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Abstract: In this paper, we present a qualitative study of an implicit fractional differential equation
involving Riemann–Liouville fractional derivative with delay and its corresponding integral equation.
Under some sufficient conditions, we establish the global and local existence results for that problem
by applying some fixed point theorems. In addition, we have investigated the continuous and
integrable solutions for that problem. Moreover, we discuss the continuous dependence of the
solution on the delay function and on some data. Finally, further results and particular cases
are presented.
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1. Preliminaries and Introduction

The theory of fractional differential equations has gained a lot of circulation lately. It
is of great importance because of its widespread applications in the fields of science and
geometry as a mathematical model (see [1–3]).

Recently, a new class of mathematical modelings based on hybrid fractional differential
equations with hybrid or non-hybrid boundary value conditions have been investigated
in many papers and monographs using different techniques [2–16]. Fractional hybrid
differential equations can be used in modeling and describing some non-homogeneous
physical phenomena. The importance of investigations into these problems lies in the fact
that they include many dynamic systems as special cases [12–14].

Implicit differential and integral equations have gained great attention, for example,
Sun et al. [17] have studied a fractional hybrid boundary value problem under mixed
Lipschitz and Carathéodory conditions. Benchohra et al. [5] have studied the existence of
integrable solutions of an implicit differential equation with infinite delay involving Caputo
fractional derivatives. Srivastava et al. [18] have studied the existence of monotonic inte-
grable a.e. solution of nonlinear hybrid implicit functional differential inclusions of arbitrary
fractional orders by using the measure of noncompactness technique. El-Sayed et al. [15]
have discussed the existence of a solution and continuous dependence of the solution on
some data for an implicit hybrid delay functional integral equation (see [4,6,7,18–24]).

Motivated by these results, here, we shall investigate hybrid differential equations of
arbitrary order
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
Dα

(
x(t)−h1(t,x(t))

h2(t,x(t))

)
= f

(
t,
∫ ϕ(t)

0 g
(

s, Dγ( x(s)−h1(s,x(s))
h2(s,x(s)) )

)
ds
)

, γ < α, t ∈ (0, T],

x(t)−h1(t,x(t))
h2(t,x(t))

∣∣∣∣
t=0

= 0,
(1)

and prove the existence of L1—solutions of this problem where Dα refers to the fractional
derivative of Riemann–Liouville of order α ∈ (0, 1).

The Riemann–Liouville differential operator is very important in the modeling of
many physical phenomena. In addition, we shall study the continuous dependence of the
solution on the delay function φ. Furthermore, a case when α = γ will be studied.

2. Main Results

Let I = [0, T] and the class E = C(I) with supremum norm ||z|| = sup
t∈I
|z(t)|, for any

z ∈ E.
Consider the following assumptions

(i) f , g : I × R → R satisfy Carathéodory conditions and there exist two bounded
measurable functions mi and bi ≥ 0, i = 1, 2. Moreover

| f (t, x) | ≤ m1(t) + b1 | x |, | g(t, x) | ≤ m2(t) + b2 | x |, t ∈ I, x ∈ R.

Let
M = max{sup

t∈I
m1(t), sup

t∈I
m2(t)}.

(ii) hi : I ×R → R, i = 1, 2 satisfy Carathéodory conditions and there exist mj ∈ L1(I)
and bj ≥ 0, j = 3, 4 such that

| hi(t, x) | ≤ mj(t) + bj | x |, t ∈ I, x ∈ R.

(iii) ϕ : I → I is continuous and monotonic nondecreasing.

(iv) b1 b2 T1+α−γ

Γ(1+α−γ)
< 1.

Taking

y(t) =
x(t)− h1(t, x(t))

h2(t, x(t))
,

then
x(t) = h1(t, x(t)) + y(t) h2(t, x(t)), t ∈ I, (2)

and  Dα y(t) = f
(

t,
∫ ϕ(t)

0 g(s, Dγy(s)) ds
)

, t ∈ (0, T],

y(0) = 0.
(3)

from (3), we get

y(t) = Iα f
(

t,
∫ ϕ(t)

0
g(s, Dγy(s)) ds

)
. (4)

Operating by I1−γ on both sides of the last equation, then

I1−γ y(t) = I1+α−γ f
(

t,
∫ ϕ(t)

0
g(s, Dγy(s)) ds

)
.

