Article

Hyers-Ulam-Rassias Stability of Hermite's Differential Equation

Daniela Marian ${ }^{1, *,+(\mathbb{D}}$, Sorina Anamaria Ciplea ${ }^{2, \dagger}$ and Nicolaie Lungu ${ }^{1, \dagger}$
1 Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; nlungu@math.utcluj.ro
2 Department of Management and Technology, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; sorina.ciplea@ccm.utcluj.ro
* Correspondence: daniela.marian@math.utcluj.ro
\dagger These authors contributed equally to this work.

Abstract

In this paper, we studied the Hyers-Ulam-Rassias stability of Hermite's differential equation, using Pachpatte's inequality. We compared our results with those obtained by Blaga et al. Our estimation for $|z(x)-y(x)|$, where z is an approximate solution and y is an exact solution of Hermite's equation, was better than that obtained by the authors previously mentioned, in some parts of the domain, especially in a neighborhood of the origin.

Keywords: Hermite's differential equation; Hyers-Ulam-Rassias stability; Pachpatte's inequality
MSC: 34D20; 34D10; 34K20

Citation: Marian, D.; Ciplea, S.A.; Lungu, N. Hyers-Ulam-Rassias Stability of Hermite's Differential Equation. Mathematics 2022, 10, 964 https://doi.org/10.3390/ math10060964

Academic Editors: Juan Rámon Torregrosa Sánchez, Alicia Cordero Barbero and Juan Carlos Cortés López

Received: 24 February 2022
Accepted: 16 March 2022
Published: 17 March 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

The importance of studying Hermite's equation results from the multiple applications that the equation has in theoretical physics, electrical engineering, economics, etc. This equation has the form:

$$
y^{\prime \prime}(x)-2 x y^{\prime}(x)+\lambda y(x)=0, x \in \mathbb{R}, y \in C^{2}(\mathbb{R}, \mathbb{R}), \lambda \in \mathbb{R}
$$

If $\lambda=2 n, n \in \mathbb{N}$, Hermite's equation becomes:

$$
\begin{equation*}
y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 n y(x)=0, x \in \mathbb{R}, y \in C^{2}(\mathbb{R}, \mathbb{R}), n \in \mathbb{N}, \tag{1}
\end{equation*}
$$

and admits particular polynomial solutions H_{n}, called Hermite's polynomials (see [1]), given by:

$$
H_{n}(x)=(-1)^{n} e^{x^{2}}\left(e^{-x^{2}}\right)^{(n)}, x \in \mathbb{R} .
$$

In what follows, we study the Hyers-Ulam-Rassias and generalized Hyers-UlamRassias stability of Equation (1), using Pachpatte's inequality. The problem was also studied in [2] by Blaga et al., as an application of a result regarding the Ulam stability of a linear system of differential equations with nonconstant coefficients. We compared our results with those obtained in [2]. Pachpatte's next inequality is used in the paper.

Theorem 1 (Pachpatte [3], p. 39, Theorem 1.7.4.). Let u, f, g be nonnegative continuous functions defined on \mathbb{R}_{+}, and h be a positive and nondecreasing continuous function defined on \mathbb{R}_{+}, for which the inequality:

$$
u(x) \leq h(x)+\int_{0}^{x} f(t) u(t) d t+\int_{0}^{x} f(t)\left[\int_{0}^{t} g(s) u(s) d s\right] d t
$$

holds for $x \in \mathbb{R}_{+}$. Then:

$$
u(x) \leq h(x)\left(1+\int_{0}^{x} f(t) e^{\int_{0}^{t}(f(s)+g(s)) d s} d t\right)
$$

for $x \in \mathbb{R}_{+}$.
We recall that Ulam stability was proposed by Ulam in [4]. Hyers [5] established the first result in this direction. Obloza [6] established the first result regarding the Ulam stability of differential equations and also investigated the relation between Lyapunov and Ulam stability. After that, the domain has developed rapidly. The Hyers-Ulam stability of linear differential equations of first order was studied for example in [7-12], of higher order in [13], linear difference equations in [14], and others in [15,16]. More on this topic can be found in the books [17,18]. In [19], linear differential equations of second order of the form:

$$
y^{\prime \prime}+\alpha y^{\prime}+\beta y=0 \text { and } y^{\prime \prime}+\alpha y^{\prime}+\beta y=f(x)
$$

