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Abstract: The surface defects of a hot-rolled strip will adversely affect the appearance and quality of
industrial products. Therefore, the timely identification of hot-rolled strip surface defects is of great
significance. In order to improve the efficiency and accuracy of surface defect detection, a lightweight
network based on coordinate attention and self-interaction (CASI-Net), which integrates channel
domain, spatial information, and a self-interaction module, is proposed to automatically identify six
kinds of hot-rolled steel strip surface defects. In this paper, we use coordinate attention to embed
location information into channel attention, which enables the CASI-Net to locate the region of defects
more accurately, thus contributing to better recognition and classification. In addition, features are
converted into aggregation features from the horizontal and vertical direction attention. Furthermore,
a self-interaction module is proposed to interactively fuse the extracted feature information to improve
the classification accuracy. The experimental results show that CASI-Net can achieve accurate defect
classification with reduced parameters and computation.

Keywords: hot-rolled steel strip; defect classification; convolutional neural network; attention
mechanism; visual interaction mechanism

MSC: 68T01; 68T07

1. Introduction

As the most important product in iron and steel enterprises, the steel strip has become
an irreplaceable raw material in automobile manufacturing, aerospace, mechanical pro-
cessing, and other fields [1]. However, in the actual production process of the hot-rolled
strip, due to the imperfect manufacturing process, the surface of the strip usually contains
different types of defects, such as scratches, surface cracks, and rolling marks [2–4]. These
defects not only affect the appearance of the product but also reduce the quality of the
finished product [1,2]. Traditionally, the classification of steel surface defects is checked
manually by experts [2–4].

However, the manual detection process is subjective, fatigued, and the work speed is
slow, which is not conducive to the completion of real-time detection tasks [4]. Therefore,
in order to improve the recognition efficiency and accuracy, it is essential to develop an
accurate automatic detection solution. In the past decades, machine vision technology
as a safe, non-contact, and automatic solution has been widely used in material surface
detection [5]. Machine vision detection is mainly composed of image acquisition and
defect detection [6]. With the increasingly complex industrial environment, machine vision
detection technology faces many challenges, such as low universality of equipment, high
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requirements for the light-source environment, and expensive costs of production and
maintenance of the machine vision detection device [7]. In this case, machine vision
detection technology is often inefficient and makes it difficult to achieve better detection
results. In order to overcome the shortcomings of machine vision, researchers considered
that deep learning has good performance compared with traditional machine vision. They
applied deep learning to defect detection and achieved great improvement.

In recent years, due to the outstanding performance of deep learning in compari-
son to machine vision, deep learning has developed rapidly in computer vision applica-
tions [8–12]. Deep learning can solve the problem whereby different tasks need different
image-processing algorithms in traditional machine vision. AlexNet [8] was proposed
in 2012 and made a huge impact on the development of deep learning. Compared with
traditional machine learning methods, deep learning uses convolution, pooling, and other
operations for feature extraction to obtain the abstract feature information of the image.
The convolution neural network (CNN) uses convolution operation for feature extraction
of input images, which can learn local features and capture different degrees of semantic in-
formation so as to effectively learn feature expression from a large number of samples, and
the model has a stronger generalization ability. Compared with traditional machine vision
methods [7], CNN adopts a pooling layer and sparse connection to reduce model parame-
ters while ensuring the efficiency of computing resources and network performance [13,14].
Deep learning combines the full connection layer to achieve high-precision detection and
classification, which promotes the further development of deep learning in the field of
image processing. Therefore, in order to achieve better classification accuracy, a deeper
learning architecture is needed. However, deeper learning architectures [15,16] contain a
large number of parameters and require a large amount of computation load.