Differentiating both sides, we get

d
dt

I1−γ y(t) = Iα−γ f
(

t,
∫ ϕ(t)

0
g(s, Dγy(s)) ds

)
.
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Let z(t) = Dγy(t), then

z(t) = Iα−γ f
(

t,
∫ ϕ(t)

0
g(s, z(s)) ds

)
, t ∈ I. (5)

Now, we shall prove the existence of a continuous solution of the integral Equation (5)
by applying a nonlinear alternative of Leray–Schauder type [9].

Theorem 1. Let assumptions (i), (iii) and (iv) hold, then Equation (5) has at least a solution
z ∈ C(I).

Proof. Define the operator F1 on Ω by

F1z(t) = Iα−γ f
(

t,
∫ ϕ(t)

0
g(s, z(s)) ds

)
, t ∈ I,

where Ω = {z ∈ C(I) : ||z|| ≤ m} .
Let

A =
b1 b2 T1+α−γ

Γ(1 + α− γ)
,

and

B =
Tα−γ M

Γ(1 + α− γ)

(
1 + b1 T

)
.

Then, according to condition (iv), we deduce that A < 1. It is also clear that B > 0.
Take m = B(1− A)−1 and suppose that z ∈ ∂Ω, λ > 1 such that F1z = λz, then

λ m = λ ||z|| = ||F1z|| = sup
t∈I
|(F1z)(t)|

≤ sup
t∈I
| Iα−γ f

(
t,
∫ ϕ(t)

0
g(s, z(s)) ds

)
|

≤ sup
t∈I

∫ t

0

(t− s)α−γ−1

Γ(α− γ)

∣∣∣∣ f(s,
∫ ϕ(s)

0
g(u, z(u)) du

) ∣∣∣∣ ds

≤ sup
t∈I

∫ t

0

(t− s)α−γ−1

Γ(α− γ)

(
m1(s) + b1

∫ ϕ(s)

0
|g(u, z(u))| du

)
ds

≤ sup
t∈I

∫ t

0

(t− s)α−γ−1

Γ(α− γ)

(
m1(s) + b1

∫ ϕ(s)

0

[
m2(u) + b2|z(u)|

]
du
)

ds

≤
∫ t

0

(t− s)α−γ−1

Γ(α− γ)

(
M + b1

∫ T

0

[
M + b2|z(u)|

]
du
)

ds

≤
∫ t

0

(t− s)α−γ−1

Γ(α− γ)

(
M + b1 T

[
M + b2||z||

])
ds

≤ Tα−γ

Γ(1 + α− γ)

(
M + b1 T(M + b2||z||)

)
≤ Tα−γ M

Γ(1 + α− γ)

(
1 + b1 T

)
+

b1b2T1+α−γ

Γ(1 + α− γ)
||z||

= B + A ||z|| = B + A m. (6)

Therefore,

λ ≤ B
m

+ A =
B

B(1− A)−1 + A = (1 − A) + A = 1,
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this contradicts λ > 1. Therefore, if F1 : Ω→ E is a completely continuous operator, then it
has a fixed point z ∈ Ω.

Now, we shall prove that F1 is a completely continuous operator. For any z ∈ Ω̄, let
t1, t2 ∈ I, t1 < t2, then we have

|F1z(t2)− F1z(t1)| =

∣∣∣∣Iα−γ f
(

t2,
∫ ϕ(t2)

0
g(s, z(s)) ds

)
− Iα−γ f

(
t1,
∫ ϕ(t1)

0
g(s, z(s)) ds

)∣∣∣∣
=

∣∣∣∣ ∫ t2

0

(t2 − s)α−γ−1

Γ(α− γ)
f
(

s,
∫ ϕ(s)