$y \in C^{2}[a, b], f \in C[a, b],-\infty<a<b<\infty$, were studied.
In [20], the equation:

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y+r(x)=0
$$

$y \in C^{2}(a, b), f \in C[a, b], p, q, r \in C(a, b),-\infty<a<b<\infty$, was investigated.
Various other types of differential equations of second order have been further studied, for example in [21], the equation:

$$
y^{\prime \prime}(x)+(1+\psi(x)) y(x)=0, \psi \in C^{1}[0, \infty), y \in C^{2}[0, \infty)
$$

in [22,23], the equation:

$$
y^{\prime \prime}(x)+\beta(x) y(x)=0, \beta \in C[a, b], y \in C^{2}[a, b]
$$

in [22] with boundary conditions, in [23] with initial conditions, and in [24], the following equation:

$$
y^{\prime \prime}(x)+\mu^{2} y(x)=0, y \in C^{2}[a, b],-\infty<a<b<\infty,
$$

here using the Mahgoub transform.
In [25], the generalized Hyers-Ulam stability of the equation:

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x), y \in C^{2}(I), p, q, f \in C[I], I \subset \mathbb{R}
$$

was studied, if there exists a solution $y_{1} \in C^{2}(I)$ of the equation:

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

As an application, some remarks regarding generalized the Hyers-Ulam-Rassias stability of Hermite's equation are given. In [26], the equation:

$$
y^{\prime \prime}(x)+f(x, y(x))=0, \text { if }|f(x, y(x))| \leq A|y|^{\alpha}, \text { and } f(x, 0)=0,
$$

was investigated, using the Gronwall lemma. In [27], the equations:

$$
y^{\prime \prime}(x)+f(x, y(x))=0,
$$

and:

$$
y^{\prime \prime}(x)+f\left(x, y(x), y^{\prime}(x)\right)=0,
$$

$y \in C^{2}(I), f \in C(I), I \subset \mathbb{R}$, were studied, using the Bihari lemma. The results obtained in [27] generalize those established in [26].

The outline of the paper is the following: In Section 2, we present the stability notions and prove several auxiliary results useful in the following sections (Remarks 1-4). The first main result (Theorem 2) is given in the next section and concerns the Hyers-Ulam-Rassias stability of Hermite's Equation (2). The second main result (Theorem 3), regarding the generalized Hyers-Ulam-Rassias stability of Hermite's Equation (2), is proven in Section 4. A graphical representation illustrating the difference between our result in Theorem 2 and that established by Blaga et al. in [2] is shown in Figure 1.

2. Preliminary Notions and Results

In what follows, we consider $n \in \mathbb{N}, I=[0, n+1], \alpha \in \mathbb{R}, \beta \in \mathbb{R}$, the equation:

$$
\begin{equation*}
y^{\prime \prime}(x)-2 x y^{\prime}(x)+2 n y(x)=0, x \in I, y \in C^{2}(I, \mathbb{R}), \tag{2}
\end{equation*}
$$

and the conditions:

$$
\left\{\begin{array}{c}
y(0)=\alpha \tag{3}\\
y^{\prime}(0)=\beta
\end{array} .\right.
$$

Let $\varepsilon>0$. Let $\varphi \in C^{2}\left(I, \mathbb{R}_{+}\right)$. We also consider the inequalities:

$$
\begin{equation*}
\left|z^{\prime \prime}(x)-2 x z^{\prime}(x)+2 n z(x)\right| \leq \varepsilon, x \in I, z \in C^{2}(I, \mathbb{R}) \tag{4}
\end{equation*}
$$

and:

$$
\begin{equation*}
\left|z^{\prime \prime}(x)-2 x z^{\prime}(x)+2 n z(x)\right| \leq \varepsilon \varphi(x), x \in I, z \in C^{2}(I, \mathbb{R}) \tag{5}
\end{equation*}
$$