In order to overcome the above problems, we propose a lightweight convolutional
neural network called CASI-Net, which combines channel attention, location information,
and a self-interaction module based on the biological vision to achieve fast and accurate
classification of steel surface defects. In the feature extraction stage, inspired by [17], we
use 3× 1 convolution kernels and 1× 3 convolution kernels to replace 3× 3 convolution
kernels, aiming at reducing network parameters. Then, in order to help CASI-Net more
accurately locate and identify the region of interest, a coordinate attention (CA) block [18]
is introduced and a self-interaction module based on biological vision is constructed. The
self-interaction module can improve the richness of the extracted features. CASI-Net is
compared with the typical surface defect identification methods and can use a small number
of parameters to achieve more accurate identification results. Overall, the contributions of
this paper are summarized as follows:

• An end-to-end CASI-Net model is proposed, which combines location information
and channel attention to locate defects more accurately. In addition, we construct a
self-interaction module based on the biological visual interaction mechanism to learn
more detailed feature information. Finally, CASI-Net can use very few parameters to
achieve accurate classification.

• We introduce the CA block to CASI-Net. The CA block can not only capture cross-
channel information but also capture location information, which can help CASI-Net
to locate and identify targets of interest more accurately.

• The self-interaction module based on biological mechanisms is constructed to en-
rich the representation of feature maps, which is helpful for better recognition and
classification.

• To evaluate the performance of the CASI-Net for real industrial data, we use the NEU
dataset provided by Northeastern University to validate the performance of CASI-Net.
The classification results on NEU will verify the effectiveness of our proposed network.

The remainder of our paper is organized as follows. Section 2 introduces the related
work, and two improved techniques are introduced in Section 3. Section 4 provides an
evaluation of our method and experimental by comparison with state-of-the-art methods.
In Section 5, the conclusion is provided.
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2. Related Work
2.1. Convolutional Neural Networks

CNN was proposed as early as 1989 [19]. Yann et al. proposed the first classical
architecture LeNet-5 [20] of CNN in 1998. LeNet-5 contains six hidden layers, mainly
by convolution and pooling operations stacking to extract image features, which can
achieve good results on the MNIST dataset [20]. Krizhevsky proposed AlexNet in 2012,
which has five convolution layers and three fully connected layers, except the pooling
layer [8]. After that, SimonYan and Zisserman proposed to use 3× 3 filters to construct a
deeper network, VGG [15], which promoted the development of computer vision tasks
in 2015. However, when only using the convolution layer stacking method, when the
depth reaches a certain degree, it will not improve the effect but will rather deteriorate
the effect. Therefore, He et al. designed the residual learning method and proposed
ResNet [16] to solve the degradation problem of the deep network and realized a significant
improvement in the deep network. However, the above studies placed too much emphasis
on deepening the network depth to improve accuracy, without considering the calculation
of the model. In order to achieve fewer parameters and lower degradation of the network
performance, Iandola et al. proposed architecture to generate high-precision identification
with significantly fewer parameters, called SqueezeNet [21]. Later, researchers proposed
other representative lightweight networks such as ShuffleNet [22], MobileNet [23], and
MobileNet V2 [24].

2.2. Attention Mechanisms

In recent years, the attention mechanism [25] has been widely used in various com-
puter vision tasks, such as image classification [26–29] and image segmentation [30,31].
One successful example is SE [26], which squeezes each two-dimensional feature map to
efficiently construct the interdependence between channels. However, SE [26] only consid-
ered channel information, ignoring the importance of location information. However, the
spatial information of the object is also important in computer vision [28]. BAM [32] and
CBAM [28] tried to use the channel domain and spatial domain for feature extraction, but
BAM [32] and CBAM [28] only captured local information and could not obtain long-term
dependence [15]. In order to solve the above problems, we introduce the CA block [15] into
CASI-Net. In the coordinate attention [18], the channel attention is decomposed into two
one-dimension feature coding processes, in which information for different directions is
aggregated. Different from SE [26], the CA block [18] can not only capture the correlation
dependence of feature maps but also retain accurate location information along the spatial
direction.

