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Abstract: For computationally intensive problems, data-driven evolutionary algorithms (DDEAs)
are advantageous for low computational budgets because they build surrogate models based on
historical data to approximate the expensive evaluation. Real-world optimization problems are
highly susceptible to noisy data, but most of the existing DDEAs are developed and tested on ideal
and clean environments; hence, their performance is uncertain in practice. In order to discover how
DDEAs are affected by noisy data, this paper empirically studied the performance of DDEAs in
different noisy environments. To fulfill the research purpose, we implemented four representative
DDEAs and tested them on common benchmark problems with noise simulations in a systematic
manner. Specifically, the simulation of noisy environments considered different levels of noise
intensity and probability. The experimental analysis revealed the association relationships among
noisy environments, benchmark problems and the performance of DDEAs. The analysis showed that
noise will generally cause deterioration of the DDEA’s performance in most cases, but the effects
could vary with different types of problem landscapes and different designs of DDEAs.

Keywords: data-driven optimization; evolutionary computation; surrogate models; noisy environment

MSC: 68W50

1. Introduction

Data-driven evolutionary algorithms (DDEAs) are a superposition of evolutionary
computation, machine learning and data science [1]. With the help of available data, DDEAs
construct surrogate models to predict the fitness values of candidate solutions without
expensive fitness evaluations. A considerable amount of literature has been published on
DDEAs owing to their effectiveness for solving real-world problems [2]. Various DDEAs
have been introduced to tackle the problems of expensive fitness evaluations. However,
noisy data have brought challenges to the real-world optimization of DDEAs because the
performance of DDEAs is greatly affected by noisy data [3,4]. To address this issue, there is
an urgent need to investigate the degree to which DDEAs are affected by different noisy
environments and the reasons for this.

DDEAs can generally be divided into online and offline DDEAs according to whether
new data can be generated during the optimization process [5]. Both online and offline
DDEAs are exposed to the challenges of low quality data. The available data might be
incomplete [6], imbalanced [7–9] and noisy in quite common cases [10]. In this work, we
focused on noisy data-driven optimization problems. Apparently, the quality of surrogate
models would decline if they were trained on noisy datasets instead of the ideal clean
datasets used in previous studies. Subsequently, the increased approximation error of
solution evaluation would decrease the search efficacy of the EA population. Although this
conclusion might be obvious, we have no explicit knowledge on under which circumstances
and/or the degree to which noisy data affect the performance of DDEAs yet. In the
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literature, there are plenty of research efforts paid to analyze the traditional real evaluation-
based evolutionary algorithms (denoted as REEAs in this paper) in noisy environments
empirically [11,12] or theoretically [13–15]. However, because of the difference between
REEAs and DDEAs, those observations/conclusions cannot be directly transferred from
REEAs to DDEAs.

As DDEAs show their superiority to REEAs when encountering real-world problems
with expensive or implicit fitness evaluations, this paper is dedicated to our performance
of extensive experiments to investigate the performance of DDEAs in noisy environments.
Inspired by the progress in simulating noisy environments [16–18], we proposed to add
noise to the test environments of DDEAs by making the following assumption: the exact
fitness value f (x) can only be obtained in a certain probability Pn, whereas in the other cases,
the obtained evaluation value is f (x) + ε, which contains a noise component. Meanwhile,
the magnitude of the noisy term ε determines the noise intensity, which has different levels
according to a signal-to-noise ratio (SNR) parameter. In addition to the simulation of the
noisy environment, there remained two issues for carrying out the empirical analysis. The
first issue surrounded which algorithms to test, and the second involved the selection
of benchmark problems. After carefully surveying the well-known and state-of-the-art
DDEA variants, we chose four representative algorithms with different characteristics: an
offline data-driven evolutionary algorithm assisted by selective ensembles (DDEA-SE) [19],
a social learning particle swarm optimization algorithm assisted by a multi-objective infill
criterion-driven Gaussian process (MGP-SLPSO) [20], a surrogate-assisted particle swarm
algorithm with the help of committee-based active learning (CAL-SAPSO) [21] and a
Gaussian process-assisted evolutionary algorithm (GPEME) [22]. The above one offline
DDEA and three online DDEAs are discussed in Sections 2.1–2.4 in detail. On the other
hand, five benchmark problems, which are frequently adopted for testing the performance
of DDEAs [19,20,23], are chosen for testing.