0
g(u, z(u)) du

)
ds

−
∫ t1

0

(t1 − s)α−γ−1

Γ(α− γ)
f
(

s,
∫ ϕ(s)

0
g(u, z(u)) du

)
ds
∣∣∣∣

≤
∫ t1

0

(t1 − s)α−γ−1 − (t2 − s)α−γ−1

Γ(α− γ)

∣∣∣∣ f(s,
∫ ϕ(s)

0
g(u, z(u)) du

)∣∣∣∣ ds

+
∫ t2

t1

(t2 − s)α−γ−1

Γ(α− γ)

∣∣∣∣ f(s,
∫ ϕ(s)

0
g(u, z(u)) du

)∣∣∣∣ ds

≤
∫ t1

0

(t1 − s)α−γ−1 − (t2 − s)α−γ−1

Γ(α− γ)

(
m1(s) + b1

∫ ϕ(s)

0
|g(u, z(u))|du

)
ds

+
∫ t2

t1

(t2 − s)α−γ−1

Γ(α− γ)

(
m1(s) + b1

∫ ϕ(s)

0
|g(u, z(u))| du

)
ds

≤
∫ t1

0

(t1 − s)α−γ−1 − (t2 − s)α−γ−1

Γ(α− γ)

(
m1(s)

+ b1

∫ ϕ(s)

0

(
m2(u) + b2|z(u)|

)
du
)

ds

+
∫ t2

t1

(t2 − s)α−γ−1

Γ(α− γ)

(
m1(s) + b1

∫ ϕ(s)

0

(
m2(u) + b2|z(u)|

)
du
)

ds

≤
∫ t1

0

(t1 − s)α−γ−1 − (t2 − s)α−γ−1

Γ(α− γ)

(
M + b1

∫ T

0

(
M + b2|z(u)|

)
du
)

ds

+
∫ t2

t1

(t2 − s)α−γ−1

Γ(α− γ)

(
M + b1

∫ T

0

(
M + b2|z(u)|

)
du
)

ds

≤
∫ t1

0

(t1 − s)α−γ−1 − (t2 − s)α−γ−1

Γ(α− γ)

(
M + b1 T M + b1b2T||z||

)
ds

+
∫ t2

t1

(t2 − s)α−γ−1

Γ(α− γ)

(
M + b1 T M + b1b2T||z||

)
ds

≤
2(t2 − t1)

α−γ + tα−γ
2 − tα−γ

1
Γ(α− γ + 1)

(
M + b1 T M + b1b2Tm

)
.

The above inequality shows that

| F1z(t2) − F1z(t1) | → 0 as t2 → t1, (7)

then F1z is uniformly continuous in I, and hence F1 : Ω → E is well-defined. We de-
duce from (6) and (7) that the family F1z is uniformly bounded and equicontinuous, thus
the Arzela–Ascoli Theorem [8] guarantees that F1 : Ω → E is compact operator, which
completes the proof.
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Consequently, we can deduce an existence result for Equation (4).
Since ||z|| ≤ m and z(t) = Dγy(t)⇒ y(t) = Iγz(t), we have ||y|| ≤ mTγ

Γ(γ+1) .

Corollary 1. Suppose that assumptions of Theorem 1 hold, then there exists a solution y ∈ C(I)
for Equation (4) which satisfies ||y|| ≤ k, where k = mTγ

Γ(γ+1) .

Proof. From z(t) = Dγy(t), we get y(t) = Iγz(t), and

|y(t)| ≤
∫ t

0

(t− s)γ−1

Γ(γ)
|z(s)|ds

≤ m
∫ t

0

(t− s)γ−1

Γ(γ)
ds

≤ mTγ

Γ(γ + 1)
.

Now, we shall investigate the existence of integrable solution x for the quadratic
integral Equation (2).

Let Br =

{
x ∈ L1(I) : ||x||L1 ≤ r, r > 0

}
.

Theorem 2. Let the assumptions of Corollary 2 be satisfied in addition to assumption (ii). If
b3 + k b4 < 1, then Equation (2) has a solution x ∈ L1(I).

