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Abstract: Clustering aims to group n data samples into k clusters. In this paper, we reformulate the
clustering problem into an integer optimization problem and propose a recurrent neural network with
n× k neurons to solve it. We prove the stability and convergence of the proposed recurrent neural
network theoretically. Moreover, clustering experiments demonstrate that the proposed clustering
algorithm based on the recurrent neural network can achieve the better clustering performance than
existing clustering algorithms.
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1. Introduction

Clustering has been widely studied by machine learning and plays a very important
role in various engineering fields. Shaheen et al. [1] presented a new method for clustering,
based on the reinforcement factor and the congruence modulo operator. Abdullah et al. [2]
utilized k-means to analyze the COVID-19 pandemic. Yeoh et al. [3] proposed a new
method that utilizes metaheuristic optimization to improve the performance of the initial-
ization phase.

Clustering aims to group the data points with similar patterns into one cluster. Over
the last few decades, relevant scholars have put forward and improved a series of clustering
algorithms [4–12]. The representative of clustering algorithms is the k-means, which
can discover the latent data structure and achieve clustering via the structure. Spectral
clustering (SC) [4,5,10] constructs an affinity graph to model the geometrical information
within data, and the clustering results respect the graph structure. Some extensions of SC
methods [6–8] have been proposed to model the nonlinear geometrical structure of data. In
addition, the projected clustering algorithm [9] was mentioned, aiming to think over the
local information and the global structure of data. Some researchers have improved some
clustering to enhance clustering algorithm robustness. Dai et al. [13,14] proposed a series
of robust clustering algorithms based on negative matrix factorization.

Most of traditional clustering algorithms converge slowly and trap into a local so-
lution easily. This is because these algorithms do not use the neural works to search
the global solution. Recently, some clustering problems [15–17] can be reformulated
as combinatorial optimization problems. Malinen and Franti [15] presented a k-means-
based clustering problem with the given cluster sizes. The balanced clustering problem
is formulated as a combinatorial optimization problem and solved by the Hungarian
algorithm. Bauckhage et al. [16] reformulated the k-medoid clustering problem into a
quadratic unconstrained binary optimization (QUBO) problem by identifying k medoids
among the data points. Date et al. [17] reformulated linear regression, support vector ma-
chine and balanced k-means clustering as QUBO problems and solved them on adiabatic
quantum computers.
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Neural networks and combinatorial optimization problems have some close relations.
In other words, most neural networks are used to dispose of combinatorial optimiza-
tion problems (e.g., [18]). In addition, neural networks also often are used for clustering
(e.g., [19–23]). Combining neural networks and combinatorial optimization problems have
the following advantages. In the past three decades, neurodynamic optimization can be
regarded as a computationally intelligent method to solve different optimization prob-
lems ([18]). Therefore, it is necessary to develop neural networks for solving the clustering
problem.

In this paper, a neural network clustering algorithm is proposed. The distinctive
features of the paper are highlighted as follows:

• The clustering problem is reformulated as an integer optimization problem and solved
by the continuous Hopfield neural network.

• By comparing to the other clustering algorithms, our clustering algorithm achieves
the better clustering performance.

2. Preliminaries
2.1. Dissimilarity Coefficients

For clustering, the similarity or dissimilarity of any two samples should be measured
firstly. In this paper, the Gaussian kernel function is used to measure the similarity of
samples, which is defined as follows:

dij = −exp(
∑m

k=1(xki − xkj)
2

2σ
), (1)

where xki is the element which represent intersection of k-th row and i-th column in the
sample matrix X; σ is positive penalty parameters.

2.2. Continuous Hopfield Neural Network

CHN is comprised of a group of n fully interconnected neurons, where each neu-
ron is affiliated with other neurons. The dynamic equation [24] of the CHN is defined
by the following:

du
dt

= −u
τ
+ Tx + ib, (2)

where u, ib and τ represents vectors of neuron states, biases and time constant, respectively.
CHN possesses the following state equation and activation function:

ui(t + 1) = ui(t) +
du
dt
4 T,

xi = g(ui),
(3)

where4T is a constant. xi is a hyperbolic tangent whose boundary is −1 and 1. g(·) is a
strict growth activation function to let the system stable [25], defined by

xi = g(ui) = tanh(
ui
u0

), u0 > 0, i = 1, 2...n, (4)

where u0 is an input parameter. For the sake of dealing with any problem by using CHN,
we reformulate this energy function which is related to the CHN. The energy function [26]
is formulated as follows:

E(x) = −1
2

xtTx− (ib)tx. (5)

There are two activating modes to update neurons in Equation (3). In the asynchronous
mode, each neuron state xi can be updated sequentially. In the synchronous mode, all
neuron states should be updated in the same time. In this paper, we use the synchronous
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mode to update neurons. Therefore, the T of Equation (5) should satisfy the following
two conditions:

• The diagonal element T should be all zeros.
• The T should be symmetric.