Therefore, in this paper, experiments are carried out to test the four representative
DDEAs on the five benchmark problems in noisy environments within different noisy
levels. Our major findings are threefold. (1) The performance of DDEAs is not very altered
if the noise level is low, but with increases in the noise level, the performance of DDEAs
declines seriously. (2) For different benchmark problems, the noise has different effects. For
example, if the problem contains rugged prominent optimum regions, the addition of noise
reduces the search efficiency of the algorithms significantly. Differently, the problems in
which the neighborhoods of the optima are relatively flat have a larger level of resistance to
the noise, and, sometimes, they may even receive benefits from the noise. (3) Concerning
different DDEAs tested in this study, the offline DDEA has advantages over the online
DDEAs in noisy data-driven optimization problems.

The remainder of this paper is as follows: Section 2 introduces the main concepts of
DDEAs and a brief introduction of the four DDEAs related to the experiment. In Section 3,
the simulation of the noisy environment is fully explained, including the basic definitions,
the noise parameter settings, and the benchmark problems. The experimental processing
and analysis are detailed in Section 4, which discusses the performance of DDEAs in the
noisy environment from three perspectives. Section 5 summarizes the influence of noisy
environments on DDEAs and finally proposes promising future directions of DDEAs in
noisy environments.

2. Data-Driven Evolutionary Algorithms (DDEAs)

The obstacle faced by traditional EAs to solving real-world optimization problems
is in the need for a large number of iterations to search in the problem space. During the
search process, traditional REEAs need to evaluate the fitness value of generated candidate
solutions by the real evaluation model. However, in many realistic optimization problems,
the evaluation of the fitness value can be expensive or time-consuming [24], which limits
the search ability of traditional REEAs. To solve this problem, DDEAs are equipped with
surrogate models built from evaluated data to replace part or all of the evaluations during
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the search. In addition to mitigating the expensive optimization problems, surrogate
models can be helpful for dynamic optimization problems, such as the robust optimization-
over-time method [25]. The main idea of surrogate models is to simulate the relationship
between decision variables and objective variables based on historical data. Using historical
data, some common surrogate models such as Kriging model [26,27], artificial neural
network [28–30], radial basis function network [31–33] and other machine learning models
can be trained by the corresponding training method and used for predicting the fitness
value of the candidate solutions.

In order to predict the fitness value of the candidate solutions generated during
the optimization, DDEAs use historical data to construct surrogate models and fit the
mapping relationship between the solution space and the fitness value space. The algorithm
framework of DDEAs is similar to that of traditional EAs. At the beginning, the parent
population is initialized randomly. Afterwards, in each iteration of DDEAs, a series
of evolutionary operations, such as crossover and mutation, are performed on parent
individuals to generate offspring. To evaluate the fitness of the offspring individuals,
DDEAs use the surrogate model to approximate the real value. According to the predicted
fitness value of the current parent and offspring individuals, the parent individuals of the
next generation are selected.

DDEAs are divided into two major types, online DDEAs and offline DDEAs, according
to whether the certain number of expensive real fitness functions are allowed to be used
during the optimization process [5]. Online DDEAs allow for the expensive and accurate
evaluation of true fitness values. However, the number of expensive fitness evaluations
is limited; thus, online DDEAs need a selection step to choose the promising candidate
solutions for the expensive real fitness evaluation. Offline DDEAs can only evaluate the
fitness of the candidate solutions according to the surrogate model constructed from the
historical data. Because offline DDEAs are not allowed to use the real fitness function
during the optimization process, more attention should be placed on the performance of
the surrogate model. According to [1], we carefully selected four typical DDEAs for our
research. The four algorithms mentioned below cannot represent the best algorithms among
the current DDEAs, but they have different characteristics. We chose these four algorithms
to investigate the performance of DDEAs in noisy environments and the influence of noisy
environments on these algorithms.

