right)+f\left(t, \int_{0}^{\varphi(t)} g\left(s, z^{*}(s)\right) d s\right) \mid \\
& \leq I^{\alpha-\gamma}\left[\left|f\left(t, \int_{0}^{\varphi(t)} g(s, z(s)) d s\right)-f\left(t, \int_{0}^{\varphi(t)} g\left(s, z^{*}(s)\right) d s\right)\right|\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left|f\left(t, \int_{0}^{\varphi(t)} g\left(s, z^{*}(s)\right) d s\right)-f\left(t, \int_{0}^{\varphi^{*}(t)} g\left(s, z^{*}(s)\right) d s\right)\right|\right] \\
& \leq b_{1}^{\prime} I^{\alpha-\gamma}\left[\left|\int_{0}^{\varphi(t)} g(s, z(s)) d s-\int_{0}^{\varphi(t)} g\left(s, z^{*}(s)\right) d s\right|\right. \\
& \left.+\left|\int_{0}^{\varphi(t)} g\left(s, z^{*}(s)\right) d s-\int_{0}^{\varphi^{*}(t)} g\left(s, z^{*}(s)\right) d s\right|\right] \\
& \leq b_{1}^{\prime} I^{\alpha-\gamma}\left[\int_{0}^{\varphi(t)}\left|g(s, z(s))-g\left(s, z^{*}(s)\right)\right| d s+\int_{\varphi^{*}(t)}^{\varphi(t)}\left|g\left(s, z^{*}(s)\right)\right| d s\right] \\
& \leq b_{1}^{\prime} I^{\alpha-\gamma}\left[\int_{0}^{\varphi(t)}\left|g(s, z(s))-g\left(s, z^{*}(s)\right)\right| d s+\varepsilon_{1}\right] \\
& \leq \quad b_{1}^{\prime} b_{2}^{\prime} I^{\alpha-\gamma}\left[\int_{0}^{T}\left|z(s)-z^{*}(s)\right| d s+\varepsilon_{1}\right] \\
& \leq b_{1}^{\prime} b_{2}^{\prime} I^{\alpha-\gamma}\left[T\left\|z-z^{*}\right\|+\varepsilon_{1}\right], \\
& \left\|z-z^{*}\right\| \leq \frac{b_{1}^{\prime} b_{2}^{\prime} T^{\alpha-\gamma+1}}{\Gamma(\alpha-\gamma+1)}\left\|z-z^{*}\right\|+\frac{b_{1}^{\prime} b_{2}^{\prime} T^{\alpha-\gamma} \varepsilon_{1}}{\Gamma(\alpha-\gamma+1)}, \\
& \left\|z-z^{*}\right\| \leq \frac{b_{1}^{\prime} b_{2}^{\prime} T^{\alpha-\gamma} \varepsilon_{1}}{\Gamma(\alpha-\gamma+1)}\left(1-\frac{b_{1}^{\prime} b_{2}^{\prime} T^{\alpha-\gamma+1}}{\Gamma(\alpha-\gamma+1)}\right)^{-1}
\end{aligned}
$$

Since $\frac{b_{1}^{\prime} b_{2}^{\prime} T^{\alpha-\gamma+1}}{\Gamma(\alpha-\gamma+1)}<1$, we obtain $\left\|z-z^{*}\right\| \leq \varepsilon$.
Corollary 2. Since z depends continuously on the delay function φ, then y depends continuously on the delay function φ.

Theorem 8. Suppose that the conditions of Theorem 5 are satisfied, then the solution x of Equation (2) depends continuously on φ.

Proof. Let $\forall \varepsilon^{\prime}>0$, there exists $\delta^{\prime}\left(\varepsilon^{\prime}\right)>0$, such that $\left|y-y^{*}\right|<\delta^{\prime}$. Now

$$
\begin{aligned}
\left|x-x^{*}\right|= & \left|h_{1}(t, x(t))+y(t) h_{2}(t, x(t))-h_{1}\left(t, x^{*}(t)\right)-y^{*}(t) h_{2}\left(t, x^{*}(t)\right)\right| \\
= & \mid h_{1}(t, x(t))+y(t) h_{2}(t, x(t))-h_{1}\left(t, x^{*}(t)\right)-y^{*}(t) h_{2}\left(t, x^{*}(t)\right) \\
& +y^{*}(t) h_{2}(t, x(t))-y^{*}(t) h_{2}(t, x(t)) \mid \\
\leq & \left|h_{1}(t, x(t))-h_{1}\left(t, x^{*}(t)\right)\right|+\left|h_{2}(t, x(t))\right|\left|y(t)-y^{*}(t)\right| \\
& +\left|y^{*}(t)\right|\left|h_{2}(t, x(t))-h_{2}\left(t, x^{*}(t)\right)\right| \\
\leq & l_{1}\left|x-x^{*}\right|+\left(h_{2}(t, 0)+l_{2}|x|\right)\left|y(t)-y^{*}(t)\right|+k l_{2}\left|x(t)-x^{*}(t)\right|,
\end{aligned}
$$