Definition 1. Equation (2) is called Hyers-Ulam-Rassias stable if there is a real number $c>0$ and a function $\psi: I \rightarrow[0, \infty)$ so that for any solution z of the inequality (4), satisfying (3), there is a solution y of Equation (2), satisfying (3), such that:

$$
|z(x)-y(x)| \leq c \cdot \varepsilon \cdot \psi(x), \forall x \in I
$$

Definition 2. Equation (2) is called generalized Hyers-Ulam-Rassias stable if there is a real number $c>0$ and a function $\psi:[a, b] \rightarrow[0, \infty)$ so that for any solution z of the inequality (5), satisfying (3), there is a solution y of Equation (2), satisfying (3), such that:

$$
|z(x)-y(x)| \leq c \cdot \varepsilon \cdot \psi(x), \forall x \in I
$$

In Definitions 1 and $2, z$ is called an approximate solution and y is called an exact solution of Hermite's Equation (2).

Remark 1. A function $z \in C^{2}(I, \mathbb{R})$ is a solution of (4) if and only if there exists a function $g \in C^{2}(I, \mathbb{R})$ such that:

1. $|g(x)| \leq \varepsilon, \forall x \in I$;
2. $\quad z^{\prime \prime}(x)=2 x z^{\prime}(x)-2 n z(x)+g(x), \forall x \in I$.

Remark 2. If a function $z \in C^{2}(I, \mathbb{R})$ is a solution of (4), then z is a solution of the inequality:

$$
\left|z(x)-z(0)-z^{\prime}(0) x-2 \int_{0}^{x} t z(t) d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t} z(s) d s\right] d t\right| \leq \varepsilon \frac{x^{2}}{2}, \forall x \in I .
$$

Indeed, integrating $z^{\prime \prime}(x)=2 x z^{\prime}(x)-2 n z(x)+g(x)$, from zero to x, we have:

$$
z^{\prime}(x)-z^{\prime}(0)=\int_{0}^{x} 2 s z^{\prime}(s) d s-2 n \int_{0}^{x} z(s) d s+\int_{0}^{x} g(s) d s ;
$$

hence:

$$
z^{\prime}(x)-z^{\prime}(0)=2 x z(x)-\int_{0}^{x} 2 z(s) d s-2 n \int_{0}^{x} z(s) d s+\int_{0}^{x} g(s) d s
$$

and:

$$
z^{\prime}(x)-z^{\prime}(0)=2 x z(x)-2(n+1) \int_{0}^{x} z(s) d s+\int_{0}^{x} g(s) d s .
$$

Integrating again from zero to x, we have:

$$
z(x)-z(0)-z^{\prime}(0) x=2 \int_{0}^{x} t z(t) d t-2(n+1) \int_{0}^{x}\left[\int_{0}^{t} z(s) d s\right] d t+\int_{0}^{x}\left[\int_{0}^{t} g(s) d s\right] d t .
$$

Hence, we obtain:

$$
\begin{aligned}
& \left|z(x)-z(0)-z^{\prime}(0) x-2 \int_{0}^{x} t z(t) d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t} z(s) d s\right] d t\right| \\
& \leq \int_{0}^{x}\left[\int_{0}^{t}|g(s)| d s\right] d t \leq \varepsilon \frac{x^{2}}{2} .
\end{aligned}
$$

Remark 3. A function $z \in C^{2}(I, \mathbb{R})$ is a solution of (5) if and only if there exists a function $g \in C^{2}(I, \mathbb{R})$ such that:

1. $|g(x)| \leq \varepsilon \varphi(x), \forall x \in I$;
2. $\quad z^{\prime \prime}(x)=2 x z^{\prime}(x)-2 n z(x)+g(x), \forall x \in I$,
where $\varphi \in C^{2}\left(I, \mathbb{R}_{+}\right)$.
Analogous to Remark 2, we can prove the following result.
Remark 4. If a function $z \in C^{2}(I, \mathbb{R})$ is a solution of (5), then z is a solution of the inequality:

$$
\left|z(x)-z(0)-z^{\prime}(0) x-2 \int_{0}^{x} t z(t) d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t} z(s) d s\right] d t\right| \leq \varepsilon \int_{0}^{x}\left[\int_{0}^{t} \varphi(s) d s\right] d t
$$

$\forall x \in I$.

3. Hyers-Ulam-Rassias Stability of Hermite's Equation

We present below a result regarding the Hyers-Ulam-Rassias stability of Hermite's Equation (2), with the conditions (3). We also make a comparison between our results and those set out in [2].