Proof. Let x be an arbitrary element in Br. The operator F2 is given by

F2 x(t) = h1(t, x(t)) + y(t) h2(t, x(t)). (8)

Then from the assumptions (ii), we have

||F2 x||L1 =
∫ T

0
| F2 x(t) | dt

=
∫ T

0
| h1(t, x(t)) + y(t) h2(t, x(t)) | dt

≤
∫ T

0

(
m3(t) + b3|x(t)|

)
dt +

∫ T

0
y(t)

(
m4(t) + b4|x(t)|

)
dt

≤ ||m3||L1 + b3 ||x||L1 + k(||m4||L1 + b4 ||x||L1).

The last estimate shows that the operator F2 maps L1(I) into L1(I). Next, for x ∈ ∂Br,
so, ||x||L1 = r, then

||F2 x||L1 ≤ ||m3||L1 + b3 r + k(||m4||L1 + b4 r).

Then F2(∂Br) ⊂ B̄r (closure of Br) if

||F2x||L1 ≤ ||m3||L1 + b3 r + k(||m4||L1 + b4 r) ≤ r.

Therefore

r ≤
||m3||L1 + k||m4||L1

1 − (b3 + k b4)
.

Using inequality b3 + k b4 < 1, then we deduce that r > 0.
From assumption (ii) we have that F2 : Br → L1(I) is continuous.
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In what follows, we show that F2 is compact, and to reach this purpose we will
apply Kolmogorov compactness criterion [10]. So, let Ω be a bounded subset of Br. Then,
F2(Ω) is bounded in L1(I), i.e., condition (i) of Kolmogorov compactness criterion [10]
is verified. Now, we prove that (F2x)h → F2x ∈ L1(I) as h → 0, uniformly with respect
to F2x ∈ F2 Ω. Then

||(F2x)h − F2x||L1 =
∫ T

0
|(F2x)h(t) − (F2x)(t)| dt

=
∫ T

0
|1
h

∫ t+h

t
(F2x)(s) ds − (F2x)(t)| dt

≤
∫ T

0

(
1
h

∫ t+h

t
|(F2x)(s) − (F2x)(t)| ds

)
dt

≤
∫ T

0

1
h

∫ t+h

t

∣∣∣∣(h1(s, x(s)) + y(s) h2(s, x(s))
)

−
(

h1(t, x(t)) + y(t) h2(t, x(t))
)∣∣∣∣ ds dt.

Since hi ∈ L1(I), i = 1, 2, we have (see [25])

1
h

∫ t+h

t

∣∣∣∣(h1(s, x(s)) + y(s) h2(s, x(s))
)
−
(

h1(t, x(t)) + y(t) h2(t, x(t))
)∣∣∣∣ ds → 0,

for a.e. t ∈ (0, T]. Therefore, F2(Ω) is relatively compact, i.e., F2 is a compact operator.
Hence, applying Rothe fixed-point Theorem [9] implies that F2 has a fixed point. This

completes the proof.

Next, in order to have a global solution for the quadratic integral equation of fractional
order, we have the following result.

Theorem 3. Let the assumptions of Theorem 2 be satisfied in addition to the following assumption:

(v) Assume that every solution x ∈ L1(I) of the equation

x(t) = η

(
h1(t, x(t)) + y(t) h2(t, x(t))

)
a.e. on (0, T], η ∈ (0, 1)

satisfies ||x||L1 6= r (r is fixed and arbitrary ).

Then, Equation (2) has a solution x ∈ L1(I).

Proof. Let x be an arbitrary element in the open set Br = {x : ||x||L1 < r, r > 0}. Then,
from the assumption (ii), we have

||F2x||L1 ≤ ||m3||L1 + b3 ||x||L1 + k(||m4||L1 + b4 ||x||L1).

The above inequality means that the operator F2 maps Br into L1(I). Moreover, as
a consequence of Theorem 2. we get that F2 maps Br continuously into L1(I) and F2
is compact.