then

$$
\begin{aligned}
\left\|x-x^{*}\right\|_{L_{1}} & \leq l_{1}\left\|x-x^{*}\right\|_{L_{1}}+\left(\left\|h_{2}(t, 0)\right\|_{L_{1}}+l_{2}\|x\|_{L_{1}}\right)\left\|y-y^{*}\right\|+k l_{2}\left\|x-x^{*}\right\|_{L_{1}} \\
\left\|x-x^{*}\right\|_{L_{1}} & \leq \frac{\left(\left\|h_{2}(t, 0)\right\|_{L_{1}}+l_{2}\|x\|_{L_{1}}\right)}{\left(1-l_{1}-k l_{2}\right)}\left\|y-y^{*}\right\| \\
& \leq \frac{\left(\left\|h_{2}(t, 0)\right\|_{L_{1}}+l_{2}\|x\|_{L_{1}}\right)}{\left(1-l_{1}-k l_{2}\right)} \delta^{\prime}=\varepsilon^{\prime} .
\end{aligned}
$$

From Corollary 2, we get the result.
Remark 1. By direct calculations as above we can prove that the solution $z \in C(I)$ of Equation (5) depends continuously on the function f_{2} and thus $x \in L_{1}(I)$ of the Equation (3) depends continuously on the function g.

4. Some Remarks and Particular Cases

Remark 2. As a particular case of our results when $\gamma=1-\alpha$, we can deduce the existence of at least one solution for the problem of conjugate orders

$$
\left\{\begin{array}{c}
D^{\alpha}\left(\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}\right)=f\left(t, \int_{0}^{\varphi(t)} g\left(s, D^{1-\alpha}\left(\frac{x(s)-h_{1}(s, x(s))}{h_{2}(s, x(s))}\right)\right) d s\right), \alpha \in\left(\frac{1}{2}, 1\right), t \in(0, T] \\
\left.\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}\right|_{t=0}=0
\end{array}\right.
$$

Remark 3. As a particular case of our results when $f(t, x(t))=a(t)+x(t)$, we can deduce the existence of at least one solution for the following problem

$$
\left\{\begin{array}{c}
D^{\alpha}\left(\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}\right)=a(t)+\int_{0}^{\varphi(t)} g\left(s, D^{\gamma}\left(\frac{x(s)-h_{1}(s, x(s))}{h_{2}(s, x(s))}\right)\right) d s, \gamma<\alpha, \quad t \in(0, T] \\
\left.\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}\right|_{t=0}=0 .
\end{array}\right.
$$

where $a \in L_{1}(I)$.
Existence Results of the Problem (3) when $\alpha=\gamma$
In this section, we consider the hybrid differential equation

$$
\left\{\begin{align*}
D^{\alpha}\left(\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}\right)=f\left(t, \int_{0}^{\varphi(t)} g\left(s, D^{\alpha}\left(\frac{x(s)-h_{1}(s, x(s))}{h_{2}(s, x(s))}\right)\right) d s\right), t \in(0, T] \tag{9}\\
\left.\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}\right|_{t=0}=0 .
\end{align*}\right.
$$

By putting $y(t)=\frac{x(t)-h_{1}(t, x(t))}{h_{2}(t, x(t))}$, then problem (9) has the form

$$
\left\{\begin{array}{c}
D^{\alpha} y(t)=f\left(t, \int_{0}^{\varphi(t)} g\left(s, D^{\alpha} y(s)\right) d s\right), \quad t \in(0, T] \tag{10}\\
y(0)=0 .
\end{array}\right.
$$

Let $w(t)=D^{\alpha} y(t)$, then

$$
\begin{equation*}
w(t)=f\left(t, \int_{0}^{\varphi(t)} g(s, w(s)) d s\right), \quad t \in I \tag{11}
\end{equation*}
$$

Now, consider this assumption:
$\left(i^{*}\right) \quad f, g: I \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions and satisfy conditions (vi) and (vii). to prove the existence of a continuous solution of the integral Equation (11).

Theorem 9. Let the assumptions (i^{*}) be satisfied. If $b_{1}^{\prime} b_{2}^{\prime} T<1$, then the functional Equation (11) has a unique solution $w \in C(I)$.