2.1. DDEA-SE

DDEA-SE [34,35], by combining methods of bagging and model selection strategies,
is a representative offline data-driven EA with excellent efficiency. Since no new data are
available to update the model during optimization, DDEA-SE builds large numbers of
surrogates based on data resampled from historical data by bagging and then adaptively
selects some of the surrogates to form the ensemble learner. More specifically, DDEA-
SE uses radial basis function networks as the surrogate model. Before the optimization,
DDEA-SE trains T surrogate models based on the historical data. In each iteration, the best
individual estimated by all the base models is used to sort the base models. The sorted
base models are divided into Q groups, and then one model from each group is selected
randomly to ensemble the final surrogate model to evaluate the population. To achieve
sufficiently good approximation accuracy with relatively low computational costs, T is
set to 2000 and Q is set to 100, which is recommended by the original reference. During
the optimization, DDEA-SE uses a canonical evolutionary algorithm as optimizer, which
carries out polynomial mutation, tournament selection and simulated binary crossover.

2.2. MGP-SLPSO

MGP-SLPSO [20] is an online DDEA aimed at high-dimensional problems. It proposes
multi-objective infill criterion that takes the performance and uncertainty of the candidate
solutions as the reference to choose the most valuable solution to be evaluated by the real
fitness function. The optimization algorithm used in the multi-objective infill criterion is the
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NSGA-II [36]. Meanwhile, MGP-SLPSO uses the Gaussian process as the surrogate model.
Different from offline DDEAs, MGP-SLPSO applies part of the computational budget to
the real evaluation, which means that the historical data available for training surrogates
is less than that of offline DDEAs. During the optimization, MGP-SLPSO uses the social
learning particle swarm optimization algorithm as the optimizer [37].

2.3. CAL-SAPSO

CAL-SAPSO [21] is an online data-driven evolutionary algorithm based on committee-
based active learning. Committee-based active learning involves a committee of models
that vote on the candidate solutions. The candidate solution with the largest disagreement
among the models is evaluated by the real fitness function. Before the optimization, Latin
hypercube sampling is applied to initialize the historical data [38]. Therefore, CAL-SAPSO
applies part of the computational budget to the initialization of the data. When the budget
is exhausted, the optimization is completed. During the optimization, a variant PSO is
employed as the optimizer of CAL-SAPSO [39].

2.4. GPEME

GPEME [22] represents the Gaussian process surrogate model-assisted evolutionary
algorithm for medium-scale, computationally expensive optimization problems. Compared
with the DDEAs above, GPEME is the simplest algorithm. In terms of surrogate model,
GPEME uses a single Kriging, while DDEA-SE and CAL-SAPSO use several models to
improve the performance of the surrogate model. In terms of the model management
strategy for updating surrogate models, GPEME chooses the individuals according to a
simple infill criterion, while MGP-SLPSO selects individuals by using a multi-objective
infill criterion, which considers the fitness and the uncertainty as two separate objectives,
and CAL-SAPSO picks the individuals by using a committee-based strategy which can
represent the uncertainty. Using the Gaussian process as the surrogate model to predict the
solutions, GPEME chooses the most promising candidate solution according to the lower
confidence bound of the solutions [40]. During the optimization, GPEME uses a differential
evolutionary algorithm as the optimizer [41].

3. Noisy Environment Simulation (NES)

In this section, we introduce details regarding NES, including the preliminaries and
basic definitions of NES, the noise parameter settings of NES and the benchmark problems
used in NES.

3.1. Preliminaries and Basic Definitions

Noise can be found everywhere during the stage of data storage and processing,
making it difficult to avoid [42,43]. Especially in the era of big data, it is difficult for us
to guarantee the quality of data in order to achieve a realistic optimization problem. In
order to simulate the noisy environment of the real optimization problem, the current
noise simulation methods mainly include two ways, the Cauchy noise simulation and
the Gaussian noise simulation [44–46]. Since no obvious difference in the performance of
evolutionary strategy has been observed in the presence of Cauchy noise and Gaussian
noise [47], the noisy environments in this paper are simulated by the Gaussian noise.