Then, in the view of assumption (v), F2 has a fixed point. This completes the proof.
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3. Continuous Dependence of the Solution

In order to study the continuous dependence of the solution on some data, we assume
the following assumptions:

(ii∗)
∣∣∣∣hi(t, u1) − hi(t, u2)

∣∣∣∣ ≤ li |u1 − u2|, i = 1, 2 ∀ u1, u2 ∈ R and t ∈ I.

(vi)
∣∣∣∣ f (t, u1) − f (t, u2)

∣∣∣∣ ≤ b′1 |u1 − u2|, ∀ u1, u2 ∈ R and t ∈ I.

(vii)
∣∣∣∣g(t, u1) − g(t, u2)

∣∣∣∣ ≤ b′2 |u1 − u2|, ∀ u1, u2 ∈ R and t ∈ I.

Theorem 4. Let the assumptions of Theorem 1 be satisfied with replacing condition (i) by (vi) and

(vii). If b′1b′2Tα−γ

Γ(α−γ+1) < 1, then the functional integral Equation (5) has a unique solution.

Proof. Let z1, z2 be solutions of Equation (5), then

|z1(t)− z2(t)| =

∣∣∣∣Iα−γ f
(

t,
∫ ϕ(t)

0
g(s, z1(s))ds

)
− Iα−γ f

(
t,
∫ ϕ(t)

0
g(s, z2(s))ds

)∣∣∣∣
≤ Iα−γ

∣∣∣∣ f
(

t,
∫ ϕ(t)

0
g(s, z1(s))ds

)
− f

(
t,
∫ ϕ(t)

0
g(s, z2(s))ds

)∣∣∣∣
≤ b′1 Iα−γ

∣∣∣∣ ∫ ϕ(t)

0
g(s, z1(s))ds−

∫ ϕ(t)

0
g(s, z2(s))ds

∣∣∣∣
≤ b′1 Iα−γ

∫ t

0

∣∣∣∣g(s, z1(s))− g(s, z2(s))
∣∣∣∣ ds

≤ b′1 b′2 Iα−γ
∫ t

0
|z1(s)− z2(s)| ds

≤ b′1 b′2
∫ t

0

(t− s)α−γ−1

Γ(α− γ)
|z1(s)− z2(s)| ds

≤ b′1 b′2 ||z1 − z2||
Tα−γ

Γ(α− γ + 1)

⇒
(

1− b′1b′2
Tα−γ

Γ(α− γ + 1)

)
||z1 − z2|| ≤ 0.

Since b′1b′2Tα−γ

Γ(α−γ+1) < 1, we have z1 = z2. Hence the solution of the problem (5) is unique.
Similarly, we can prove a uniqueness result for Equation (4). Hence for (2), we have the
following Theorem

Theorem 5. Let the assumptions of Theorems 2 and 4 be satisfied with replacing condition (ii) by
(ii∗) equipped with

(
l1 + k l2

)
< 1. Then, the solution x ∈ L1(I) of the functional Equation (2)

is unique.

Proof. Firstly, Theorem 2 proved that the functional integral Equation (2) has at least
one solution.

Now, let x1, x2 ∈ L1(I) be two solutions of (2). Then, for t ∈ I, we have

|x1(t)− x2(t)| = |h1(t, x1(t)) + y(t)h2(t, x1(t))− h1(t, x2(t))− y(t)h2(t, x2(t))|
≤
∣∣h1(t, x1(t))− h1(t, x2(t))

∣∣+ |y(t)||h2(t, x1(t))− h2(t, x2(t))|
≤ l1|x1(t)− x2(t)|+ |y(t)| l2|x1(t)− x2(t)|.
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Then, for t ∈ I, and |y(t)| < k, we get

‖x1 − x2‖ ≤ l1
∫ T

0
|x1(t)− x2(t)| dt + k l2

∫ T

0
|x1(t)− x2(t)| dt

≤ l1‖x1 − x2‖+ k l2‖x1 − x2‖ ≤
(
l1 + k l2

)
‖x1 − x2‖.

