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Abstract: Hate Speech is a frequent problem occurring among Internet users. Recent regulations are
being discussed by U.K. representatives (“Online Safety Bill”) and by the European Commission,
which plans on introducing Hate Speech as an “EU crime”. The recent legislation having passed in
order to combat this kind of speech places the burden of identification on the hosting websites and
often within a tight time frame (24 h in France and Germany). These constraints make automatic
Hate Speech detection a very important topic for major social media platforms. However, recent
literature on Hate Speech detection lacks a benchmarking system that can evaluate how different
approaches compare against each other regarding the prediction made concerning different types
of text (short snippets such as those present on Twitter, as well as lengthier fragments). This paper
intended to deal with this issue and to take a step forward towards the standardization of testing
for this type of natural language processing (NLP) application. Furthermore, this paper explored
different transformer and LSTM-based models in order to evaluate the performance of multi-task
and transfer learning models used for Hate Speech detection. Some of the results obtained in this
paper surpassed the existing ones. The paper concluded that transformer-based models have the best
performance on all studied Datasets.

Keywords: BERT; transfer learning; multi-task learning; RoBERTa; LSTM; Hate Speech detection

MSC: 68T50

1. Introduction
1.1. Hate Speech Definition

Hate Speech has multiple definitions, depending on the legal system of the involved
country. In most European countries, the preferred interpretation is that of the European
Council [1], which states that any provocation to violence or hatred that is targeted against
a minority group (based on race, color, belief, or nationality) or a person that is part of that
group is defined as Hate Speech. Likewise, the law classifies denying acts of genocide and
war crimes when this action is likely to incite violence as part of the Hate Speech definition.
Various definitions are more constraining, such as the U.K.’s definition, which removes
the burden of demonstrating the incitement to violence. The United Kingdom forbids
communication of hatred that is directed towards someone on the basis of that person’s
racial, nationality, or belief characteristics.

There are even opposing views, such as entities such as the U.S. Supreme Court,
that do not recognize Hate Speech as a legal term because of the infringement upon free
speech laws that take precedence and the fact that viewpoint-based discrimination cannot
constrain free speech. This view is controversial, as the U.S. law recognizes hate bias toward
minority groups [2] as an aggravating factor in committing a crime and classifies it as a
hate crime.
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In light of these facts concerning varying definitions, this article based its detections on
the more constraining characterization of Hate Speech, which is the one applied in the U.K.

To further refine the presented term’s discussion, many Datasets that are featured in
this paper address the distinction between Hate Speech and Offensive Language by further
splitting the two into distinct labels. This distinction is explained in the Venn diagram
presented in Figure 1.

Figure 1. Venn diagram of positive labels used in the Datasets studied by this paper.

1.2. The Real-Life Context of This Study

Hate Speech is now the next term to be criminalized at the EU level [3]. This will
constrain all EU member countries to adopt or to refine their legislation with respect to
restricting this kind of speech. Inasmuch as the content host is responsible for removing
banned content in major EU member states (the French Avia Law and the German Network
Enforcement Act), a detection tool is required to flag Hate Speech. This requirement is
stressed by the fact that in many countries, the law states that the removal of the illegal
content must be performed within a narrow time frame such as one day from publication
or from the first complaint.

Papers such as [4] state that Hate Speech found in various online mediums influences
real-life violence and can lead to the radicalization of individuals. Moreover, the Facebook
daily usage statistics from their third-quarter statement show an increase of 6% year over
year [5] to 1.93 billion. Other platforms such as Twitter reported [6] a 13% increase in
users over the last year. The pandemic is forcing more people to interact over social media
platforms and to be exposed to their content, with this promoting the need for an automatic
detector, as human-based Hate Speech detection cannot reasonably verify the entire content
that is posted on a platform within a 24 h window.

Some studies [7] suggest that the current state of Hate Speech detectors presents a
bias towards labeling minority-generated samples as hateful (the false positive rate for
African American English speaking users is higher than that of other groups). From a moral
standpoint, reducing the false positive rate of Hate Speech detection is important in order
to protect the free speech of other platform users.

1.3. Objectives of This Work

One of the common problems in Hate Speech detection is that there are many different
Datasets that are being used for testing, and there is no way of knowing how different
models compare against each other. This is why establishing a Dataset list with different
features on which to compare models is important.

The primary objective of this paper was reviewing popular Datasets and creating a
testing pipeline with the aim to find which models currently produce state-of-the-art results
and, thus, to standardize testing for Hate Speech detection. The secondary objective of
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this paper was to test multi-task learning and how it compares with single-task learning
with modern transformer-based models for Hate Speech classification. Furthermore, a
comparison between accuracies obtained by solely using a transformer embedding or
combining it with pretrained word embeddings such as GloVe or ELMo can help boost
performance. We also derived our own embeddings by using different transformers in
order to average the contextual representation of each token (as in the case of the word-level
ones derived in [8]) and then compared the results with the other models.

The article is organized into five sections, each introducing a new descriptive layer
of this topic. The first (current) section explains how different countries treat Hate Speech
and the importance of developing a capable detector for it. The section equally outlines
the objectives of this paper. The second section refers to previous work in the domain of
Hate Speech detection and to how our contribution complements this preexisting work.
The third section defines the actual methods used to preprocess the data, as well as the
models that were used in order to improve accuracy on the data classification objectives.
The fourth section discusses the results obtained using the most relevant methods and
how they compare to different results existing throughout the literature. The final section
summarizes our work so far and offers a short description of what can be achieved using
similar methods with respect to other types of NLP applications.

2. Related Work

Recent studies [9,10] pertaining to the analysis of Hate Speech reveal that keywords
are not enough in order to classify its usage. The semantic analysis of the text is required
in order to isolate other usages that do not have the intention or meaning required for the
phrase to be classified as Hate Speech. The outlined [10] possible usages for Hate Speech
words are:

• Homonymous, in which the word has multiple meanings and in the current sentence
is used with a different meaning that does not constitute Hate Speech;

• Derogatory, this being the form that should be labeled as Hate Speech. This form is
characterized by the expression of hate towards that community;

• Non-derogatory, non-appropriative, when the keywords are used to draw attention to
the word itself or another related purpose;

• Appropriative, when it is used by a community member for an alternative purpose.

Figure 2 outlines examples of the presented ways of using Hate Speech key terms.

Figure 2. Usage types for Hate Speech key words.

In recent years, a tremendous amount of research [7,8,11] has gone into the classifi-
cation of text snippets. Early methods relied on classic machine learning methods [12]
such as SVMs, logistic regression, naive Bayes, decision trees, and random forests. Even
earlier research [13] was focused on different ways of extracting textual features and text
representations such as n-grams, lexicon, and character features. These laid a foundation
for later research, which evolved with other related tasks, such as sentiment evaluation [14],
culminating with the usage of transformer-based neural networks [15,16].
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The topic of Hate Speech detection is a very active part of the NLP field [8,15–18].
Every modern advance in textual classification has been subsequently followed by an
implementation in the field of Hate Speech detection [15,19–21].

One of the first modern articles was authored by Waseem and Hovey [19] and consisted
of Twitter detection work. Their paper used character n-grams as features, and they used the
labels racism, sexism, and normal. The method used by the authors is a logistic regression
classifier and 10-fold cross-validation in order to make sure the performance of the model
is not dependent on the way the test and training data are selected. The preprocessing
solution employed by the authors was removing the stop-words, special Twitter-related
words (marking retweets), user names, and punctuation. This type of solution is commonly
used in approaches where sequential features of the text are not used.