It is obvious that the energy function of CHN is equivalent to the objective function of
the optimization problem. Next, we discuss how to reformulate the objective function of
the clustering problem into the energy function.

2.3. Problem Formulations
2.3.1. Objection Function

For the clustering problem , we suppose that there are n samples {xi}n
i=1 ∈ Rm. These

sample are ready to be grouped into p classes, where m represents the data dimensionality.
We hope that the similarity samples should have the smaller intra-cluster distance and the
dissimilarity samples should have the larger within-cluster distance, respectively. In other
words, the distance of samples xi and xj is{

dij, if xi, xj belong to cluster k and xikxjk = 1

− dij, otherwise,
(6)

where the dij represents distance within the sample, the binary decision variable xik is
defined by

xik =

{
1 xi ∈ k.

− 1 otherwise.
(7)

Based on the distance definition in Equation (6), the clustering problem can be expressed
as the following optimization problem:

min
p

∑
k=1

n

∑
i=1

∑
j<i

dijxikxjk. (8)

For the clustering problem, each sample should be belong to one cluster only. Therefore, a
constraint on x can be summarized as follows:

p

∑
k=1

xik = 2− p, i = 1, 2, 3...n. (9)

2.3.2. Problem Reformulation

As mentioned in the above sections, the clustering problem could be defined as follows:

min
p

∑
k=1

n

∑
i=1

∑
j<i

dijxikxjk

s.t.
p

∑
k=1

xik = 2− p, i = 1, 2, 3...n,

xik ∈ {−1, 1}, i = 1, 2, 3...n, k = 1, 2...p.

(10)

It is widely known that problem (10) can be rewritten as follows:

min
1
2

p

∑
k=1

n

∑
i=1

n

∑
j=1

dijxikxjk +
λ

2

n

∑
i=1

(
p

∑
k=1

xik + p− 2)2, (11)
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where λ represents a positive penalty parameter. In the following, we will obtain the
derivation of xik denoted by5 f (xik) as follows:

5 f (xik) =
1
2

p

∑
k=1

n

∑
i=1

n

∑
j=1

dijxjk + λ
n

∑
i=1

p

∑
k=1

(xik + p− 2). (12)

3. Algorithm Description

Algorithm 1 describes our algorithm procedure. In our algorithm, the 5T and λ
denote positive penalty parameters. u0 and iter denote constant and maximum number
of iterations, respectively. In the following, initial state x is calculated to random number
matrix u, u0 and ln. d is computed by the Gaussian Kernel function within samples.
The neuronal state is updated iteratively in the loop until reaches the maximum number
of iterations.

Algorithm 1: CHN.

Input: samples matrix Xn×m, the number of class p, penalty parameter λ, initial
states xn×p ∈ {−1, 1}, random number matrix un×p,4T, u0 and iter.

Output: x∗

Compute d in terms of Equation (1);
Compute initial states x = u0 × ln(n− 1) + u;
for i = 1 < iter do

Compute
d f
dx

by Equation (12).
Compute x(t + 1) by Equation (3).
Compute g(xi) by Equation (4).

end
return x∗.

4. Experiment
4.1. Experimental Setups

In this section, a multitude of datasets (i.e., Ionosphere, Wine, Iris, Seeds and Jaffe_face)
are utilized in these experiments; they are described in more detail in Table 1. For these
datasets, we not only normalize these datasets, but apply PCA [27] to preserve 90% of the
information in the datasets. In addition, the Gaussian kernel function of Equation (1) is
used in the experiments to measure whether the samples are similar in the experiments.
Experiments are performed on Windows 10 with Intel(R) Core(TM) i5-1035G1 CPU @
1.00 GHz 1.19 GHz and MATLAB 2018a.