The approach to simulating the noisy environment is to add noise terms into the
fitness function. Goh and Tan [48] simulate the noise by adding a Gaussian noise term
into the fitness function with a mean value of zero and a variance of the maximum of
the fitness value. However, it can occur that using this approximation method will cause
some problems in the simulated noisy environment. For example, almost all the data
obtained from the modified fitness function are affected by the noise. Meanwhile, the
intensity of noise is determined by the maximum value of the fitness value, rather than the
overall magnitude of the fitness value or the signal strength. According to the experience,
noisy data appear with probability, and the intensity of noise is measured based on signal
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strength. Therefore, in this study, the NES is controlled by two parameters: the probability
parameter Pn to control the occurrence probability of noise and the intensity parameter
SNR to control the signal-to-noise ratio.

In each instance of evaluating a solution x in the NES, its fitness is

f (x) =

{
f (x) + ε, i f random(0, 1) < Pn

f (x), otherwise
, ε ∼ normal

(
0, σ2

)
. (1)

where Pn represents the probability of adding noise to the exact fitness function, and ε is
the noise component following the Gaussian distribution with a mean of zero and variance
of σ2. The value of σ2 denotes the noise intensity, which is calculated based on Equation (2)
to realize different signal-to-noise ratios:

σ2 = 10SNR/10 ∑N
i=1

f (xi)
2

N
. (2)

According to Equation (1), we can find that the simulated noisy environment is
determined by a binary tuple (SNR, Pn). Therefore, we can simulate different levels of the
noisy environment by choosing reasonable parameters.

3.2. Noise Parameter Settings

Overlarge noise probability and intensity will make the optimization problem become
the problem dominated by noise that is unreasonable and meaningless. As too strong
noise will not conform to the reality and too weak noise will be equated with the non-noisy
environment, we set Pn ∈ {0, 0.1, 0.2, 0.3} and SNR ∈ {10, 20, 30, 40, ∞}. Shown in Table 1,
12 noise levels can be obtained by combining the parameters Pn and SNR. It should be
noted that it is difficult for us to judge which parameter between noise probability and noise
intensity has a greater impact on the noisy environment. Thus, we cannot compare which
is noisier between the one environment (Pn = 0.1, SNR = 10) and the other environment
(Pn = 0.2, SNR = 20). We can only make the comparison by controlling one parameter.
For example, under the same noise probability, the lower the noise intensity, i.e., the greater
SNR, the noisier the noisy environment is. Under the same noise intensity, the higher the
noise probability, the noisier the noisy environment is. In addition, if noise probability is
larger and noise intensity is smaller, the noisy environment will become noisier. We simulate
the noisy environment based on the two-dimensional ellipsoid benchmark problem. The
simulated images are shown in Figure 1. According to Figure 1, it can be found that after
adding noise, the degree of disturbance is intuitively accordant with the real noise.

Table 1. Noisy environment settings.

Symbol NE0 NE1 NE2 NE3 NE4 NE5 NE6 NE7 NE8 NE9 NE10 NE11 NE12

SNR ∞ 40 40 40 30 30 30 20 20 20 10 10 10
Pn 0 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
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3.3. Benchmark Problems

Because an EA essentially is a heuristic search algorithm based on population iteration,
it is difficult to prove the efficacy and performance of the algorithm through mathematical
deduction. Therefore, the efficacy and performance of the EA can only be verified through
a series of benchmark problems [49]. However, one risk of using benchmark problems
to evaluate EAs is that the conclusions drawn from the experiment may depend on the
benchmark problems being tested. To reduce this risk, the suite of benchmark problems
should be both diverse and challenging. On the other hand, different types of benchmark
problems have different points of concern on EAs. Using a variety of benchmark problems
is also conducive to analyzing the influence of the noisy environment on DDEAs. Consid-
ering the diversity and difficulty of benchmark problems, we choose the following five
benchmark problems.