Another article, which constitutes the base of modern Hate Speech detection, is [12].
The authors proposed [12] a three-label Dataset that identifies the need to classify offensive
tweets in addition to the Hate Speech ones of the Waseem and Hovey Dataset [19]. Fur-
thermore, the conclusion of the performed experiments was that Hate Speech can be very
hard to distinguish from Offensive Language, and because there are far more examples of
Offensive Language in the real world and the boundaries of Hate Speech and Offensive
Speech intersect, almost 40% of the Hate Speech labeled tweets were misclassified by the
best model proposed in [12]. The article used classic machine learning methods such as
logistic regression, naive Bayes, SVMs, etc. It employed a model for dimensionality reduc-
tion, and as preprocessing steps, it used TF-IDF on bigram, unigram, and trigram features.
Furthermore, stemming was first performed on the words using the Porter stemmer, and
the word-based features were POS tagged. Sentiment analysis tools were used for feature
engineering, computing the overall sentiment score of the tweet. It is important to specify
that only 26% of the tagged Hate Speech tweets were labeled unanimously by all annotators,
denoting the subjectivity involved in labeling these kinds of tweets.

Modern approaches are highlighted by the use of embeddings and neural networks
capable of processing sequences of tokens. One such article is [17], in which the authors
used ELMo embeddings for the detection of Hate Speech in tweets. Another technique that
was present in this work was using one Dataset to improve performance on the primary
Dataset (transfer learning).

The paper expressed this with a single-network architecture and separate task-specific
MLP layers. In addition to these, the article compared the usage of LSTMs [22] and
GRUs [23], noting that LSTMs are superior with respect to prediction accuracy. As pre-
processing steps, the authors removed URLs and added one space between punctuation.
This helps word embedding models such as GloVe, which would consider the combina-
tion of words and punctuation as a new word that it would not recognize. This article
also introduced the concept of domain adaptation to Hate Speech detection. By using
another Dataset to train the LSTM embeddings, the embeddings would be used to ex-
tract Hate-Speech-related features from the text, which would increase accuracy with
subsequent Datasets.

One major downside of Hate Speech detection applications is given by the existing
Datasets, which are very unbalanced (with respect to the number of Hate Speech labels), as
well as by the small amount of samples that they contain. This means that the research in this
field needs to make use of inventive methods in order to improve the accuracy. One such
method is the joint modeling [21] approach, which makes use of complex architectures and
similar Datasets, such as the sentiment analysis ones, in order to improve the performance
of the model on the classification of Hate Speech detection. In [21], the use of LTSMs over
other network architectures was also emphasized.

One of the more interesting models presented in [21] is parameter-based sharing. This
method distinguishes itself by using embeddings that are learned from secondary tasks
and are combined with the primary task embeddings based on a learnable parameter. This
allows the model to adjust how the secondary task contributes to the primary one, based
on the relatedness of the tasks.
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As preprocessing, the tweets had their mentions and URLs converted to special tokens;
they were lower-cased, and hashtags were mapped to words. The mapping of hashtags
to words is important because the tweets were small (the most common tweet size was
33 characters), so for understanding a Tweet’s meaning, we need to extract as much
information from it as possible. Further improvement upon previous architectures within
this model is the use of an additive attention layer.

As embeddings, GloVe and ELMo were used jointly, by concatenating the output of
both models before passing it to the LSTM layer in order to make a task-specific embedding.
This article [21] also compared the difference between transfer and multi-task learning,
with both having some performance boost over simple single-task learning.

Finally, there are multiple recent papers that made use of the transformer architecture
in order to achieve higher accuracies [8,15,16,18]. One such transformer-based method [8]
that uses the Ethos [24] Dataset employs a fairly straight forward approach. It uses BERT
to construct its own word embeddings. By taking every corpus word and the context in
which it occurs and constructing an embedding, the authors proposed that averaging word
embeddings will have an advantage over other word embedding techniques. Then, by
using a bidirectional LSTM layer, the embeddings were transformed into task-specific ones
in order to improve accuracy, after which a dense layer made the prediction. The accuracy
improved overall when this method was used as opposed to simple BERT classification. An-
other article that made use of the transformer architecture was [15], introducing AngryBert.
The model was composed of a multi-task learning architecture where BERT embeddings
were used for learning on two Datasets at the same time, while LSTM layers were used to
learn specific tasks by themselves. This is similar to the approach proposed in [21], but the
main encoder used a transformer-based network instead of a GloVe + ELMo embedding
LSTM network. The joining of embeddings was performed with a learnable parameter as
in [21]. Another interesting trend is that of [18], where a data-centric approach was used. By
fine-tuning BERT [25] on a secondary task that consisted of a 600,000-sentence-long Dataset,
the model was able to generate a greater performance when trained on the primary Dataset.

Our approach complements those already used by proposing a method of encoding
tokens that, while using the sub-word tokenizing architecture in order to handle new
words, also makes use of the transformer performance, at the same time increasing the
speed by running the transformer only to derive the embeddings. While RoBERTa-based
transformer learning is still superior to using transformer-based token embeddings in terms
of performance, if the training speed is of concern, then a viable alternative to the traditional
multi-task learning methods and to the transformer-based paradigms is transformer-based
token embeddings.

3. Materials and Methods
3.1. Datasets

This study wanted to determine if sentiment analysis Datasets, which by far outweigh
Hate Speech ones in terms of data availability, can help in training for our Hate Speech
detection problem. For this purpose, multi-task learning was used. Multi-task learning
represents the method that leverages multiple learning tasks, trained at the same time, with
the objective of exploiting the resemblances of the Datasets when training the parameters
of the models. This method is used when the task is comprised of a very large Dataset for
the secondary task and the primary (objective) task Dataset does not have sufficient data to
produce an accurate result when trained by itself.

In order to conduct a comprehensive analysis of different methods used in Hate Speech
detection and to study the effectiveness of each one of them, enough Datasets had to be
gathered to test how these methods handle different sample types and labeling techniques.
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Because there are different granularity levels for the labels, as well as the auxiliary
data used by some models, in what follows, all the data collection processes that took place
in the recreation of some of the more interesting state-of-the-art projects are explained.
There are multiple types of Datasets already available, but the main concern of deciding
which Datasets to use or how to construct a Dataset for the specific features of Hate Speech
detection is choosing what features to leverage in this task and how those features can
then be gathered in production environments. The main component of any Dataset should
be the text itself, as this component allows us to examine the idea of the author of the
sample at that particular time. Although it might be convoluted and new meanings of
words appear all the time, the text feature is the easiest to retrieve from the perspective
of a social platform owner as it is already in its database. This component is required for
every employed Dataset and was constructed or harvested. If this was not possible, then
the Dataset was discarded.

The Datasets chosen have different distributions of text length and different sources,
which means that they were harvested from different social media platforms and use differ-
ent labeling schemes. The most frequent labeling scheme observed is Amazon Mechanical
Turk, but other crowdsourcing platforms [12,20,26] are used as well. Finally, other authors
manually annotated their Dataset or sought professional help from members of different
marginalized communities and gender studies students [10,19].

By selecting different types of Datasets, the comprehensive testing of methods and
the discovery of how different approaches to feature extraction and text embedding affect
performance can be facilitated.

Labels of different samples can be binary or multi-class, as a result of evaluating them
with multiple techniques, such as the intended meaning of the slur (sexist, racist, etc.) or
what kind of slur word is being used (classifying each token as being Hate Speech or not).
However, in order to standardize the labels, we split the Datasets into two Dataset groups
(3-label and 2-label Datasets if they do not contain offensive speech labels). This was
performed by merging or computing labels.