2.3. Biological Visual Interaction Mechanism

The interaction mechanism of biological vision refers to that in visual information
processing, where visual information interacts to a certain extent and, finally, completes the
storage and recovery of back flow and abdominal flow [33–36]. In addition, when visual
information is transmitted in the dorsal or ventral stream, the self-interaction behavior will
be triggered [35]. This form of feature interaction can enrich the information of features
and enhance the expression ability of information in the cerebral cortex [37,38]. For deep
learning, when the feature map contains less effective information than the original map,
the classification accuracy of the deep neural network is not excellent. On the contrary,
when the feature map contains more effective information than the original map, the
representation of the feature map can be expanded, thereby enhancing the expression
ability of the CNN model. Based on the above research, a self-interaction module is
constructed, inspired by the biological visual interaction mechanism, which enables CASI-
Net to obtain more abundant original image information and enhance the characterization
of CASI-Net features, thus further improving the classification accuracy of CASI-Net.
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3. Proposed Method

The proposed CASI-Net architecture consists of a lightweight basic feature extractor
(BLFE), a CA block [18], and a self-interaction module. The CASI-Net architecture is shown
in Figure 1.
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Figure 1. Overview of the CASI-Net framework.

In CASI-Net, the input image is a W × H × C steel surface image with defects, and
the output of CASI-Net is defect category confidence. Here, W, H, and C denote the width,
height, and channel numbers of the input image, respectively. In the basic lightweight
feature extractor, the output dimension of block i is Wi × Hi × Ci. Here, Wi, Hi, and Ci
(i = 1, 2, 3) denote the width, height, and channel of the output of feature maps in block
i, respectively. In order to ensure CASI-Net focuses on the defect area, we introduce the
CA block [18] into our constructed network to obtain refined feature maps through the
attention of Wd and Hd directions. Then we construct a self-interaction module based on
the interaction mechanism of biological vision to enrich the feature maps information and
enhance the characterization of CASI-Net. Finally, CASI-Net connects to the Multilayer
Perceptron (MLP) to obtain the category of an input defect image.

3.1. Basic Lightweight Feature Extractor

BLFE consists of three depth-wise separable convolution modules shown in Figure 1.
Each module consists of four convolution layers, four ReLu layers, four batch normalization
(BN) layers, and a Max pool layer, which is shown in Figure 2. A convolution layer is the
basis of the image feature extraction process, while the core is the convolution operation.
The convolution layer at the lowest level extracts low-level features such as edges and
lines, and the higher convolution layer extracts the more complex features such as object
color and contour. The BN [39] layer can speed up the training process and greatly solve
the problem of gradient disappearance and improve the performance of the CNN [40].
Max pooling is used to reduce the dimension of features, compress the number of data
and parameters, and effectively reduce the overfitting phenomenon [40]. A ReLU [41] as a
nonlinear activation layer can aptly solve the overfitting problem.
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Figure 2. Depth-wise separable convolution block.

In block i, the traditional 3× 3 deep convolution is decomposed into 1× 3 convolution
kernel Conv2 and 3× 1 convolution kernel Conv3, and finally, the feature map X is obtained
by 1× 2 convolution kernel Conv4.

3.2. Coordinate Attention

In order to focus on the defect areas and suppress the unimportant areas to achieve
more accurate identification, CASI-Net combines the channel attention mechanism and
the location information to obtain more accurate defect areas. Attention modules such
as SE [26] and CBAM [28] can improve network performance in image classification.
Traditional attention modules such as SE [26] only considered the channel information
of the image and ignored the spatial information. In addition, SE [26] lost too much
primitive information via global pooling. To solve these problems, we integrate the CA
block [18] into CASI-Net to improve the accuracy of classification. In the CA block, feature
tensors X = [x1, x2 . . . , xn] are obtained after BLFE as the input. Finally, CA outputs the
re-weighted tensor Y = [y1, y2 . . . , yn] [18]. The architecture of the CA block is shown in
Figure 3, where ‘Wd Avg Pool’ and ‘Hd Avg Pool’ refer to 1D Wd Avg pooling and 1D ‘Hd

Avg pooling’, respectively [18].
Mathematics 2022, 10, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 3. The architecture of coordinate attention. 