Hence [
1−

(
l1 + k l2

)]
‖x1 − x2‖ ≤ 0,

and then the solution of (2) is unique.

Now, we are in position to state an existence result for the uniqueness of the solution
for the hybrid implicit functional differential Equation (3).

Theorem 6. Let the assumptions of Theorems 3 and 4 be satisfied. Then the solution x ∈ L1(I) of
the implicit hybrid delay functional differential Equation (3) is unique.

Theorem 7. Suppose that assumptions (iii)–(iv) of Theorem 1 are satisfied in addition to (vi) and

(vii). If b′1b′2Tα−γ+1

Γ(α−γ+1) < 1, then the solution z of Equation (5) depends continuously on the delay
function ϕ.

Proof. Let ∀ ε > 0, there exists δ(ε) > 0, we shall show that

|ϕ(t)− ϕ∗(t)| ≤ δ ⇒ ‖z− z∗‖ ≤ ε,

where

z∗(t) = Iα−γ f
(

t,
∫ ϕ∗(t)

0
g(s, z∗(s))ds

)
.

Now

|z(t)− z∗(t)| =

∣∣∣∣Iα−γ f
(

t,
∫ ϕ(t)

0
g(s, z(s))ds

)
− Iα−γ f

(
t,
∫ ϕ∗(t)

0
g(s, z∗(s))ds

)∣∣∣∣
≤ Iα−γ

∣∣∣∣ f
(

t,
∫ ϕ(t)

0
g(s, z(s))ds

)
− f

(
t,
∫ ϕ∗(t)

0
g(s, z∗(s))ds

)∣∣∣∣
= Iα−γ

∣∣∣∣ f
(

t,
∫ ϕ(t)

0
g(s, z(s))ds

)
− f

(
t,
∫ ϕ∗(t)

0
g(s, z∗(s))ds

)

− f
(

t,
∫ ϕ(t)

0
g(s, z∗(s))ds

)
+ f

(
t,
∫ ϕ(t)

0
g(s, z∗(s))ds

)∣∣∣∣
≤ Iα−γ

[ ∣∣∣∣ f
(

t,
∫ ϕ(t)

0
g(s, z(s))ds

)
− f

(
t,
∫ ϕ(t)

0
g(s, z∗(s))ds

)∣∣∣∣
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+

∣∣∣∣ f(t,
∫ ϕ(t)

0
g(s, z∗(s))ds

)
− f

(
t,
∫ ϕ∗(t)

0
g(s, z∗(s))ds

)∣∣∣∣ ]

≤ b′1 Iα−γ

[ ∣∣∣∣ ∫ ϕ(t)

0
g(s, z(s))ds−

∫ ϕ(t)

0
g(s, z∗(s))ds

∣∣∣∣
+

∣∣∣∣ ∫ ϕ(t)

0
g(s, z∗(s))ds−

∫ ϕ∗(t)

0
g(s, z∗(s))ds

∣∣∣∣ ]

≤ b′1 Iα−γ

[ ∫ ϕ(t)

0
|g(s, z(s))− g(s, z∗(s))| ds +

∫ ϕ(t)

ϕ∗(t)
|g(s, z∗(s))|ds

]

≤ b′1 Iα−γ

[ ∫ ϕ(t)

0
|g(s, z(s))− g(s, z∗(s))| ds + ε1

]

≤ b′1 b′2 Iα−γ

[ ∫ T

0
|z(s)− z∗(s)| ds + ε1

]

≤ b′1 b′2 Iα−γ

[
T ||z− z∗||+ ε1

]
,

||z− z∗|| ≤
b′1b′2 Tα−γ+1

Γ(α− γ + 1)
||z− z∗||+

b′1 b′2 Tα−γε1

Γ(α− γ + 1)
,

||z− z∗|| ≤
b′1 b′2 Tα−γε1

Γ(α− γ + 1)

(
1−

b′1b′2 Tα−γ+1

Γ(α− γ + 1)

)−1

Since b′1b′2Tα−γ+1

Γ(α−γ+1) < 1, we obtain ||z− z∗|| ≤ ε.