Secondary components that could help us determine if a person is posting Hate Speech
content are: comments given by other people to that person’s post, user group names,
user account creation timestamp (accounts participating in Hate Speech tend to be deleted
so new accounts are created). Another secondary component that is recorded in some
Datasets is user responses to the comment (not used for detection, but for generating
responses to Hate Speech content). Some of these components were used, and the obtained
accuracy was compared to the accuracy without them, in order to determine if there was an
accuracy improvement over using text snippets only. Auxiliary Datasets, such as sentiment
classification ones, can also be used (in multi-task learning). These Datasets do not have
any constraints as they were only used to train the embedding vectors and, as such, to
help the primary model’s accuracy. During our experiments, in addition to the Datasets
presented in Figure 3, the SemEval 18 [27] Task1 Dataset (sentiment classification Dataset)
and OLID (Hate Speech detection Dataset) were used as auxiliary Datasets in the sections
where multi-task machine learning was performed.

A problem that was found while evaluating possible Datasets to be used for testing
was that there are so many Datasets in the domain of Hate Speech detection, that the
approaches presented alongside them have not been benchmarked on the same data.
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Figure 3. Dataset label distribution.

3.1.1. The HateXplain Dataset

This Dataset [11] contains already preprocessed tweets. It introduced the following
token classes (<user>, <number>, <percent>, <censored>, etc.). In order to make sure this
Dataset did not impact the pipeline, the tokens were implemented in the tokenizer so as to
standardize every Dataset. Small problems were found with the human annotations: some
of the annotators made mistakes such as when they considered more words than others
for some sentences, for example the one at Index 17,891 (one annotator had 47 tokens, and
another one had 48). The purpose of this Dataset was to use its attention annotations in
order to harvest better scores in single-, multi-task, and transfer learning. Transfer learning
is a method where the knowledge gathered while solving a secondary machine learning task
is passed onto another similar task. One such example is attempting to predict sentiments
that a text is supposed to convey and then taking that model and fine-tuning it in order to
detect Hate-Speech-related texts. This technique is mostly used with the first layers of a
deep neural network. The reason is that those layers are supposed to “understand” and to
extract the features that are required by the later layers in order to make a decision.

3.1.2. The Waseem and Hovey Dataset

The raw data of this Dataset [19] contains 16,914 tweets, annotated with the labels
racist, sexist, and neither. The Dataset [19] is available for download, but instead of Tweet
text, its rows contain only tweet ids, and many of the tweets have been removed since
its conception. However, some GitHub repositories might be used to combine the partial
extraction attempts for obtaining over 90% of the original tweets. As for the original Dataset,
the data are not balanced because the authors intended for it to represent a real-life scenario
of Hate Speech detection. Furthermore, instead of basing their Hate Speech annotations
solely on words that are commonly associated with Hate Speech, they labeled the tweets
based on the significance of the tweet.

3.1.3. The Thomas Davidson Dataset

In [12], the problem of differentiating between Hate Speech and Offensive Language
that does not constitute Hate Speech was addressed. The Dataset is made up of tweets
gathered using crowd-sourced Hate-Speech-related words and phrases from the website
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“Hatebase.org”. The authors emphasized the difficulty of differentiating between tweets
that contain offensive slurs that are not Hate Speech and Hate-Speech-containing tweets, as
well as Hate Speech that does not contain offensive words. The authors constructed the
labels by using CrowdFlower services. The agreement coefficient was 92%. During their
examination of the Dataset, they found multiple mislabeled tweets. These had hateful slurs
that were used in a harmless way, suggesting the bias towards misclassifying keyword-
containing tweets. It is also important to remember that all labels were subjectively applied,
and there is room for debate on the interpretation of some of the tweets being racist.

3.1.4. The Qian Reddit Dataset

This Dataset [20] focuses on the intervention part of Hate Speech detection. The
data were annotated using the Amazon Mechanical Turk crowdsourcing platform; this
consists of Hate Speech annotations and responses to the Hate Speech samples. The authors
focused on two platforms (Reddit and Gab) as the main sources of their Datasets. For the
Reddit Dataset, the authors collected data from multiple subreddits known for using Hate
Speech and combined this heuristic with hate keywords, then rebuilt the context of each
comment. The context was made up of all the comments around the hateful comment. For
the Gab Dataset, the same methods were applied. Conversations of more than 20 comments
were filtered out. The authors obtained less accuracy on the Reddit Dataset, and that is
why the models featured in this paper were trained only on this part of the data. After
looking through the data, there were a couple of extra preprocessing steps that needed
to be implemented when using this Dataset. For example, in the data, there were some
Unicode characters such as “‘”, which is the Unicode variant of the apostrophe character.
These need to be changed with their ASCII counterparts because of certain classic methods
using the character as a separation of contractions.

3.1.5. The Kurrek Dataset

This Dataset [10] is comprised of the Pushshift Reddit corpus, which is filtered for bots
and users with no history. In addition to the user filters, which are designed to help future
users collect user metadata and use them in combination with the Dataset, the corpus was
selected to contain comments with 3 known Hate-Speech-related keywords. The Dataset
is labeled in accordance with the use of the slur (derogatory usage, appropriative usage,
non-derogatory, non-appropriative usage, and homonymous usage).

3.1.6. The Gao and Huang Dataset

The data records featured in [28] were extracted from Fox news. The comments were
taken from 10 discussion threads. The Dataset offers multiple metadata fields in addition
to the sample text such as the nested nature of the comments and the original news article.
The Dataset was annotated by two native English speakers.

3.1.7. Hate Speech Dataset from a White Supremacy Forum (the HATE Dataset)

The HATE Dataset, presented in [29], is interesting because instead of searching a
platform by keywords, which have a high probability of being associated with Hate Speech,
the authors used web-scraping on a white supremacist forum (Stormfront) in order to
improve random sampling chances. In addition to this, the Dataset has a skipped class
where information not pertaining to being labeled can be classified. Furthermore, for some
tweets, the context was used to annotate. We removed the classes skipped and those that
needed additional context before training the models.

3.2. Types of Embeddings Used in this Paper

In order to display the evolution of different types of embeddings and to compare the
difference in the training/prediction time with the difference in performance, this paper
aimed to use the following embeddings for the tokens:
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• TF-IDF, which is the most basic type of encoding, being commonly used in com-
bination with classic machine learning techniques or neural networks that cannot
accept sequence-based features. For the purpose of this paper, the scikit-learn [30]
implementation was used. This method of embedding words does not hold any of
the information offered by the context in which the word is used or the way in which
a word is written. Instead, the TF-IDF approach is used after the user has identified
the words that he/she wants to keep track of in his/her data corpus (usually the most
frequent ones after filtering stop words). Then, a formula is applied for each chosen
word. The word count for that particular document is divided by the number of times
the word occurs in the corpus:

TFIDF(term) = COUNT(term) ∗ (loge(DocNumber/TermDocFrequency) + 1)

where DocNumber is the number of documents and TermDocFrequency is the number
of documents in which the term occurs;

• Skipgram embedding takes tokens as the inputs, with the tokens being commonly
given by the words in the text, while the tokenizer often separates words by the space
character. The output of this technique is represented by a dictionary where the key is
given by the word in question and the value held by the dictionary is an n-dimensional
vector that hosts the hidden layer linear neurons weight values corresponding to that
particular word. Skip-gram [31] is based on a shallow neural network model that
features one hidden layer. This layer tries to predict neighboring words chosen at
random within a window;

• CBOW is a similar technique to Skipgram, with one of the major differences being that
the objective of the shallow network is to predict the target word from the context;