Remarks: The code has been uploaded to https://github.com/Warrior-bot/CHN
(accessed on 28 January 2022)

Table 1. The datasets employed in the experiments.

Name Instances Class Dimensions

Ionosphere 252 2 30
Wine 178 3 13
Iris 150 3 4

Seeds 210 3 4
Jaffe_face 213 10 676

Our method is compared with the algorithm: Kmeans [28], Kmeans++ [29] and
Isodata [30]. The codes of the Kmeans, Kmeans++ and Isodata were downloaded at the site
https://github.com/xuyxu/Clustering (accessed on 28 January 2022).

There are five parameters in our algorithm. The first parameter is λ in Equation (12).
The u0 and 4T are parameter of Equations (3) and (4), respectively. In order to better
compare the performance of these methods in four datasets, we select the appropriate

https://github.com/Warrior-bot/CHN
https://github.com/xuyxu/Clustering
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parameter σ to Guarantee fairness. Finally, the maximum number of iterations (iter) is used
to terminate the loop. These parameters see more details in Table 2.

Table 2. The parameter used in the experiments.

Datasets λ u0 4T iter σ

Wine 700 0.025 0.0025 15,000 1.5
Iris 700 0.025 0.0021 10,000 0.08

Seeds 700 0.025 0.0026 15,000 0.2
Jacc_face 700 0.03 0.00091 20,000 0.2

Ionosphere 600 0.025 0.0025 20,000 0.5

4.2. Numerical Experiment

This section utilizes randomly generated 2D points to conduct the numerical experi-
ment. Figure 1 vividly shows clustering results on various instances numbers with different
classes. According to the figure, we conclude as follows:

• The clustering result of our method is satisfactory for different instances with different classes.
• Our method obtains ideal clustering results for multi-class instances.

(a) (b)

(c) (d)

Figure 1. Numerical experiments are conducted on 100, 200, 300 and 400 instances with 2, 4, 6 and
8 classes, respectively. (a) Numerical experiments are conducted on 100 instances with 2 classes;
(b) Numerical experiments are conducted on 200 instances with 4 classes; (c) Numerical experi-
ments are conducted on 300 instances with 6 classes. (d) Numerical experiments are conducted on
400 instances with 8 classes.

4.3. Real Datasets Experiment
4.3.1. Evaluation Indices

The clustering performances of are evaluated using four common external perfor-
mance indices: Normalized Mutual Information (NMI) [31], Accuracy (AC) [31], Adjusted
Rand index (ARI) [32] and Purity [33].

The details of these evaluation indices are shown in Table 3. In Table 3, H denotes
entropy; U and V are the data label and the obtained label of the i-th sample, respectively;
ri and si represent pre-label and real-label, respectively; RI denotes the ratio of the correctly
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clustered data points and all data points. E denotes the expectation; N is the number of
instances, Ω denotes a forecasting label, C is a real label.

Remarks: The higher the NMI, AC, ARI and Purity, the better the performance.

Table 3. Definitions of the used cluster validity indices.

Index Definition
Rule to Indicate
the Best Clusters

Normalized Mutual
Information (NMI)

NMI(U, V) = MI(U,V)
mean(H(U),H(V))

where MI(U, V) = ∑
|U|
i=1 ∑

|V|
j=1

|Ui∩Vj |
N log N|Ui∩Vj |

|Ui ||Vj |

max

Accuracy
(AC)

AC = ∑n
i=1 δ(si ,map(ri))

n

where δ =

{
1 i f x = y
0 otherwise.

max

Adjusted Rand Index
(ARI)

ARI = RI−E(RI)
max(RI)−E(RI)

max

Purity Purity(Ω, C) = 1
N ∑k maxj |wk ∩ cj| max

4.3.2. Parameter Sensitivity

To achieve an ideal experiment performance, Figures 2–6 show experimental results
with different lambda on four datasets. These figures denote two-dimensional images,
where x-axis and y-axis denote the various of λ and different clustering indexes, respectively.
According to Figures 2–6, we summarized as follows:

• For Wine, Iris and Seeds, the clustering results are more satisfactory when λ is 700.
• For Jacc_face and Ionosphere, the larger λ leads to better clustering results.