Corollary 2. Since z depends continuously on the delay function ϕ, then y depends continuously
on the delay function ϕ.

Theorem 8. Suppose that the conditions of Theorem 5 are satisfied, then the solution x of Equation (2)
depends continuously on ϕ.

Proof. Let ∀ ε′ > 0, there exists δ′(ε′) > 0, such that |y− y∗| < δ′. Now

|x− x∗| =

∣∣∣∣ h1(t, x(t)) + y(t) h2(t, x(t))− h1(t, x∗(t))− y∗(t) h2(t, x∗(t))
∣∣∣∣

=

∣∣∣∣ h1(t, x(t)) + y(t) h2(t, x(t))− h1(t, x∗(t))− y∗(t) h2(t, x∗(t))

+ y∗(t) h2(t, x(t))− y∗(t) h2(t, x(t))
∣∣∣∣

≤ |h1(t, x(t))− h1(t, x∗(t))|+ |h2(t, x(t))| |y(t)− y∗(t)|

+ |y∗(t)| |h2(t, x(t))− h2(t, x∗(t))|

≤ l1 |x− x∗|+ (h2(t, 0) + l2|x|) |y(t)− y∗(t)|+ k l2 |x(t)− x∗(t)|,
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then

||x− x∗||L1 ≤ l1 ||x− x∗||L1 + (||h2(t, 0)||L1 + l2||x||L1) ||y− y∗||+ k l2 ||x− x∗||L1 ,

||x− x∗||L1 ≤
(||h2(t, 0)||L1 + l2||x||L1)

(1− l1 − k l2)
||y− y∗||

≤
(||h2(t, 0)||L1 + l2||x||L1)

(1− l1 − k l2)
δ′ = ε′.

From Corollary 2, we get the result.

Remark 1. By direct calculations as above we can prove that the solution z ∈ C(I) of Equation (5)
depends continuously on the function f2 and thus x ∈ L1(I) of the Equation (3) depends continu-
ously on the function g.

4. Some Remarks and Particular Cases

Remark 2. As a particular case of our results when γ = 1− α , we can deduce the existence of at
least one solution for the problem of conjugate orders

Dα

(
x(t)−h1(t,x(t))

h2(t,x(t))

)
= f

(
t,
∫ ϕ(t)

0 g
(

s, D1−α( x(s)−h1(s,x(s))
h2(s,x(s)) )

)
ds
)

, α ∈ ( 1
2 , 1), t ∈ (0, T],

x(t)−h1(t,x(t))
h2(t,x(t))

∣∣∣∣
t=0

= 0.

Remark 3. As a particular case of our results when f (t, x(t)) = a(t) + x(t), we can deduce the
existence of at least one solution for the following problem

Dα

(
x(t)−h1(t,x(t))

h2(t,x(t))

)
= a(t) +

∫ ϕ(t)
0 g

(
s, Dγ( x(s)−h1(s,x(s))

h2(s,x(s)) )

)
ds, γ < α, t ∈ (0, T],

x(t)−h1(t,x(t))
h2(t,x(t))

∣∣∣∣
t=0

= 0.

where a ∈ L1(I).

Existence Results of the Problem (3) when α = γ

In this section, we consider the hybrid differential equation
Dα

(
x(t)−h1(t,x(t))

h2(t,x(t))

)
= f

(
t,
∫ ϕ(t)

0 g
(

s, Dα( x(s)−h1(s,x(s))
h2(s,x(s)) )

)
ds
)

, t ∈ (0, T],

x(t)−h1(t,x(t))
h2(t,x(t))

∣∣∣∣
t=0

= 0.
(9)

By putting y(t) = x(t)−h1(t,x(t))
h2(t,x(t))

, then problem (9) has the form Dα y(t) = f
(

t,
∫ ϕ(t)

0 g(s, Dαy(s)) ds
)

, t ∈ (0, T],

y(0) = 0.
(10)

Let w(t) = Dαy(t), then

w(t) = f
(

t,
∫ ϕ(t)

0
g(s, w(s)) ds

)
, t ∈ I. (11)

Now, consider this assumption:



Mathematics 2022, 10, 967 11 of 13

(i∗) f , g : I ×R→ R are continuous functions and satisfy conditions (vi) and (vii).

to prove the existence of a continuous solution of the integral Equation (11).