• GloVe embeddings, from the point of view of the user, work as a dictionary. Each word
has a corresponding embedding. The downside of this form of word representation is
that unknown tokens are represented with the same value regardless of their word
composition or context. The embeddings are computed using a word co-occurrence
count, which is more accurate than word2vec approaches because the whole corpus
is taken into account as opposed to only the window from word2vec. One of the
particularities of GloVe is choosing the padding and the unknown vectors. For the
purpose of this empirical study, the padding was chosen to be a vector filled with
0s. For the unknown token, two approaches were compared. The first approach
consisted of using the special token “<unknown>” that GloVe offers. The second
approach involved averaging all the vectors and using the corresponding value as our
unknown vector. Both of these variants offer the same result. Another particularity of
using GloVe [32] embeddings is that, prior to training the model, we encoded each
tokenized word as an index in the embedding dictionary. When training the input,
the numeric tensors containing the indices of each sample were concatenated. The
resulting matrix corresponded to our batch. Next, each of the indices was converted
to its corresponding embedding. For the Twitter-trained GloVe, this embedding is
made up of 200 elements. After the embedding layer, we had a sequence shaped as a
tridimensional matrix with the column length corresponding to the sentence length,
the row length corresponding to the batch size, and the element size equal to the
embedding size (in our case, 200);

• ELMo, The Allennlp [33] framework, offers an interface to the model. The tokenized
words (matrix of words corresponding to the batch) are passed to the batch_to_ids
function, where each word is transformed into a vector. Suppose that one of the
words was abc which in ASCII language corresponds to the vector [97, 98, 99]. When
transformed by the tool, it will become [259, 98, 99, 100, 260, 261. . . padding continues].
From the output of the tokenizer, we can observe that 259 is a token used for the start
and 260 is used to signal the ending. After the tokenization, the matrix is input to a
neural network, which outputs an embedding vector for every word. This embedding
approach is based on bidirectional LSTM networks [33];
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• RoBERTa [34] embeddings are similar to BERT as model outputs. The embeddings
resulting from the model are sequences of vectors that represent each sub-word.
Besides the model difference from ELMo and GloVe, BERT and RoBERTa use different
types of tokenizers. BERT uses WordPiece tokenization, which can use whole words
when computing the indices to be sent to the model or sub-words. This method starts
with the base vocabulary and keeps adding sub-words by the best likelihood until the
vocabulary cap is reached. This is a middle ground between character-based ELMo
embeddings and the word embeddings that GloVe uses. As opposed to the other
types of tokenizers, RoBERTa uses a byte pair encoding. This means that in order to
make the embeddings, all the characters are in the embedding dictionary at the start,
and then, they are paired based on the level of appearance in the text, as opposed to
WordPiece encoding, which chooses the new pair by the likelihood increase on the
training data.

3.3. Evaluation

Hate Speech predictors focus on the macro F1 metric. This metric is especially im-
portant because the benign samples far outweigh the offensive ones. F1 is calculated as
the harmonic mean of the recall and precision metrics. Furthermore, all metrics shown in
this paper are macro, which means that the metrics are representative of all classes. The
sampling procedure most used to evaluate classification models on a segmented Dataset
is K-fold cross-validation. In the case of our tests, we chose 10-fold because it is the most
popular for Hate Speech classification [8,19,21].

3.4. Preprocessing

In order to make use of all the Dataset features, we needed to preprocess it according
to all the tokenizing module requirements, so as to form the word vectors and embeddings,
as well as to perform the existing preprocessing steps that some of the Datasets in use
already employ.

The first step is adhering to GloVe’s special token creation rules. By following the
token definitions in the paper, a script was created in order to create the tokens that were
needed by GloVe. We used regex in order to create the tokens. The next preprocessing step
was mandated by the HateXplain Dataset. The Dataset is already in a processed state. By
searching for the pattern <Word>, a tokenizing program can be reverse engineered, at the
end of which the embeddings are reconstructed (over 20 in the Dataset). Some of the words
are censored, so in order to improve the accuracy of BERT, a translation dictionary can be
created to accomplish this feat.

The final step was constructing two preprocessing pipelines, one for the HateXplain
Dataset, in order to bring it to a standard format, and another preprocessing function
was created for the other texts. Further modifications were needed for the other Datasets
depending on how they were stored.

Because the study dealt with two different types of texts, the preprocessing should be
different for each article. For the tweet Datasets/short-text Datasets, it is recommended
that as much information as possible be kept, as these are normally very short. As such, the
hashtags should be converted into text and emojis and other text emojis as well. For the
longer texts, however, cleaner information had priority over harvesting the entire informa-
tion, one such method difference being the deletion of emoticons instead of replacing them
as in the tweet Datasets.

As such, the proposed pipeline for these kinds of models was, after preprocessing,
composed of the following word embedding extraction methods:

• N-gram char level features;
• N-gram word features;
• POS of the word;
• TF (raw, log, and inverse frequencies)-IDF(no importance weight, inverse document

frequency, redundancy);
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• No lemmatization running words were directly taken as input—no lemmatization,
but unlemmatizable words were deleted;

• GloVe
• ELMo;
• Transformers.

With the first types of models, multiple types of preprocessing were tested, in order
to see which ones performed better than the others. One such example is represented by
stemming and lemmatization. We tried different preprocessing steps in this first part of the
Dataset, such as stemming or lemmatizing the words. Another preprocessing method that
we tried was removing stop-words or using exclusively stop-words. We acknowledge that
using our own encoding vector, as well as extracting word- or char-level features such as
n-grams cannot be replicated on real-life data as easily as using already computed word
embeddings such as GloVe or ELMo [33,35]. As such, we tried to only use open-source
embedding methods on the classical machine learning algorithms.

All the classical machine learning models are formed of a sci-kit learn [30] pipeline
with different parameters (depending on the model used). In order to tune the parameters,
we used grid search and studied the different effects that different parameters had on the
accuracy of the models. Furthermore, for the PyTorch [36] models, we additionally used
ray tune from the PyTorch framework.

3.5. Optimizers

An optimizer is an algorithm that helps the neural network converge, by modifying
its parameters, such as the weights and learning rate, or by employing a different learning
rate for every network weight.

SGD [37] with momentum is one of the simpler optimizer algorithms. It uses a general
learning rate as opposed to the Adam optimizer [38]. It follows the step size to minimize the
function. Momentum is used to accelerate the gradient update and to escape local minima.

Adam [38] is a good choice over stochastic gradient descent because it has a learning
rate for every parameter and not a global learning rate as classical gradient descent algo-
rithms. The original Adam paper [38] claimed to combine the advantages of AdaGrad and
RMSProp. The article claimed that the advantages of Adam were the rescaling invariance of
the magnitudes of parameter updates to the rescaling of the gradient, the hyperparameter
step size bounding the parameter step sizes, etc. The upper hand Adam has as an optimizer
is generated by its step size choice update rule.

RMSProp is different from Adam as it does not have a bias correction term and can lead
to divergence, as proven in [38]. Another difference is the way RMSProp uses momentum
to generate the parameter updates.

AdaGrad [39] is suitable for sparse data because it adapts the learning rate to the
frequency with which features occur in the data. It was used in [32] because of the sparsity
of some words. AdaGrad is similar to Adam because it has a learning rate for every
parameter. The main fault is adding the square gradients, which are positive. For big sets
of data, this is detrimental as the learning rate becomes very small.

3.6. Models

In order to test the methods, we propose the pipeline in Figure 4.

Datasets

Indexes of
embeddings

Preprocessing
Converting into

tensors +
transforming data

Labels

Dataloader Model Loss
 function Scheduler

Figure 4. High-level architecture of the testing pipeline.

In order to streamline the process, the Datasets can be saved after preprocessing and
then loaded up so as to not repeat this part of the experiment on subsequent tests. In
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addition to this, the model weights can be reset, as opposed to training the model again for
the next folds, while performing the validation.