Theorem 2. Let $n \in \mathbb{N}, I=[0, n+1], \alpha \in \mathbb{R}, \beta \in \mathbb{R}$. Then:

1. Equation (2) has a unique solution with:

$$
\left\{\begin{array}{l}
y(0)=\alpha \\
y^{\prime}(0)=\beta
\end{array}\right.
$$

2. Hermite's Equation (2), with the conditions (3), is Hyers-Ulam-Rassias stable.

Proof. 1. It is a well-known result from differential equations of order two, since the coefficients of Equation (2), $p(x)=-2 x, q(x)=2 n$, are continuous functions on I (see [28]);
2. Let z be a solution of (4) and y be the solution of (2) such that:

$$
\left\{\begin{array}{c}
z(0)=y(0)=\alpha \\
z^{\prime}(0)=y^{\prime}(0)=\beta
\end{array} .\right.
$$

From Remark 2, we have:

$$
\begin{aligned}
|z(x)-y(x)| & \leq\left|z(x)-z(0)-z^{\prime}(0) x-2 \int_{0}^{x} t z(t) d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t} z(s) d s\right] d t\right| \\
& +2 \int_{0}^{x} t|z(t)-y(t)| d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t}|z(t)-y(t)| d s\right] d t \\
& \leq \varepsilon \frac{x^{2}}{2}+2 \int_{0}^{x} t|z(t)-y(t)| d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t}|z(t)-y(t)| d s\right] d t
\end{aligned}
$$

Since $t \leq x \leq n+1$, we have:

$$
\begin{aligned}
|z(x)-y(x)| & \leq \varepsilon \frac{x^{2}}{2}+2 \int_{0}^{x} t|z(t)-y(t)| d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t}|z(t)-y(t)| d s\right] d t \\
& \leq \varepsilon \frac{x^{2}}{2}+\int_{0}^{x} 2(n+1)|z(t)-y(t)| d t+\int_{0}^{x} 2(n+1)\left[\int_{0}^{t}|z(t)-y(t)| d s\right] d t
\end{aligned}
$$

Using now Pachpatte's inequality from Theorem 1, we obtain:

$$
\begin{aligned}
|z(x)-y(x)| & \leq \varepsilon \frac{x^{2}}{2}\left(1+\int_{0}^{x} 2(n+1) e^{\int_{0}^{t}(2 n+3) d s} d t\right)=\varepsilon \frac{x^{2}}{2}\left(1+\int_{0}^{x} 2(n+1) e^{(2 n+3) t} d t\right) \\
& =\varepsilon \frac{x^{2}}{2}\left(1+\frac{2 n+2}{2 n+3}\left(e^{(2 n+3) x}-1\right)\right) \\
& =\varepsilon \frac{x^{2}}{2}\left(\frac{1}{2 n+3}+\frac{2 n+2}{2 n+3} e^{(2 n+3) x}\right) .
\end{aligned}
$$

In the following, using the graphical representation from Figure 1, we make a comparison between the estimation $|z(x)-y(x)|$ obtained by Blaga et al. in [2] and that obtained by us in Theorem 2. For $n=0$ we have $I=[0,1]$, and we compare the functions $f_{1}(x)=\sqrt{\pi} e^{x^{2}+x}$, which appeared in [2], and $f_{2}(x)=x^{2}\left(\frac{1}{3}+\frac{2}{3} e^{3 x}\right)$, which appears in Theorem 2. In Figure 1 we graphically represent both functions. It can be seen that in some parts of the domain, our estimation was better than the one obtained in [2], especially in a neighborhood of the origin.

For other values of n, we have similar results.

Figure 1. Representation of the curves $f_{1}(x)=\sqrt{\pi} e^{x^{2}+x}$ (red color), $f_{2}(x)=x^{2}\left(\frac{1}{3}+\frac{2}{3} e^{3 x}\right)$ (blue color), on $[0,1]$, together.

4. Generalized Hyers-Ulam-Rassias Stability of Hermite's Equation

We establish now a result regarding the generalized Hyers-Ulam-Rassias stability of Hermite's Equation (2), with the conditions (3).