For the input feature tensor 1 2[ , ..., ]nX x x x , one-dimensional pooling operations 

in the first step generate feature descriptors in dW  and dH  directions in the CA block. 
Specifically, CA uses two different pooling kernels to encode the channel along the dW  
direction and the dH  direction. The two different pooling kernels size are  3 ,1H  and 

 31,W , respectively [18]. Then the output of channel c ,  1,2, ,c n   at height h , 

 1,2, ,h H   is expressed as follows 

303

1
( ) ( , )h

c c
i W

z h x h i
W  

   

where ( )h
cz h  is the dW  directional awareness of cx . cx  is the c -channel feature 

map of the feature tensor X . The output of channel c ,  1,2, ,c n   with width w , 

 1,2, ,w W   is expressed as follows 

303

1
( ) ( , )w

c c
j H

z w x j w
H  

   

where ( )w
cz w  is the dH  directional awareness of cx . cx  is the c -channel feature 

map of the feature tensor X . ( )h
cz h  and ( )w

cz w  combine two different locations’ infor-

mation including the dW  direction and dH  direction, which allow CASI-Net to cap-
ture long-range dependencies along one spatial direction and preserve precise positional 
information along the other spatial direction, which helps CASI-Net more accurately lo-
cate the region of interest [18]. 

Next, hz  and wz  are cascaded by the convolution transform and nonlinear activa-
tion and obtain the feature maps f [15]. The expression of f is as follows 

  1f ,h wF z z      

Figure 3. The architecture of coordinate attention.



Mathematics 2022, 10, 963 6 of 14

For the input feature tensor X = [x1, x2 . . . , xn], one-dimensional pooling operations
in the first step generate feature descriptors in Wd and Hd directions in the CA block.
Specifically, CA uses two different pooling kernels to encode the channel along the Wd

direction and the Hd direction. The two different pooling kernels size are (H3, 1) and
(1, W3), respectively [18]. Then the output of channel c, c ∈ {1, 2, . . . , n} at height h,
h ∈ {1, 2, . . . , H} is expressed as follows

zh
c (h) =

1
W3

∑
0≤i<W3

xc(h, i)

where zh
c (h) is the Wd directional awareness of xc. xc is the c-channel feature map of the

feature tensor X. The output of channel c, c ∈ {1, 2, . . . , n}with width w, w ∈ {1, 2, . . . , W}
is expressed as follows

zw
c (w) =

1
H3

∑
0≤j<H3

xc(j, w)

where zw
c (w) is the Hd directional awareness of xc. xc is the c-channel feature map of the

feature tensor X. zh
c (h) and zw

c (w) combine two different locations’ information including
the Wd direction and Hd direction, which allow CASI-Net to capture long-range dependen-
cies along one spatial direction and preserve precise positional information along the other
spatial direction, which helps CASI-Net more accurately locate the region of interest [18].

Next, zh and zw are cascaded by the convolution transform and nonlinear activation
and obtain the feature maps f [15]. The expression of f is as follows

f = δ

(
F1

([
zh, zw

]))
where f is the feature maps containing Wd and Hd directions, δ is the ReLU function, and
F1 is the 1× 1 convolution operation. Next, f is decomposed into two feature tensors fh

and fw by the spatial dimension, and then the feature maps are convoluted by two 1× 1
convolution layers to form the attention weights gh and gw in Wd and Hd directions [18],
which are described as follows

gh = σ

(
Fh

(
fh
))

gw = σ
(

Fw(fw)
)

where Fh and Fw are 1× 1 convolution operations, and σ is the sigmoid function. Finally,
the attention weights in Wd and Hd directions are weighted with the input of CA, and the
final output is yc(i, j) ∈ Re-weight Features Y as follows

yc(i, j) = xc(i, j)× gc
h(i)× gc

w(j)

where gc
h(i) and gc

w(j) are the attention weights of the c-channel of X in Wd and Hd

directions, respectively.

3.3. Self-Interaction Based on Biological Vision

In Section 3.2, through the CA block, CASI-Net obtains an enhancement feature map
Y. Then we input the feature maps Y into the self-interaction module to enrich the effective
information of feature maps. Inspired by the biological visual interaction mechanism,
we design a novel feature augment extraction structure named self-interaction (SI). This
interactive mechanism can enrich visual information and extract more discriminative
feature information in deep learning, which can improve the results of defect classification.
The specific structure of SI is shown in Figure 4.
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In SI, the output Y of CA is used as the input. After transposing the feature maps Y
and obtaining YT , the new feature map Z is obtained through interactive operation in the
SI module constructed by us. The process of SI is described as follows

Z = M
(

YT , Y
)

= (yT
c (i, j)� yc(i, j))

where M represents the Hadamard product of Y and YT . Z is the final feature maps
obtained after the interaction. yT

c and yc represent the c-channel feature map of the refined
feature tensors YT and Y, respectively. (i, j) represent the coordinates of pixels of the feature
map. The richness of the deep network in feature information processing is extended by
the SI module. Interactive feature maps Z pay more attention to identifying regions and
can obtain more detailed feature information in the original feature map, and Z is used for
the final classification.