(a) AC (b) NMI

(c) ARI (d) Purity

Figure 2. Clustering result: AC, NMI, ARI and Purity from Wine with different λ.
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(a) AC (b) NMI

(c) ARI (d) Purity

Figure 3. Clustering result: AC, NMI, ARI and Purity from Iris with different λ.

(a) AC (b) NMI

(c) ARI (d) Purity

Figure 4. Clustering result: AC, NMI, ARI and Purity from Seeds with different λ.
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(a) AC (b) NMI

(c) ARI (d) Purity

Figure 5. Clustering result: AC, NMI, ARI and Purity from Jacc_face with different λ.

(a) AC (b) NMI

(c) ARI (d) Purity

Figure 6. Clustering result: AC, NMI, ARI and Purity from Ionosphere with different λ.

4.3.3. Experiment Results

Tables 4–9 show the algorithm performance of our method compared to Kmeans,
Kmeans++ and Isodata in terms of four clustering performance metric values. These
tables show the best, worst, mean and standard deviation performance metric values on
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the four datasets. The clustering result in these tables demonstrate that the our proposed
algorithm statistically outperform the other three algorithms in the light of the given cluster
evaluation indices. According to these tables, we summarize the results as follows:

• Our method far outperforms other methods in Tables 4, 6 and 9, no matter which
evaluation indicator is applied.

• For Tables 5 and 8, although other methods perform better than our method in some
minimum and standard deviation, our method outperforms other methods as a whole.

Table 4. The experimental results of our proposed method compared to Kmeans, Kmeans++ and
Isodata in terms of the best, worst, mean and standard deviations performance metric values on Wine
(The best result in bold).

Algorithm CHN Kmeans Kmeans++ Isodata

NMI(%) 81.40/84.35/77.27 ± 2.10 67.36/77.53/38.50 ± 11.94 67.43/77.53/60.44 ± 7.03 46.93/72.57/30.52 ± 13.48
AC(%) 93.09/93.82/92.13 ± 0.53 84.66/93.26/55.05 ± 11.63 85.62/93.26/81.46 ± 5.30 66.97/92.13/54.49 ± 13.08
ARI(%) 80.96/83.04/78.08 ± 1.47 63.83/79.61/29.99 ± 16.47 62.59/79.61/55.52 ± 11.79 38.86/76.84/17.61 ± 17.84

Purity(%) 93.09/93.82/92.13 ± 0.53 85.84/93.25/66.85 ± 8.46 85.62/93.25/81.46 ± 5.30 69.72/92.13/59.55 ± 11.04

Table 5. The experimental results of our proposed method compared to Kmeans, Kmeans++ and
Isodata in terms of the best, worst, mean and standard deviations performance metric values on
Seeds (The best result in bold).

Algorithm CHN Kmeans Kmeans++ Isodata

NMI(%) 26.25/22.44/23.26 ± 1.19 20.67/20.38/20.55 ± 0.15 20.67/20.38/20.58 ± 0.14 25.30/2.69/14.35 ± 8.69
AC(%) 77.78/75.78/76.21 ± 0.62 64.10/63.81/63.99 ± 0.15 64.10/63.81/64.10 ± 0.14 68.37/53.00/60.60 ± 3.94
ARI(%) 30.68/26.39/27.30 ± 1.32 6.48/6.12/6.33 ± 0.18 6.48/6.12/6.37 ± 0.17 12.55/−4.79/1.52 ± 5.41

Purity(%) 77.77/75.78/76.21 ± 0.62 64.10/64.10/64.10 ± 0 64.10/64.10/64.10 ± 0 68.37/64.10/64.52 ± 1.35

Table 6. The experimental results of our proposed method compared to Kmeans, Kmeans++ and
Isodata in terms of the best, worst, mean and standard deviations performance metric values on
Ionosphere (the best result in bold).