1. Ellipsoid

F1(x) = ∑D
i=1 i · x2

i . (3)

2. Rosenbrock

F2(x) = ∑D−1
i=1

(
100
(

x2
i − xi+1

)2
+ (xi+1 − 1)2

)
. (4)

3. Ackley

F3(x) = −20e−0.2
√

1
D ∑D

i=1 x2
i − e

1
D ∑D

i=1 cos (2πxi) + 20 + e. (5)

4. Griewank

F4(x) = ∑D
i=1

x2
i

4000
−∏D

i=1 cos
(

xi√
i

)
+ 1. (6)

5. Rastrigin

F5(x) = ∑D
i=1

(
x2

i − 10 cos(2πxi) + 10
)

. (7)
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The above five benchmark problems may not be the most complex problems, but they
all have their own characteristics, which will be fully discussed in Section 4.4. Considering
the adaptability of the selected algorithms to the dimension of the optimization problems,
the dimensions of the problems are set at 10 and 30, i.e., D ∈ {10, 30}.

4. Experiments and Analysis

In this section, we display the experimental settings and results and then analyze the
experimental results in order to obtain some research conclusions. The influence of NES on
DDEAs can be analyzed from three perspectives. The first is a performance comparison
between DDEAs in an ideal environment (IES) and those in an NES with different levels
of noise in order to find out how the noise with different levels affects the performance of
DDEAs on optimization problems. The second aspect is the performance of DDEAs in IES
and NES for different types of benchmark problems to find out what kind of optimization
problems are slightly or significantly affected by the noise. In the third, for different DDEAs,
the influence degree of NES on each algorithm is discussed to find out what kind of DDEAs
are more resistant to the noise.

4.1. Experimental Settings

Most of the parameters of the DDEAs we chose are set according to their corresponding
reference, except for the computational budget, or function evaluations. Online DDEAs
collect new data during the optimization process, which may lead to unfair comparison
between online DDEAs and offline DDEAs. For the sake of fairness, we uniformly set the
computational budget 11×D, which is a widely used value in the research of DDEAs to test
the performance of DDEAs [23,50–52]. It is evident that this is a reasonable setting because
DDEAs are designed to be applied in environments with limited computational budgets.
From the perspective of computational budget allocation, offline DDEAs allocate all the
computational budget to generating the historical data, while online DDEAs allocate part
or even all the computational budget to the evaluation of promising candidate solutions
during the optimization process. For fairness, no special technique like the one used in [53]
was used for infeasible solutions. For GPEME, infeasible solutions are replaced by the new
solutions randomly generated in the domain. For other algorithms, the decision values
of infeasible solutions are adjusted to the corresponding boundary value when they cross
the border.

We tested four selected algorithms on five benchmark problems under 12 levels of
NES. Because the fitness function used in the optimization process is noisy, we needed to
evaluate the non-noisy fitness value of the optimal solution as the experimental results of
DDEAs. In addition, the optimization results of DDEAs on five benchmark functions in the
IES were considered as the results of the blank experiments. Each experiment was repeated
30 times, and the mean and standard deviation of the fitness value were recorded.

We designed the relative deterioration percent (RDP) index to measure the degree of
difference between the final solution obtained by the same algorithm in NES ( f noisy) and
that in IES ( f ideal). Its calculation formula is shown in Equation (8).

RDP =
f noisy − f ideal

f ideal × 100%. (8)

4.2. Experimental Results

Detailed results are shown in Appendix A. Tables A1–A10 show the real fitness value
and the RDP value of the final solution obtained by the four test algorithms, respectively.
We utilized the Wilcoxon rank-sum test to determine whether the results obtained in NES
were significantly different from the results obtained in IES. The hypothesis was that the
overall distributions of the results obtained in IES and in NES of a certain noisy level would
be the same. If the rank-sum test result was smaller than the significant level 0.05, the
hypothesis would be rejected. Meanwhile, the RDP of results that significantly differ from
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the results obtained in IES are shown in bold in Tables A1–A10. When comparing the
optimization results of four algorithms in NES, the Friedman’s test with a significance level
of 0.05 was adopted. The Friedman’s test result p value is shown in Tables A1–A10.