Theorem 9. Let the assumptions (i∗) be satisfied. If b′1b′2T < 1, then the functional Equation (11)
has a unique solution w ∈ C(I).

Proof. Define the operator F1 on Ω by

F1w(t) = f
(

t,
∫ ϕ(t)

0
g(s, w(s)) ds

)
, t ∈ I,

where Ω = {w ∈ C(I) : ||w|| ≤ m∗}, m∗ =
T sup

t∈I
|g(s,0)|+sup

t∈I
| f (t,0)|

1−b′1b′2T .

λ ||w|| = ||F1w|| = sup
t∈I
|(F1w)(t)|

≤ sup
t∈I

∣∣∣∣ f
(

t,
∫ ϕ(t)

0
g(s, w(s)) ds

) ∣∣∣∣
≤ sup

t∈I

∣∣∣∣ f
(

t,
∫ ϕ(t)

0
g(s, w(s)) ds

)
− f (t, 0)

∣∣∣∣+ sup
t∈I
| f (t, 0)|

≤ b′1 sup
t∈I

∣∣∣∣ ∫ ϕ(t)

0
g(s, w(s)) ds

∣∣∣∣+ sup
t∈I
| f (t, 0)|

≤ b′1 sup
t∈I

∫ ϕ(t)

0
|g(s, w(s))− g(s, 0)| ds + b′1 T sup

t∈I
|g(s, 0)|+ sup

t∈I
| f (t, 0)|

≤ b′1 b′2 T ||w|| + b′1 T sup
t∈I
|g(s, 0)|+ sup

t∈I
| f (t, 0)|

≤ b′1 b′2 T m∗ + b′1 T sup
t∈I
|g(s, 0)|+ sup

t∈I
| f (t, 0)|. (12)

In view of assumption (i∗), we show that F1 is a continuous operator.
For any w, w′ ∈ Ω, then we have

|F1w(t)−F1w′(t)| =

∣∣∣∣ f(t,
∫ ϕ(t)

0
g(s, w(s)) ds

)
− f

(
t,
∫ ϕ(t)

0
g(s, w′(s)) ds

)∣∣∣∣
≤ b′1

∣∣∣∣ ∫ ϕ(t)

0
g(s, w(s)) ds−

∫ ϕ(t)

0
g(s, w′(s)) ds

∣∣∣∣
≤ b′1

∫ ϕ(t)

0
|g(s, w(s))− g(s, w′(s))| ds

≤ b′1
∫ T

0
|g(s, w(s))− g(s, w′(s))| ds

≤ b′1 b′2
∫ T

0
|w(s)− w′(s)| ds

≤ b′1 b′2 T sup
t∈I
|w(s)− w′(s)|

≤ b′1 b′2 T ||w− w′||.

The above inequality shows that

||F1z−F1u|| ≤ ||w− w′||, ∀ w, w′ ∈ Ω,

then F1 : Ω → Ω is a contraction, and hence F1 has a unique fixed point in Ω, which
completes the proof.
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5. Conclusions

Here, we have studied some qualitative results for a hybrid implicit differential
equation of arbitrary order (3) involving a Riemann–Liouville fractional derivative (in
case γ < α) with a nonlocal initial condition. The Rothe fixed-point Theorem, Nonlinear
alternative of Leray–Schauder type and Kolmogorov compactness criterion have been used
with the aim of proving the main results. Next, we proved the existence of the global
solution of that problem. Furthermore, we have established the continuous dependence
of our solution on the delay function and on other functions. Finally, we considered the
problem (3) when α = γ, which cannot be a special case of the problem (3) because of
the insufficiently of the assumption (i). So, f , g have been assumed to satisfy Lipchitz
conditions. Thus, the solvability of (3) has been discussed for all γ ≤ α.
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