4. Experiments
4.1. Dataset

The dataset used in our work is NEU-CLS, which contains six types of surface defects
of a hot-rolled steel strip, which are Crazing (Cr), Inclusion (In), Patches (Pa), Pitted Surface
(PS), Rolled-in Scale (RS), and Scratches (Sc) [1]. Each type of sample has 300 grayscale
images of which the size is 200× 200. NEU-CLS has 1800 images. In our experiment,
we resize the input images to 300× 300× 3 (width, height, channel). Figure 5 shows the
samples of six types of typical surface defects images of steel strips.

Each type gives four sample images, and it can be clearly observed that there are
great differences in the appearance of the same type of defects. In short, the challenges
of the NEU-CLS dataset are the inter-class similarity, intra-class difference, and complex
background interference [4].

4.2. Enhanced Dataset

The steel defect dataset is inevitably subjected to non-uniform illumination, noise,
and motion blur in the process of industrial acquisition, which poses a certain challenge to
defect recognition. In order to evaluate the robustness of CASI-Net, we adapt the enhanced
dataset, which includes severe non-uniform illumination, camera noise, and motion blur [2].
The 2 and 5 represent length of camera motion. The enhanced dataset is shown in Figure 6.
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4.3. Implementation Details

All experiments are performed by Pytorch. We use 70% of the images as the training
dataset and 30% of the images as the test dataset. Training is performed on GTX 1060 GPU,
and we use SGD with a weight decay of 0.001, momentum of 0.9, and batch size of 16. In
order to verify CASI-Net, we conduct experiments in the public surface defect database
NEU released by Northeastern University of China [1].

Specifically, the input image size W × H× C is 300× 300× 3 (width, height, and chan-
nel). The dimension W1×H1×C1 of the output in block 1 is 150× 150× 64. The dimension
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W2 × H2 × C2 of the output in block 2 is 75× 75× 128. The dimension W3 × H3 × C3 of the
output in block 3 is 37× 37× 256.

4.4. Performance Analysis

In this section, we establish ablation experiments to evaluate the effectiveness of CASI-
Net. The comparison results are shown in Table 1. Firstly, we use the baseline to classify the
surface defects of NEU, and the accuracy reached 94.79%. Then, we add the self-interaction
module based on the biological visual interaction mechanism to the baseline. The baseline
combined with the self-interaction module reaches 95.22% on NEU-CLS. Next, we add the
CA block to the baseline without the self-interaction module. The recognition accuracy rate
of the baseline after adding the CA block reaches 95.47% on the NEU steel surface defect
dataset. Finally, we add the self-interaction module constructed by the biological visual
interaction mechanism to the baseline, where the performance of CASI-Net in NEU-CLS
reaches 95.83%. After adding the CA module to the baseline, we visualize the sample data
of NEU steel surface defects in Figure 7.

Table 1. The classification accuracy (%) of CASI-Net in NEU dataset.

Method Original Luminance
(α ± 0.4)

Luminance
(α ± 1)

Noise
(20 db)

Noise
(35 db)

Blur
(2)

Blur
(5)

BLFE + MLP 94.79 92.93 82.54 80.33 92.87 94.31 80.62
BLFE + SI + MLP 95.22 93.53 84.66 85.34 93.26 94.53 82.33

BLFE + CA + MLP 95.47 93.68 87.14 90.63 94.97 95.26 90.19
BLFE + CA + SI + MLP 95.83 94.21 92.56 94.71 95.26 95.66 91.62
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From Figure 7, we know that CASI-Net can concentrate more on the location of the
defect and suppress the non-defect part.
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4.5. Comparison with State-of-the-Art Methods