Theorem 3. Let $n \in \mathbb{N}, I=[0, n+1], \alpha \in \mathbb{R}, \beta \in \mathbb{R}$. If:
(i) $\exists \lambda_{\varphi}>0$ such that $\int_{0}^{x}\left[\int_{0}^{t} \varphi(s) d s\right] d t \leq \lambda_{\varphi} \varphi(x), \forall x \in I$;
(ii) $\varphi \in C^{2}\left([0, \infty), \mathbb{R}_{+}\right)$is increasing;

Then Hermite's Equation (2), with the conditions (3), is generalized Hyers-Ulam-Rassias stable.
Proof. Let z be a solution of (5) and y be the solution of (2) such that:

$$
\left\{\begin{array}{c}
z(0)=y(0)=\alpha \\
z^{\prime}(0)=y^{\prime}(0)=\beta
\end{array} .\right.
$$

From Remark 4, we have:

$$
\begin{aligned}
|z(x)-y(x)| & \leq\left|z(x)-z(0)-z^{\prime}(0) x-2 \int_{0}^{x} t z(t) d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t} z(s) d s\right] d t\right| \\
& +2 \int_{0}^{x} t|z(t)-y(t)| d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t}|z(t)-y(t)| d s\right] d t \\
& \leq \varepsilon \int_{0}^{x}\left[\int_{0}^{t} \varphi(s) d s\right] d t+2 \int_{0}^{x} t|z(t)-y(t)| d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t}|z(t)-y(t)| d s\right] d t .
\end{aligned}
$$

Since $t \leq x \leq n+1$, we have:

$$
\begin{aligned}
|z(x)-y(x)| & \leq \varepsilon \lambda_{\varphi} \varphi(x)+2 \int_{0}^{x} t|z(t)-y(t)| d t+2(n+1) \int_{0}^{x}\left[\int_{0}^{t}|z(t)-y(t)| d s\right] d t \\
& \leq \varepsilon \lambda_{\varphi} \varphi(x)+\int_{0}^{x} 2(n+1)|z(t)-y(t)| d t+\int_{0}^{x} 2(n+1)\left[\int_{0}^{t}|z(t)-y(t)| d s\right] d t
\end{aligned}
$$

Using now Pachpatte's inequality from Theorem 1, we obtain:

$$
\begin{aligned}
|z(x)-y(x)| & \leq \varepsilon \lambda_{\varphi} \varphi(x)\left(1+\int_{0}^{x} 2(n+1) e^{e_{0}^{t}(2 n+3) d s} d t\right)=\varepsilon \frac{x^{2}}{2}\left(1+\int_{0}^{x} 2(n+1) e^{(2 n+3) t} d t\right) \\
& =\varepsilon \lambda_{\varphi} \varphi(x)\left(1+\frac{2 n+2}{2 n+3}\left(e^{(2 n+3) x}-1\right)\right) \\
& =\varepsilon \lambda_{\varphi} \varphi(x)\left(\frac{1}{2 n+3}+\frac{2 n+2}{2 n+3} e^{(2 n+3) x}\right) .
\end{aligned}
$$

5. Conclusions

In this paper, we studied Hyers-Ulam-Rassias and generalized Hyers-Ulam-Rassias stability of Hermite's equation, using a new approach, namely Pachpatte's inequality. The problem was also considered in [2] by Blaga et al., as a particular case of a general result regarding the Ulam stability of a linear system of differential equations with nonconstant coefficients. We remark, using the graphical representation from Figure 1, that our estimation for $|z(x)-y(x)|$, between an approximate solution and the exact solution of Equation (2), in some parts of the domain, was better than the one obtained in [2], especially in the neighborhood of the origin.