Algorithm CHN Kmeans Kmeans++ Isodata

NMI(%) 26.25/22.44/23.26 ± 1.19 20.67/20.38/20.55 ± 0.15 20.67/20.38/20.58 ± 0.14 25.30/2.69/14.35 ± 8.69
AC(%) 77.78/75.78/76.21 ± 0.62 64.10/63.81/63.99 ± 0.15 64.10/63.81/64.10 ± 0.14 68.37/53.00/60.60 ± 3.94
ARI(%) 30.68/26.39/27.30 ± 1.32 6.48/6.12/6.33 ± 0.18 6.48/6.12/6.37 ± 0.17 12.55/−4.79/1.52 ± 5.41

Purity(%) 77.77/75.78/76.21 ± 0.62 64.10/64.10/64.10 ± 0 64.10/64.10/64.10 ± 0 68.37/64.10/64.52 ± 1.35

Table 7. The experimental results of our proposed method compared to Kmeans, Kmeans++ and
Isodata in terms of the best, worst, mean and standard deviations performance metric values on
Seeds (the best result in bold).

Algorithm CHN Kmeans Kmeans++ Isodata

NMI(%) 67.35/71.02/64.90 ± 2.09 65.37/66.32/64.90 ± 0.68 65.75/66.32/64.90 ± 0.73 48.94/68.49/39.94 ± 8.35
AC(%) 89.57/90.95/88.57 ± 0.82 88.91/89.52/88.57 ± 0.45 89.14/89.53/88.57 ± 0.49 71.52/88.57/54.76 ± 10.71
ARI(%) 71.62/75.06/69.19 ± 2.01 69.99/71.47/69.19 ± 1.08 70.56/71.47/69.19 ± 1.18 46.18/69.64/35.33 ± 10.84

Purity(%) 89.57/90.95/88.57 ± 0.82 88.90/89.52/88.57 ± 0.45 89.14/89.52/88.57±0.49 72.90/88.57/62.38 ± 8.90
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Table 8. The experimental results of our proposed method compared to Kmeans, Kmeans++ and
Isodata in terms of the best, worst, mean and standard deviations performance metric values on Iris
(the best result in bold).

Algorithm CHN Kmeans Kmeans++ Isodata

NMI(%) 75.54/75.64/74.65 ± 0.31 74.76/75.14/74.50 ± 0.33 74.82/75.15/74.51 ± 0.33 63.21/78.37/47.81 ± 9.56
AC(%) 90.60/90.67/90 ± 0.21 89.33/89.33/89.33 ± 0 89.33/89.33/89.33 ± 0 76.00/92.00/51.33 ± 11.89
ARI(%) 75.47/75.64/74.20 ± 0.45 72.97/73.02/72.94 ± 0.04 72.98/73.02/72.94 ± 0.04 57.63/78.64/38.43 ± 12.47

Purity(%) 90.67/90.67/90.67 ± 0 89.33/89.33/89.33 ± 0 89.33/92.67/89.33 ± 1.27 77.60/92.67/66.67 ± 8.73

Table 9. The experimental results of our proposed method compared to Kmeans, Kmeans++ and
Isodata in terms of the best, worst, mean and standard deviations performance metric values on
Jaffe_face (The best result in bold).

Algorithm CHN Kmeans Kmeans++ Isodata

NMI(%) 83.41/89.41/74.41 ± 4.45 82.19/88.88/74.16 ± 4.81 80.43/89.38/70.15 ± 5.57 70.38/83.43/50.79 ± 10.57
AC(%) 83.10/91.50/69.50 ± 6.67 76.85/87.00/65.00 ± 7.06 70.75/91.00/54.50 ± 9.58 64.75/81.00/38.00 ± 14.01
ARI(%) 73.83/83.79/58.28 ± 7.43 68.72/82.42/52.98 ± 9.15 65.08/81.52/48.12 ± 9.01 53.48/73.37/24.32 ± 15.67

Purity(%) 83.75/91.50/72.00 ± 5.76 79.85/87.50/73.00 ± 5.23 75.60/91.00/63.50 ± 7.59 69.30/83.50/46.50 ± 11.73

5. Conclusions and Future Work

In this paper, a neural network clustering algorithm is proposed. The clustering is
regarded as a combinatorial optimization problem. The proposed clustering algorithm
model applies a CHN to solve and the Hopfield networks are repositioned repeatedly
upon their local stability until convergence. The experimental results show that our al-
gorithm is obviously superior to other algorithms on four different datasets. According
to Section 4.3 , the experiment of parameter sensitivity can conclude that the λ is set by
experience. Therefore, there is no theory for ensuring λ. In the future work:

• Other neural networks can be used to solve clustering problems.
• We are exploring how to effectively combine Hopfield Neural Network with Swarm

Intelligence methods.
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