3.6.1. Classic Machine Learning

Our initial tests concentrated on classical machine learning models, and their results
can be seen in Appendix A. The first models that were applied were from the family of SVM
classifiers (Table A2). These classifiers work by establishing the biggest boundary between
classes. The kernel function that differentiates between SVM methods helps shape the
boundary and, as such, the decision-making capabilities of SVM classifiers. All the classic
machine learning models are formed of a sci-kit learn pipeline with different parameters
(depending on the model used).

In order to tune the parameters, we used grid search and studied the different effects
that various parameters had on the accuracy of the models.

Other classifiers that were used during the first phase of the model preparation were
decision tree classifiers (Table A3), which construct a tree-like structure. The goal was that
of differentiating between classes based on boundaries set automatically by the algorithm.
Furthermore, random forest (Table A4) and KNN classifiers (Table A1) were tested. Random
forest classifiers work by combining multiple different decision tree classifiers, and KNN
classifiers compare the similarity of the nearest neighbors and decide based on the labels of
those neighbors.

The obtained results enabled us to conclude that, on this tier of classic machine learning
classifiers, the SVM and random forest classifiers outperformed the rest of the models on
the task of Hate Speech detection. The features were derived from the text using TF-IDF.

3.6.2. CNN, GRU, and RNN Models

The next class of tested models was represented by CNN-based models. These had
better accuracy than obtained for the previous phase. As input for the network, GENSIM
embeddings (either Cbow or skip-gram of dimension 200) trained on the Datasets were used.
These were compared against GloVe embeddings in order to test which embeddings would
be more appropriate for the task of Hate Speech detection. GloVe embeddings scored a
higher accuracy overall, and because of this, they were used for the more advanced models.

There were multiple CNN approaches tested for this study. The first type has a bigger
number of filters, essentially capturing more patterns from the texts, but fewer layers.
Other CNN networks have a shorter filter size, but more layers so as to further refine the
representations gathered from the text (Table A6). These approaches were used in order to
establish if extracting more features from the text was more important than filtering and
extracting more complex patterns.

Another tested model was described in [11] and is made up of convolutional neural
networks combined with a GRU layer (Table A9). This model outperformed the other
two. During the testing of this model, we also tested how skip-gram embeddings affect
performance versus a more established embedding method.

Furthermore, several RNN setups have been tested, both bidirectional RNN (Table A7)
and one-way interconnected RNN (Table A8) networks.

3.6.3. Preparing the Data for Recurrent Layers

In order to use recurrent networks, some precautions must be taken. For the LSTM,
GRU, and RNN networks, the main methods for input encapsulation are as follows:

• Padding sequences of data to a fixed length represents the easiest way of preparing
the input for recurrent layers. For this method to work, we needed to choose the
correct length of the sentence. The length must be large enough so that we have a
low probability of losing the meaning of the sequence (by not cutting out words that
would be crucial to the understanding of the sentence). At the same time, this length
must be small enough such that, when the input is grouped together, the batch fits on
the GPU/TPU and the training/prediction time is reasonable.
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In addition to the token length, one must consider the batch size. It is important to
make sure that the GPU can handle the size of the model training/prediction data
flow.
When testing on the tweet-based Datasets, the method chosen was to keep all input
words and pad the shorter input samples to the same length. For tweet samples, this is
easy as there is a limit to how many words a tweet can contain. As for our Datasets, the
limit ranged from 70 to 90 tokens. Some words can be split by the sub-word tokenizer
into two or more tokens, so based on what method of tokenization is chosen, the limit
was either 70 or 90 tokens. However, handling inputs from Gab or Reddit, with sizes
of over 330 words, required a different approach. For such Datasets, the Dataset length
chart is plotted, and we considered the length that separates the smallest 95% of the
samples, from the rest, as a cutoff point. The longer texts were then cut to that length,
and all the shorter texts were padded to the same length;

• The second approach was packing the variable length sentences and unpacking them
after the LSTM layer has finished. This approach is supported by PyTorch. It works
by capturing LSTM inputs at the sequence when the true input ends.

These models performed poorly in comparison with the LSTM and transformer networks.

3.6.4. LSTM Based Networks

One of the more complex classification criteria for the models used in the experiments
was whether they trained on one task or multiple tasks at the same time, with the goal of
perfecting the training on one of them, called the primary task.

The single-task learning model was trained only on one Dataset. It can have one or
multiple vector embedding inputs (GloVe (Table A5), GloVe + ELMo (Table A13), ELMo,
BERT, BERT + GloVe, etc.). Parameters such as LSTM hidden sizes and dropouts were
computed based on grid search on one Dataset and then reused in the testing on subse-
quent Datasets.

After the LSTM layers process the input, the output has to be reshaped and pooled
in order to be used in future layers. If the input goes into other LSTM or time sequence
computing layers, we kept the output as is, but if we intended to forward the output to the
multilayer perceptron, we only took the last sequence embeddings. In order to achieve this,
the matrix returned by the LSTM layer needed to be reshaped according to the following
parameters: the number of layers, the number of directions, the batch size, and the hidden
dimension of the LSTM layers. The last element of the output vector was used, and if the
LSTM was bidirectional, both LSTM outputs needed to be concatenated. After each LSTM
layer, there was a dropout layer that helped with overfitting.

The linear layer was composed of multilayer perceptrons, and its purpose was to
reduce the pooled output of the BiLSTM to our label size. The last layer can be reset if we
want to train multiple Datasets on the same model. The goal of this procedure is improving
the accuracy of the model on the last Dataset (as in Figure 5).

Sentence
Tokenizer

W1 W2 Wn

Glove
Dictionary

Elmo NN

BiLSTM Dropout

Elmo NN Glove
Dictionary

Transformer
embedding Fasttext Transformer

WordVectors

Attention

MLP

Transformer
WordVectors

MLP

Figure 5. Transfer learning architecture.
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3.6.5. Improving the LSTM Output

Other changes between models included, but were not limited to, the addition of an
attention layer instead of the max pooling layer of the first model architecture.

The attention layer had the basic function to produce weights that helped a model
focus on certain words in the sentence such that its accuracy was increased. Despite
attention being used primarily in seq-to-seq translations, in order to relieve the encoder
from condensing the data into a fixed-length sequence, it is also useful in classification
scenarios, when we want to take advantage of the sequential nature of LSTMs. In our
classification scenario, for each embedding dimension of a LSTM step, we had a weight
that decided its importance. The weight was at the end multiplied with all the encoding
vectors. We can replace the traditional max pooling approach or just use the output of
the last layer and input it into the already described attention mechanism. The attention
layer helps the model properly focus on the parts of the samples that help produce the
right label.

3.6.6. Multi-Task Learning Models

Multi-task models require a different approach for training. First, the labels must be
encoded such that there can be a distinction between our primary and alternate Datasets.
In order to do this, a label value that was not in our Dataset was inserted (for example, 2 in
binary classification, where there would be only 0 and 1 labels).

Every sample from the auxiliary Dataset was marked with the chosen label in the
primary label column. Then, the secondary Dataset labels were placed in another column.
For testing purposes, the fields that correspond to the unused label were filled with a
random label that did not exist in our Datasets, such that, if there was an error and the
separation of labels was not properly preformed, that error could propagate into the
confusion matrix and be corrected. During training, both samples were dispatched to the
embedding stage of samples and were then filtered in the order of the labels. The losses
were computed separately and were afterwards multiplied by a factor (0.9 for our primary
Dataset and 0.1 for our secondary Dataset). In the end, the weights were updated with
backpropagation, and the model was trained. There were 3 types of multi-task learning
models that were studied for the task under investigation. They were tested according to
their description in [21].

The first tested multi-task model was “hard” multi-task learning (Table A11). This
model has 3 separate BiLSTM structures. The first is composed of 2 layers and is used to
process inputs from both the auxiliary and primary tasks. The second and third structures
are task-specific, used to further enhance the representations given by the output of the first
BiLSTM structure. There are two different loss calculation paths that intersect at the first
BiLSTM structure. This means that, although task-specific representations would be trained
separately, the first structure was jointly learned. This helped our primary task if sufficient
data were not available, as well as in cases where these tasks were similar in nature.