4.3. Effect of Noise Levels

As shown in Figure 2, the performance of DDEAs was not very sensitive when the
environment was posed with low-level noises. This owes much to the liberal search behav-
iors of the population-based EAs, which are not as greedy/directional as the traditional
gradient-based or single solution-based optimizers. However, with the rising noise levels,
the results of the tested DDEAs showed deterioration. The deterioration is mainly reflected
in two aspects. One is the mean value of the optimization results; the other is the standard
deviation. For detail analysis, we take the experiment of DDEA-SE being tested on the
30-dimensional Ackley problem as the example (as other results in the Appendix A also
show similar conclusions). The experimental results are shown in Table 2, and the conver-
gence curve is shown in Figure 3. With the increase in the noise intensity (decreasing SNR)
and increase in the noise probability Pn, the convergence speed of DDEA-SE decreased
obviously. Meanwhile, the optimization results of DDEA-SE became worse. Owing to
the disturbance of noise, DDEA-SE could only obtain a shifted optimum for the biased
problem with noise influence, rather than the optimum of the original problem. Moreover,
it can be seen in Table 2 that the larger the noise is, the larger the standard deviation of the
optimization results will be, indicating that the convergence ability of DDEA-SE was also
significantly affected.
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Table 2. Experimental results of DDEA-SE on 30-dimensional Ackley problems.

SNR Pn Mean std RDP

NE12

10

0.3 1.69 × 101 1.77 253.5%

NE11 0.2 1.68 × 101 1.97 251.9%

NE10 0.1 1.61 × 101 2.30 237.7%

NE9

20

0.3 1.39 × 101 1.95 191.6%

NE8 0.2 1.33 × 101 1.94 178.5%

NE7 0.1 1.18 × 101 1.95 146.6%

NE6

30

0.3 8.66 1.15 81.1%

NE5 0.2 7.99 1.13 67.1%

NE4 0.1 6.82 9.83 × 10−1 42.7%
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Table 2. Cont.

SNR Pn Mean std RDP

NE3

40

0.3 5.52 5.87 × 10−1 15.4%

NE2 0.2 5.29 5.10 × 10−1 10.6%

NE1 0.1 5.06 6.01 × 10−1 5.8%

NE0 ∞ 0 4.78 3.58 × 10−1 0

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 21 
 

 

𝑁𝐸ଶ 0.2 5.29 5.10 × 10−1 10.6% 𝑁𝐸ଵ 0.1 5.06 6.01 × 10−1 5.8% 𝑁𝐸଴ ∞ 0 4.78 3.58 × 10−1 0 

 
Figure 3. Convergence curves of DDEA-SE on 30-dimensional Ackley problem with different noise 
levels. 

The influence of the noise began with the disturbance of the historical data. The noisy 
historical data affected the mapping relationship between the variables space and the fit-
ness space. Based on the biased mapping relationship, the accuracy and performance of 
the surrogate model were affected, with the consequence of increasing prediction devia-
tion and decreasing stability. Offline DDEAs optimized the problems directly based on 
the biased surrogate model that had poor performance. Consequently, the obtained opti-
mum was much worse than the optimum obtained in IES, as the optimum obtained in 
NES was the optimal solution of the biased benchmark problems instead of the original 
benchmark problems. Furthermore, online DDEAs used the biased surrogate model to 
search the candidate solution with the most value of being evaluated by the real fitness 
function. However, the search of the candidate solution could be misled; thus, the search 
results would be meaningless for the original problems. To make the matter worse, the 
evaluation of the candidate solution could be disturbed by the noise, leading to more se-
rious deviation of the search direction. 

4.4. Effect on Benchmark Problems 
The landscape of the benchmark functions is shown in Figure 4 for the analysis. When 

analyzing the effect of noise level on the performance of the algorithm, some special phe-
nomena can be found. When we tested different benchmark functions, the impact of the 
NES on the algorithm was significantly different. This difference was reflected in the 𝑅𝐷𝑃 
value of the optimization results, as well as in the number of noise levels whose optimi-
zation results significantly differed from the results obtained in the IES. Taking DDEA-SE 
as an example, the related results are shown as Table 3. 
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The influence of the noise began with the disturbance of the historical data. The
noisy historical data affected the mapping relationship between the variables space and the
fitness space. Based on the biased mapping relationship, the accuracy and performance of
the surrogate model were affected, with the consequence of increasing prediction deviation
and decreasing stability. Offline DDEAs optimized the problems directly based on the
biased surrogate model that had poor performance. Consequently, the obtained optimum
was much worse than the optimum obtained in IES, as the optimum obtained in NES was
the optimal solution of the biased benchmark problems instead of the original benchmark
problems. Furthermore, online DDEAs used the biased surrogate model to search the
candidate solution with the most value of being evaluated by the real fitness function.
However, the search of the candidate solution could be misled; thus, the search results
would be meaningless for the original problems. To make the matter worse, the evaluation
of the candidate solution could be disturbed by the noise, leading to more serious deviation
of the search direction.