Proof. Define the operator \mathcal{F}_{1} on Ω by

$$
\mathcal{F}_{1} w(t)=f\left(t, \int_{0}^{\varphi(t)} g(s, w(s)) d s\right), \quad t \in I
$$

where $\Omega=\left\{w \in C(I):\|w\| \leq m^{*}\right\}, m^{*}=\frac{T \sup _{t \in I}|g(s, 0)|+\sup _{t \in I}|f(t, 0)|}{1-b_{1}^{\prime} b_{2}^{\prime} T}$.

$$
\begin{align*}
\lambda\|w\|=\left\|\mathcal{F}_{1} w\right\| & =\sup _{t \in I}\left|\left(F_{1} w\right)(t)\right| \\
& \leq \sup _{t \in I}\left|f\left(t, \int_{0}^{\varphi(t)} g(s, w(s)) d s\right)\right| \\
& \leq \sup _{t \in I}\left|f\left(t, \int_{0}^{\varphi(t)} g(s, w(s)) d s\right)-f(t, 0)\right|+\sup _{t \in I}|f(t, 0)| \\
& \leq b_{1}^{\prime} \sup _{t \in I}\left|\int_{0}^{\varphi(t)} g(s, w(s)) d s\right|+\sup _{t \in I}|f(t, 0)| \\
& \leq b_{1}^{\prime} \sup _{t \in I} \int_{0}^{\varphi(t)}|g(s, w(s))-g(s, 0)| d s+b_{1}^{\prime} T \sup _{t \in I}|g(s, 0)|+\sup _{t \in I}|f(t, 0)| \\
& \leq b_{1}^{\prime} b_{2}^{\prime} T \| w| |+b_{1}^{\prime} T \sup _{t \in I}|g(s, 0)|+\sup _{t \in I}|f(t, 0)| \\
& \leq b_{1}^{\prime} b_{2}^{\prime} T m^{*}+b_{1}^{\prime} T \sup _{t \in I}|g(s, 0)|+\sup _{t \in I}|f(t, 0)| . \tag{12}
\end{align*}
$$

In view of assumption $\left(i^{*}\right)$, we show that \mathcal{F}_{1} is a continuous operator.
For any $w, w^{\prime} \in \Omega$, then we have

$$
\begin{aligned}
\left|\mathcal{F}_{1} w(t)-\mathcal{F}_{1} w^{\prime}(t)\right| & =\left|f\left(t, \int_{0}^{\varphi(t)} g(s, w(s)) d s\right)-f\left(t, \int_{0}^{\varphi(t)} g\left(s, w^{\prime}(s)\right) d s\right)\right| \\
& \leq b_{1}^{\prime}\left|\int_{0}^{\varphi(t)} g(s, w(s)) d s-\int_{0}^{\varphi(t)} g\left(s, w^{\prime}(s)\right) d s\right| \\
& \leq b_{1}^{\prime} \int_{0}^{\varphi(t)}\left|g(s, w(s))-g\left(s, w^{\prime}(s)\right)\right| d s \\
& \leq b_{1}^{\prime} \int_{0}^{T}\left|g(s, w(s))-g\left(s, w^{\prime}(s)\right)\right| d s \\
& \leq b_{1}^{\prime} b_{2}^{\prime} \int_{0}^{T}\left|w(s)-w^{\prime}(s)\right| d s \\
& \leq b_{1}^{\prime} b_{2}^{\prime} T \sup _{t \in I}\left|w(s)-w^{\prime}(s)\right| \\
& \leq b_{1}^{\prime} b_{2}^{\prime} T \| w-w^{\prime}| | .
\end{aligned}
$$

The above inequality shows that

$$
\left\|\mathcal{F}_{1} z-\mathcal{F}_{1} u\right\| \leq\left\|w-w^{\prime}\right\|, \forall w, w^{\prime} \in \Omega
$$

then $\mathcal{F}_{1}: \Omega \rightarrow \Omega$ is a contraction, and hence \mathcal{F}_{1} has a unique fixed point in Ω, which completes the proof.

5. Conclusions

Here, we have studied some qualitative results for a hybrid implicit differential equation of arbitrary order (3) involving a Riemann-Liouville fractional derivative (in case $\gamma<\alpha$) with a nonlocal initial condition. The Rothe fixed-point Theorem, Nonlinear alternative of Leray-Schauder type and Kolmogorov compactness criterion have been used with the aim of proving the main results. Next, we proved the existence of the global solution of that problem. Furthermore, we have established the continuous dependence of our solution on the delay function and on other functions. Finally, we considered the problem (3) when $\alpha=\gamma$, which cannot be a special case of the problem (3) because of the insufficiently of the assumption (i). So, f, g have been assumed to satisfy Lipchitz conditions. Thus, the solvability of (3) has been discussed for all $\gamma \leq \alpha$.