Another variant, that is easier to train, was also designed and tested. This model
does not contain the separate BiLSTM layers, but instead contains only one representation
that is then separated into different dense layers (Table A12). The rationale was that
the LSTM layers will interpret the sentences, and the output of the last layer will treat
both tasks, which is why the BiLSTM-tested hidden dimensions would be larger than in
previous models.

3.6.7. Learnable Parameter Multi-Task Learning Models

Another multi-task learning model is obtained by having a learnable parameter
(Table A10, Figure 6), as depicted in [21]. For the implementation in PyTorch, a random
tensor was made (containing 2 values, initialized with Xavier initialization), after which
gradients were enabled on that tensor so that the backpropagation could change its value.
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Figure 6. Multi-task architecture.

When the BiLSTM results were to be concatenated, SoftMax was applied on the param-
eter tensor, which normalizes the 2 values in the vector as a probability distribution (they
are complementary, summing to 1). Then, each corresponding embedding is multiplied
with its corresponding vector value. Other modifications were that the common BiLSTM
layer no longer existed, so that each task built its own interpretation of the input sequence.
As a sanity check, as the one in the previous example, a model was built that was trained in
the same manner, but without connecting the BiLSTM of the auxiliary model to the Alpha
parameter. If both models performed identically, this meant that there was no performance
gain out of using a flexible parameter multi-task model.

3.6.8. Speed, Ease of Training, Sanity Checking, and Other Particularities

The GloVe model was the easiest to train, with 10 min per epoch on the largest Dataset
(combined two-label Dataset). On the other side, there was the multi-task parameter model,
which took 2 h and 30 min per epoch (both models were trained on a server V100 graphics
card with 16 GB or VRAM). Because the majority of the multi-task models were bigger
than the 12 GB of video RAM of the NVIDIA 3060, it is harder for a consumer GPU to
train them, as the batch sizes have to be set low in order to not overflow the GPU memory.
Furthermore, a compromise between performance and ease of training has to be made, and
that could be using token embeddings derived from transformer models combined with
the speed of single-task models.

In order to test if the design of multi-task architectures improved the performance
of the model, a testing architecture was conceived by us. It follows the same paths as in
the case of the above-presented hard multi-task models, except that it is missing the first
BiLSTM structure (which learns the shared embedding). This impairs shared learning,
but the process of training is exactly the same. When testing this model, if observing
the same performance, we could conclude that there was no performance gain in hard
multi-task learning.

As optimizers, two types were tested: Adam and SGD with momentum. In practice,
Adam seemed to be a better fit for this task, especially the corrected method AdamW
implemented in PyTorch. As loss functions, binary cross-entropy loss was used for the
models, which requires binary classification, and categorical cross-entropy loss was used
for models that require multiple class classification.

3.6.9. Transformer-Based Models

Our study used the BERT model in 3 architectural ways.
The first and most basic way in which we could employ BERT (presented in Figure 7)

was by using the BertForSequenceClassification function in PyTorch. The model should be
trained according to the original paper [25] that introduced it:

• Batch size should be 16 or 32;
• Learning rate for Adam optimizer should be 5 × 10−5, 3 × 10−5, or 2 × 10;−5

• Number of epochs should be small. between 1 and 5.

The second possibility is using Bert’s output layer as an input to a multilayer percep-
tron or any other non-sequential network. The training was performed by freezing the
BERT layers and training the rest of the network, then unfreezing the BERT layers and
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adjusting the optimizer, learning rate, and batch size to the ones in the above guidelines, as
well as retraining for a small number of epochs [11].

The final method in which BERT can be used is for embedding vector creation. By
freezing the weights as in the previous model, we could use the sequential output of BERT
as a word embedding vector. In some of the experiments, the coupling of transformer-
based models together with GloVe embeddings was tested in multiple multi-task learning
use cases, as well as in single-task use cases, as depicted in Figure 8. BERT was used in
combination with GloVe in two ways: by using it as an embedding vector or as a sequential
model. The training was identical to the above-described process.

While training the transformer-based models, one problem was the high cost of
training, as well as the longer training time than for LSTM-based networks, and as such,
a good method was stated by [8]. Instead of taking the word-level embeddings as in [8],
we used the RoBERTa tokenizer to obtain token-level embeddings for multiple Datasets.
Using those embeddings, we then trained a multi-task architecture based on bidirectional
LSTM networks with an addition-based attention mechanism.

The pipeline began with the sentence, which was tokenized using the standard
BERT/RoBERTa tokenizer (depending on the model used). Then, each sample was input
into the model (standard model with no gradients computed to save the GPU), and after
obtaining the embeddings from the models, we assigned them to each of the tokens that
served as the input. We summed up all the different representations a token would have,
within the Dataset, and in the end, we averaged the vectors for each token, by dividing the
token vector by the number of times the token had occurred throughout the Dataset. In the
end, we converted the embeddings to PyTorch embeddings, because it was much faster
than using a Python dictionary.

Bert MLP Bert

Last layer
pooled
output

Last layer
sequence LSTM MLP

Figure 7. Simple BERT usages.
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Figure 8. Single-task architecture.

For the next batch of models, we employed the multi-task architecture with word
embeddings computed using the RoBERTa-based model. For this purpose, we took all the
Datasets, as well as the auxiliary Datasets, and we created token vectors for all of them.
The process of obtaining transformer token vectors is depicted in Figure 9.
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Token->Vector
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Figure 9. Transformer token vector usage.
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3.6.10. BERT Token Embeddings for Single-Task Learning

The first experiments involving transformer-based token embeddings consisted of
using the BERT-based token embeddings with an additional LSTM layer. By doing this,
we obtained the approximate performance of the BERT model alone, but with a speed
advantage given by using word embeddings.

3.6.11. RoBERTa Token Embeddings for Multi-Task Learning

Secondary experiments were composed of using multi-task experiments by combining
the SemEval Dataset with all the different Datasets. As word embeddings, the RoBERTa-
derived token embeddings were used. While testing, transformer-based architectures
proved far superior to the GloVe and ELMo embeddings, and among the transformer
models, RoBERTa had the highest accuracy on the Hate Speech Datasets. The three multi-
task architectures outlined in [21] were adapted to use RoBERTa word embeddings instead
of the standard ones.

3.6.12. Training Particularities

During the training, all the models converged. However, employing early stopping
mechanisms and tuning the hyperparameters helped the models achieve better results. A
problem was using larger text Datasets with multi-task learning. It would not be suitable
for texts over 250 words, as the batch size would have to be considerably reduced, in order
to facilitate the training. Another problem is not using the same type of text for the primary
and auxiliary Datasets. If this constraint is not met, then the primary Dataset will have a
hard time surpassing the single-task learning method accuracies.

4. Results

In this section, we outline the top-performing approaches that can contribute to an
intelligent baseline proposal for Hate Speech detection. These top-performing approaches
were selected from among the previously described models and were tested on each
selected Dataset. The test results can be seen in Tables 1–5. These tests used only the
textual features of the samples. The results were rounded to the nearest hundredth (so the
approximation error was ±0.005).

The results obtained on the HateXplain Dataset using RoBERTa were marginally better
than those obtained in [11] without the addition of metadata collected during training and
on par with those trained with additional annotation features. The results from the hate
supremacist forum could not be compared with the ones from [29] as the authors only
used a subset of about 2000 samples from their own Dataset in order to balance the classes.
The results obtained on the Qian Dataset were better (77.5 F1→ 88 F1 macro) than those
obtained in the original article [20].