In addition, in order to verify the performance of CASI-Net, we compare the clas-
sification accuracy of various advanced steel surface defect classification models. The
experimental results in Table 2 show that our proposed CASI-Net can achieve a higher
classification accuracy of steel surface defects with fewer parameters. In the NEU public
dataset, we evaluate and verify ResNet [16], MobileNet [23], EffNet [17], and CASI-Net. The
experimental results show that compared with ResNet with 25.56 M parameters reaching
95.09%, CASI-Net achieves 95.83 % accuracy with much fewer parameters. In addition,
compared with MobileNet [23] and EffNet [17], CASI-Net can achieve a higher classification
accuracy with little overhead increase. Compared with the most advanced steel surface
defect classification, CASI-Net can classify steel surface defects more accurately.

Table 2. The accuracy (%) and the params of CASI-Net with state-of-the-art methods.

Method Params Accuracy

ResNet 25.56 M 95.09
EffNet 2.21 M 94.81

MobileNet 2.23 M 95.57
CASI-Net 2.22 M 95.83

5. Discussion

In this study, we demonstrated that compared with the traditional machine vision, the
steel defect classification method based on deep learning can achieve higher classification
accuracy. In this paper, we use the coordinated attention mechanism and the self-interaction
module based on the biological vision to construct a lightweight convolutional neural
network. By introducing the CA block, our network can concentrate more on defect areas.
By constructing the SI module based on biological vision, the representation of the feature
map is improved, so as to increase the recognition accuracy. In addition, compared with
the depth network, our model can achieve a classification accuracy equivalent to that
when the amount of parameters is reduced. In addition, we also discussed the impact
of different dataset partitions on our construction method. We use 8:2 data division for
the training network training and testing. The results show that CASI-Net can finally
achieve 98.19% accuracy. We plotted the experimental results. The results and AUROC
show that CASI-Net can accurately identify surface defects in Figure 8. Collectively, our
data demonstrate that the recognition accuracy of CASI-Net verifies the applicability of
our model in the task of surface defect recognition of a hot-rolled strip. However, there
are some problems we have not taken into account. For example, for some defects in
the dataset, there is a high degree of “inter class similarity and intra class diversity”. For
convolutional neural networks, it is difficult to distinguish them accurately. Therefore,
in the next step, we will consider introducing fine-grained classification methods, such
as bilinear pooling to improve the feature map of the extracted image or constructing
high-order statistical features to model the channel to improve the feature map of the
extracted image and capture the representative defect-recognition area, so as to improve
the classification accuracy.
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6. Conclusions and Future Work

This paper presents a light and effective classification network for steel surface de-
fects called CASI-Net which adopts a new convolution block, which greatly reduces the
computational burden and achieves high recognition accuracy. The proposed backbone
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network can achieve accurate identification results of steel surface defects. We incorporate
the attention mechanism and the self-interaction mechanism based on biological vision
into CASI-Net to improve the defect recognition accuracy. Our experiments show that
CASI-Net can achieve better performance than other models with fewer parameters. In
Section 3, we considered using two different technologies to improve the defect recognition
accuracy of the CASI-Net, including the CA block and a self-interaction module. In the CA
block [18], the location information of feature maps is embedded into the channel attention
and decomposed into two 1D feature encoding processes. Then the two 1D features are
coded to form a pair of direction-aware and position-sensitive feature maps, which can be
complementarily applied to the input feature maps to enhance the representation of the
region of interest. Through the CA block, CASI-Net can capture correlation dependencies
along the horizontal direction and retain accurate location information along the vertical
direction. Inspired by the biological visual interaction mechanism, the self-interaction mod-
ule is constructed. Through the self-interaction operation, the feature map contains more
effective information from the original image, and the representation ability of features
in the CNN model is further enhanced to improve the accuracy of defect classification.
Overall, the recognition accuracy of CASI-Net is more than 95%, which verifies the appli-
cability of our model in the task of surface defect recognition of a hot-rolled strip. In the
future, our next work is to further verify the generalization performance of the model, and
utilize optimization algorithms and adaptation equipment, so as to develop a complete
steel surface defect diagnosis framework. Based on the needs of iron and steel enterprises,
we aim to expand more actual functions, such as online help. In addition, the system can
also provide users with more dynamic and beautiful interfaces.
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