Author Contributions: Formal analysis, A.M.A.E.-S.; investigation, A.M.A.E.-S. and H.H.G.H.; methodology, S.A.A.E.-S. and H.H.G.H.; project administration, A.M.A.E.-S.; supervision, A.M.A.E.S.; writing-original draft, S.A.A.E.-S.; writing-review and editing, H.H.G.H. All authors are equally contributed to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abbas, M.; Asghar, M.W.; De la Sen, M. Approximation of the Solution of Delay Fractional Differential Equation Using AAIterative Scheme. Mathematics 2022, 10, 273. [CrossRef]
2. Baitiche, Z.; Guerbati, K.; Benchohra, M.; Zhou, Y. Boundary value problems for hybrid Caputo fractional differential equations. Mathematics 2019, 7, 282. [CrossRef]
3. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012.
4. Benchohra, M.; Lazreg, J.E. Nonlinear fractional implicit differential equations. Commun. Appl. Anal. 2013, 17, 471-482.
5. Benchohra, M.; Souid, M.S. Integrable solutions for implicit fractional order functional differential equations with infinite delay. Arch. Math. 2015, 51, 67-76. [CrossRef]
6. Benchohra, M.; Souid, M.S. L_{1}-Solutions for Implicit Fractional Order Differential Equations with Nonlocal Conditions. Filomat 2016, 30, 1485-1492. [CrossRef]
7. Benchohra, M.; Lazreg, J.E. Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions. Rom. J. Math. Comput. Sci. 2014, 4, 60-72.
8. Curtain, R.F.; Pritchard, A.J. Functional Analysis in Modern Applied Mathematics; Academic Press: Cambridge, MA, USA, 1977.
9. Deimling, K. Nonlinear Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1985.
10. Dugundji, J.; Granas, A. Fixed Point Theory; Monografie Mathematyczne; PWN: Warsaw, Poland, 1982.
11. Derbazi, C.; Hammouche, H.; Benchohra, M.; Zhou, Y. Fractional hybrid differential equations with three-point boundary hybrid conditions. Adv. Differ. Equ. 2019, 2019, 125. [CrossRef]
12. Dhage, B.C. On α-condensing mappings in Banach algebras. Math. Stud. 1994, 63, 146-152.
13. Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equations. Nonlinear Anal Hybrid Syst. 2010, 4, 414-424. [CrossRef]
14. El-Borai, M.M.; El-Sayed, W.G.; Badr, A.A.; Tarek, S.A. Initial value problem for stochastic hyprid Hadamard Fractional differential equation. J. Adv. Math. 2019, 16, 8288-8296. [CrossRef]
15. El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. An Implicit Hybrid Delay Functional Integral Equation: Existence of Integrable Solutions and Continuous Dependence. Mathematics 2021, 9, 3234. [CrossRef]
16. Hilal, K.; Kajouni, A. Boundary value problems for hybrid differential equations with fractional order. Adv. Differ. Equ. 2015, 183, 1-19. [CrossRef]
17. Sun, S.; Zhao, Y.; Han, Z.; Li, Y. The existence of solutions for boundary value problem of fractional hybrid differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4961-4967. [CrossRef]
18. Srivastava, H.M.; El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analytical investigation of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders. Racsam 2022, 116, 26. [CrossRef]
19. Luo, D.; Alam, M.; Zada, A.; Riaz, U.; Luo, Z. Existence and Stability of Implicit Fractional Differential Equations with Stieltjes Boundary Conditions Involving Hadamard Derivatives. Complexity 2021, 2021, 8824935. [CrossRef]
20. Nieto, J.J.; Ouahab, A.; Venktesh, V. Implicit Fractional Differential Equations via the Liouville-Caputo Derivative. Mathematics 2015, 3, 398-411. [CrossRef]
21. Sathiyanathan, K.; Krishnaveni, V. Nonlinear Implicit Caputo Fractional Differential Equations with Integral Boundary Conditions in Banach Space. Glob. J. Pure Appl. Math. 2017, 13, 3895-3907.
22. Shokri, A.; Shokri, A.A. Implicit one-step L-stable generalized hybrid methods for the numerical solution of first order initial value problems. Iran. J. Math. Chem. 2013, 4, 201-212.
23. Vivek, D.; Kanagarajan, K.; Elsayed, E.M. Existence and stability of fractional implicit differential equations with complex order. Res. Fixed Point Theory Appl. 2018, 2018, 201827. [CrossRef]
24. Yamamoto, M. Fractional Calculus and Time-Fractional Differential Equations: Revisit and Construction of a Theory. Mathematics 2022, 10, 698. [CrossRef]
25. Swartz, C. Measure, Integration and Function Spaces; World Scientific: Singapore, 1994.