Author Contributions: Conceptualization, D.M., S.A.C. and N.L.; investigation, D.M., S.A.C. and N.L.; writing-original draft preparation, D.M.; writing-review and editing, D.M. and S.A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Corduneanu, A. Ecuatii Diferentiale cu Aplicatii in Electrotehnica; Editura Facla: Timisoara, Romania, 1981.
2. Blaga, F.; Mesaroş, L.; Popa, D.; Pugna, G.; Rasa, I. Bounds for solutions of linear differential equations and Ulam stability. Miskolc Math. Notes 2020, 21, 653-664. [CrossRef]
3. Pachpatte, B.G. Inequalities for Differential and Integral Equations, Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1997; Volume 197.
4. Ulam, S.M. A Collection of Mathematical Problems; Interscience: New York, NY, USA, 1960.
5. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222-224. [CrossRef]
6. Obloza, M. Hyers stability of the linear differential equation. Rocz. Nauk-Dydakt. Pr. Mat. 1993, 13, 259-270.
7. Alsina, C.; Ger, R. On some inequalities and stability results related to exponential function. J. Inequal. Appl. 1998, 2, 373-380. [CrossRef]
8. Takahasi, S.E.; Takagi, H.; Miura, T.; Miyajima, S. The Hyers-Ulam stability constant of first order linear differential operators. J. Math. Anal. Appl. 2004, 296, 403-409. [CrossRef]
9. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2004, 17, 1135-1140. [CrossRef]
10. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, II. Appl. Math. Lett. 2006, 19, 854-858. [CrossRef]
11. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, III. J. Math. Anal. Appl. 2005, 311, 139-146. [CrossRef]
12. Jung, S.-M. Hyers-Ulam stability of linear partial differential equations of first order. Appl. Math. Lett. 2009, 22, 70-74. [CrossRef]
13. Cimpean, D.S.; Popa, D. On the stability of the linear differential equation of higher order with constant coefficients. Appl. Math. Comput. 2010, 217, 4141-4146. [CrossRef]
14. Novac, A.; Otrocol, D.; Popa, D. Ulam stability of a linear difference equation in locally convex spaces. Results Math. 2021, 76, 33. [CrossRef]
15. Rus, I.A. Ulam stability of ordinay differential equations. Studia Univ. Babes-Bolyai Math. 2009, LIV, 125-133.
16. Wang, X.; Luo, D.; Zhu, Q. Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays. Chaos Solitons Fractals 2022, 156, 111822. [CrossRef]
17. Brzdek, J.; Popa, D.; Rasa, I.; Xu, B. Ulam Stability of Operators; Elsevier: Amsterdam, The Netherlands, 2018.
18. Tripathy, A.K. Hyers-Ulam Stability of Ordinary Differential Equations; Taylor and Francis: Boca Raton, FL, USA, 2021.
19. Li, Y.; Shen, Y. Hyers-Ulam stability of linear differential equations of second order. Appl. Math. Lett. 2010, 23, 306-309. [CrossRef]
20. Li, Y.; Shen, Y. Hyers-Ulam stability of nonhomogeneous linear differential equations of second order. Int. J. Math. Math. Sci. 2009, 2009, 576852. [CrossRef]
21. Alqifiary, Q.H.; Jung, S.-M. On the Hyers-Ulam stability of differential equations of second order. Abstr. Appl. Anal. 2014, 2014, 483707. [CrossRef]
22. Gavruta, P.; Jung, S.-M. Hyers-Ulam stability for second-order linear differential equations with boundary conditions. Electron. J. Differ. Equ. 2011, 80, 1-5.
23. Modebei, M.I.; Olaiya, O.O.; Otaide, I. Generalized Hyers-Ulam stability of second order linear ordinary differential equations with initial condition. Adv. Inequal. Appl. 2014, 2014, 36.
24. Aruldass, A.R.; Pachaiyappan, D.; Park, C. Hyers-Ulam stability of second-order differential equations using Mahgoub transform. Adv. Differ. Equ. 2021, 2021, 23. [CrossRef]
25. Javadian, A.; Sorouri, E.; Kim, G.H.; Godji, M.E. Generalized Hyers-Ulam stability of the second-order linear differential equations. J. Appl. Math. 2011, 2011, 813137. [CrossRef]
26. Qarawani, M.N. Hyers-Ulam stability of a generalized second order nonlinear differential equation. Appl. Math. 2012, 3, 1857-1861. [CrossRef]
27. Fakunle, I.; Arawomo, P.O. Hyers-Ulam stability of certain class of nonlinear second order differential equations. Int. J. Pure Appl. Math. Sci. 2018, 11, 55-65.
28. Ionescu, D.V. Ecuatii Diferentiale si Integrale; Editura Didactica si Pedagogica: Bucuresti, Romania, 1964.