For the Gao and Huang Dataset [28], there was an improvement in the F1 accuracy
from 0.6 obtained with an ensemble model (with additional textual features) to 0.71 obtained
using the RoBERTa transformer model on the text samples alone. On the Davidson Tweet
Dataset, our approach had a marginally lower weighted F1 score of 90 (when trained for
macro F1) compared with [15], which had a score of 91. However, if the model was trained
for weighted performance (without early stopping), the same F1 score was obtained. As
for the Waseem Dataset, our results were better (81 F1 compared with 80 F1) than those
obtained in [21], which used the same variant of the Dataset from [19]. The numerical
results of all the performed experiments (see Tables 1–5 and A1–A13) point to the fact that
using transformer models yielded better accuracies overall than using token embeddings.
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Table 1. BERT token embeddings.

Dataset Accuracy Precision
Macro

Precision
Weighted

Recall
Macro

Recall
Weighted

F1
Macro

F1
Weighted

Xplain 0.67 0.66 0.67 0.66 0.67 0.66 0.67
Waseem 0.84 0.81 0.84 0.78 0.84 0.79 0.84
Kurrek 0.86 0.86 0.87 0.86 0.86 0.86 0.86

Gao–Huang 0.75 0.69 0.74 0.68 0.75 0.68 0.74
Hate 0.91 0.78 0.9 0.74 0.91 0.74 0.9

Davidson 0.91 0.78 0.90 0.72 0.91 0.74 0.90
Qian-Reddit 0.91 0.89 0.91 0.88 0.91 0.88 0.91

Table 2. RoBERTa-based transformer model.

Dataset Accuracy Precision
Macro

Precision
Weighted

Recall
Macro

Recall
Weighted

F1
Macro

F1
Weighted

Xplain 0.7 0.69 0.7 0.69 0.7 0.69 0.7
Waseem 0.86 0.81 0.86 0.82 0.86 0.81 0.86
Kurrek 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Gao–Huang 0.77 0.73 0.77 0.71 0.77 0.71 0.77
Hate 0.91 0.79 0.91 0.75 0.91 0.76 0.91

Davidson 0.91 0.77 0.91 0.75 0.91 0.75 0.91
Qian-Reddit 0.91 0.88 0.92 0.89 0.91 0.88 0.92

Table 3. MTL (fixed parameter) RoBERTa token embeddings.

Dataset Accuracy Precision
Macro

Precision
Weighted

Recall
Macro

Recall
Weighted

F1
Macro

F1
Weighted

Xplain 0.64 0.63 0.64 0.63 0.64 0.63 0.64
Waseem 0.84 0.81 0.84 0.78 0.84 0.78 0.84
Kurrek 0.84 0.84 0.84 0.84 0.84 0.84 0.84

Gao–Huang 0.75 0.70 0.75 0.70 0.75 0.69 0.75
Hate 0.90 0.75 0.89 0.72 0.9 0.73 0.89

Davidson 0.9 0.75 0.89 0.7 0.9 0.71 0.89
Qian-Reddit 0.91 0.88 0.91 0.88 0.91 0.88 0.91

Table 4. MTL (learned parameter) RoBERTa token embeddings.

Dataset Accuracy Precision
Macro

Precision
Weighted

Recall
Macro

Recall
Weighted

F1
Macro

F1
Weighted

Xplain 0.65 0.64 0.65 0.64 0.65 0.63 0.64
Waseem 0.84 0.81 0.85 0.79 0.84 0.79 0.84
Kurrek 0.84 0.84 0.84 0.84 0.84 0.84 0.84

Gao–Huang 0.75 0.71 0.75 0.67 0.75 0.67 0.74
Hate 0.9 0.77 0.9 0.72 0.9 0.73 0.9

Davidson 0.9 0.76 0.89 0.70 0.9 0.71 0.89
Qian-Reddit 0.91 0.88 0.91 0.88 0.91 0.88 0.91

Table 5. MTL (hard) RoBERTa token embeddings.

Dataset Accuracy Precision
Macro

Precision
Weighted

Recall
Macro

Recall
Weighted

F1
Macro

F1
Weighted

Xplain 0.65 0.64 0.65 0.64 0.65 0.64 0.65
Waseem 0.84 0.81 0.84 0.79 0.84 0.79 0.84
Kurrek 0.84 0.85 0.85 0.84 0.85 0.84 0.84

Gao–Huang 0.75 0.71 0.74 0.65 0.75 0.65 0.72
Hate 0.9 0.77 0.9 0.73 0.9 0.73 0.9

Davidson 0.9 0.76 0.89 0.69 0.9 0.72 0.89
Qian-Reddit 0.91 0.88 0.91 0.88 0.91 0.87 0.91

5. Conclusions and Future Work

With “Hate Speech” being the next term to be criminalized at the EU level and with
growing activity on social media, automatic Hate Speech detection increasingly becomes
a hot topic in the field of NLP. Despite a relatively large and recent amount of work
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surrounding this topic, we note the absence of a benchmarking system that could evaluate
how different approaches compare against one another. In this context, the present paper
intended to take a step forward towards the standardization of testing for Hate Speech
detection. More precisely, our study intended to determine if sentiment analysis Datasets,
which by far outweigh Hate Speech ones in terms of data availability, can help train
a Hate Speech detection problem for which multi-task learning is used. Our aim was
ultimately that of establishing a Dataset list with different features, available for testing and
comparisons, since a standardization of the test Datasets used in Hate Speech detection is
still lacking, making it difficult to compare the existing models. The secondary objective of
the paper was to propose an intelligent baseline as part of this standardization, by testing
multi-task learning, and to determine how it compares with single-task learning with
modern transformer-based models in the case of the Hate Speech detection problem.

The results of all the performed experiments point to the fact that using transformer
models yielded better accuracies overall than trying token embeddings. When speed is a
concern, then using token embeddings is the preferred approach, as training them used
less resources and yielded a comparable accuracy. Using auxiliary Datasets helped the
models achieve higher accuracies only if the Datasets had the same range of classification
(sentiment analysis or Offensive Language detection were complementary for Hate Speech),
but also the same textual features (using tweet Datasets for longer text Datasets can be
detrimental to its convergence).

Although the detection of Hate Speech has evolved over the last few years, with text
classification evolving as well, there still are multiple improvement opportunities. A great
advancement would be to train a transformer on a very large Hate Speech Dataset and then
test the improvement on specific tasks. In addition to these, various other Dataset-related
topics should be addressed, such as the connection between users or different hashtags and
movement names and how these factor into detecting Hate Speech. That issue could be
addressed by a combination between traditional approaches and graph neural networks.
Furthermore, it would be interesting to receive a Dataset with all the indicators a social
media platform has to offer.

One downside of current Datasets is the fact that, during our experiments, as well as
during other experiments in similar works, non-derogatory, non-appropriative, as well as
appropriative uses of Hate Speech words were very hard to classify, as they represent a
very small portion of the annotated tweets. These kinds of usages should not be censored
as they are impacting the targeted groups. Another example of Hate-Speech-related word
usage, that is hard to classify, would be quoting a Hate Speech fragment of text with the
intent to criticize it. Improvements in neural networks would have to be made in order to
treat these kinds of usages.

As future work, we plan on expanding our testing on Datasets that subcategorize
the detection of Hate Speech into different, fine-grained labels. One such Dataset that
was used in this paper is the Waseem and Hovey Dataset [19]; another one should be
SemEval-2019 Task 5 HatEval [40], which categorizes Hate Speech based on the target
demographic. It would be interesting to observe how well features learned during a more
general classification could be used to increase the classification accuracy of a finer-grained
task. Moreover, another direction that this research could take is to expand the types of
NLP applications for which the methods are tested. One such example would be handling
Hate-Speech-related problems such as misogyny identification [41]. We hope the present
study will stimulate and facilitate future research concerning this up-to-date topic, in all of
these directions and in others, as well.
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Appendix A

Detailed results obtained from evaluating different models on the benchmark Datasets
are given here. All results feature accuracy, macro and weighted recall, precision, and
F1-scores.

Table A1. Scores obtained on the benchmark Datasets using the K nearest neighbors algorithm.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.61 0.59 0.58 0.59
Waseem 0.78 0.63 0.55 0.59
Kurrek 0.68 0.68 0.67 0.67

Gao–Huang 0.72 0.51 0.51 0.51
Hate 0.87 0.70 0.65 0.67

Davidson 0.82 0.72 0.48 0.57
Qian-Reddit 0.82 0.77 0.77 0.77

Table A2. Scores obtained on the benchmark Datasets using the SVM algorithm.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.66 0.66 0.64 0.64
Waseem 0.80 0.78 0.73 0.76
Kurrek 0.80 0.80 0.80 0.80

Gao–Huang 0.74 0.50 0.54 0.52
Hate 0.89 0.51 0.52 0.52

Davidson 0.88 0.68 0.66 0.67
Qian-Reddit 0.85 0.83 0.81 0.83

Table A3. Scores obtained on the benchmark Datasets using the decision trees algorithm.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.67 0.66 0.65 0.64
Waseem 0.81 0.78 0.68 0.72
Kurrek 0.74 0.75 0.74 0.74

Gao–Huang 0.75 0.62 0.61 0.61
Hate 0.86 0.72 0.59 0.65

Davidson 0.87 0.65 0.67 0.66
Qian-Reddit 0.88 0.88 0.85 0.87

Table A4. Scores obtained on the benchmark Datasets using the random forest algorithm.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.62 0.62 0.59 0.61
Waseem 0.78 0.72 0.74 0.73
Kurrek 0.80 0.80 0.80 0.80

Gao–Huang 0.73 0.67 0.64 0.65
Hate 0.82 0.65 0.60 0.62

Davidson 0.87 0.67 0.62 0.64
Qian-Reddit 0.86 0.83 0.84 0.84

https://github.com/zeeraktalat/hatespeech
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/t-davidson/hate-speech-and-offensive-language
https://github.com/sjtuprog/fox-news-comments
https://github.com/sjtuprog/fox-news-comments
https://github.com/hate-alert/HateXplain
https://github.com/networkdynamics/slur-corpus
https://github.com/jing-qian/A-Benchmark-Dataset-for-Learning-to-Intervene-in-Online-Hate-Speech
https://github.com/jing-qian/A-Benchmark-Dataset-for-Learning-to-Intervene-in-Online-Hate-Speech
https://github.com/Vicomtech/hate-speech-dataset
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Table A5. Scores obtained on the benchmark Datasets using the GloVe embeddings with 2 LSTM
layers and max pooling.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.65 0.65 0.65 0.65
Waseem 0.84 0.80 0.77 0.78
Kurrek 0.87 0.87 0.87 0.87

Gao–Huang 0.77 0.72 0.68 0.70
Hate 0.90 0.73 0.70 0.71

Davidson 0.91 0.74 0.72 0.78
Qian-Reddit 0.91 0.89 0.87 0.88

Table A6. Scores obtained on the benchmark Datasets using the convolutional neural network model.
The embeddings were made with the help of GloVe vectors.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.55 0.54 0.54 0.54
Waseem 0.81 0.78 0.72 0.75
Kurrek 0.77 0.77 0.77 0.77

Gao–Huang 0.71 0.64 0.61 0.62
Hate 0.87 0.67 0.62 0.64

Davidson 0.87 0.71 0.64 0.67
Qian-Reddit 0.83 0.76 0.72 0.74

Table A7. Scores obtained on the benchmark Datasets using the bidirectional recurrent neural
network layers. The embeddings were made with the help of GloVe vectors.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.65 0.65 0.66 0.65
Waseem 0.85 0.83 0.76 0.79
Kurrek 0.84 0.84 0.84 0.84

Gao–Huang 0.77 0.70 0.67 0.68
Hate 0.91 0.78 0.67 0.72

Davidson 0.91 0.74 0.73 0.73
Qian-Reddit 0.90 0.87 0.86 0.86

Table A8. Scores obtained on the benchmark Datasets using one-way interconnected recurrent layers.
The embeddings were made with the help of GloVe vectors.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.64 0.64 0.64 0.64
Waseem 0.84 0.80 0.76 0.78
Kurrek 0.84 0.84 0.84 0.84

Gao–Huang 0.71 0.63 0.61 0.62
Hate 0.89 0.73 0.65 0.68

Davidson 0.91 0.77 0.72 0.74
Qian-Reddit 0.90 0.86 0.86 0.86

Table A9. Scores obtained on the benchmark Datasets using the CNN-GRU method. The embeddings
were made with the help of GloVe vectors.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.65 0.64 0.64 0.64
Waseem 0.83 0.79 0.78 0.79
Kurrek 0.76 0.71 0.70 0.70

Gao–Huang 0.76 0.70 0.70 0.70
Hate 0.89 0.73 0.71 0.72

Davidson 0.89 0.73 0.72 0.72
Qian-Reddit 0.89 0.85 0.83 0.83
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Table A10. Scores obtained on the benchmark Datasets using the learnable parameter encoding
model. Embedding vectors were made with both ELMo and GloVe and then concatenated. The
auxiliary Dataset is the SemEval 18 [27] Task1 Dataset.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.64 0.63 0.63 0.63
Waseem 0.81 0.80 0.81 0.80
Kurrek 0.88 0.87 0.87 0.87

Gao–Huang 0.78 0.73 0.70 0.71
Hate 0.91 0.77 0.71 0.74

Davidson 0.89 0.73 0.80 0.76
Qian-Reddit 0.89 0.85 0.87 0.86

Table A11. Scores obtained on the benchmark Datasets using the hard learning multi-task model.
Embedding vectors were made with both ELMo and GloVe and then concatenated. The auxiliary
Dataset is the SemEval 18 [27] Task1 Dataset.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.64 0.63 0.63 0.63
Waseem 0.79 0.81 0.75 0.78
Kurrek 0.88 0.87 0.87 0.87

Gao–Huang 0.78 0.73 0.72 0.72
Hate 0.91 0.78 0.72 0.75

Davidson 0.90 0.76 0.73 0.75
Qian-Reddit 0.87 0.87 0.87 0.87

Table A12. Scores obtained on the benchmark Datasets using the multi-task learning method in
which only the last layers were separated. Embedding vectors were made with both GloVe and ELMo
and then concatenated. The auxiliary Dataset is the SemEval 18 [27] Task1 Dataset.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.65 0.63 0.63 0.63
Waseem 0.83 0.80 0.80 0.80
Kurrek 0.87 0.87 0.87 0.87

Gao–Huang 0.79 0.73 0.73 0.73
Hate 0.90 0.80 0.70 0.74

Davidson 0.89 0.72 0.77 0.74
Qian-Reddit 0.90 0.88 0.89 0.89

Table A13. Scores obtained on the benchmark Datasets using 2 LSTM layers and embedding the
words with both ELMo and GloVe embeddings.

Dataset Accuracy Precision Macro Recall Macro F1 Macro

Xplain 0.66 0.65 0.65 0.65
Waseem 0.81 0.79 0.78 0.79
Kurrek 0.85 0.82 0.84 0.83

Gao–Huang 0.79 0.74 0.72 0.73
Hate 0.91 0.78 0.74 0.76

Davidson 0.90 0.74 0.75 0.75
Qian-Reddit 0.90 0.86 0.89 0.87
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