4.4. Effect on Benchmark Problems

The landscape of the benchmark functions is shown in Figure 4 for the analysis. When
analyzing the effect of noise level on the performance of the algorithm, some special
phenomena can be found. When we tested different benchmark functions, the impact of
the NES on the algorithm was significantly different. This difference was reflected in the
RDP value of the optimization results, as well as in the number of noise levels whose
optimization results significantly differed from the results obtained in the IES. Taking
DDEA-SE as an example, the related results are shown as Table 3.
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4.4.1. Ellipsoid

As shown in Table 3, for this benchmark, the algorithms deteriorated obviously in the
NES of most noise levels. Especially in the high-dimensional case, the relative deterioration
percentage was much higher than that in low-dimensional case.

Compared with other benchmark problems, the ellipsoid problem, as a unimodal
function, is a very simple benchmark problem, characterized by no local optimal solution
and an independent relationship among multi-dimensional variables. However, in solving
the simplest benchmark problem, the interference of noise is inevitable. We can compare
the landscape changes of the benchmark problem before and after adding noise. After
adding noise, the originally very regular unimodal optimization problem turned into a
multi-modal irregular function, which challenges the searching of EAs.

Table 3. Average RDP of DDEA-SE on different benchmark problems in noisy environment and the
number of noise levels whose optimization results are better/similar/worse than the results obtained
in ideal environment.

Benchmark D
DDEA-SE

RDP (+/−/≈)

Ellipsoid
10 35.28% (0/9/3)

30 57.69% (0/7/5)

Rosenbrock
10 −9.79% (0/12/0)

30 2.10% (0/10/2)

Ackley
10 80.27% (0/4/8)

30 123.53% (0/2/10)

Griewank
10 11.29% (0/8/4)

30 49.60% (0/6/6)

Rastrigin
10 2.18% (0/9/3)

30 44.70% (0/6/6)
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4.4.2. Rosenbrock

As shown in Table 3, the algorithm was less affected by noise in the low-dimensional
case of most noise levels, which was very different from the ellipsoid problem. In the case
of high dimension, the number of cases of optimization results that were affected by noise
slightly increased.

In the Rosenbrock problem, the neighborhood of the global optimum is a very flat
region. Hence, it is difficult for the DDEAs to accurately search the location of the global
optimal solution, even though no noise is posed to the environment. However, the bright
side is that, since the fitness value of the solutions near to the global optimum is very
similar to the fitness value of the global optimum, if the final optimization result is located
within the neighborhood domain, a good optimization result can be obtained. The addition
of noise made the neighborhood domain of the global optimal solution less flat and brought
a bias to the search of the evolutionary algorithm. In some noise levels of the lower
dimensions cases, the bias made the final optimization results in the noisy environment
even better compared with those in the non-noisy environment. In the case of higher
dimensions, the phenomenon of performance enhancement decreased. This is because the
Rosenbrock problem becomes more complex in higher dimensions, and a small noise can
significantly change the search direction.

4.4.3. Ackley

As shown in Table 3, in the low-dimensional case, the algorithm performance was
degraded by the noise, and the results of many noise levels were significantly different
from those in IES. While in the high-dimensional case, the results of almost all the noise
levels were significantly different from those in IES.

In contrast to the Rosenbrock problem, the Ackley problem is a function that a global
optimal solution located in a steep valley. There were multiple local optimal solutions in
the neighborhood field of the global optimal solution. There was a large gap between the
fitness value of these local optimal solutions and the fitness of the global optimal solution.
The interference of noise made the position of the searching results far away from the
global optimal solution, which led to the instability and deterioration of the optimization
algorithms. Even in the noisy environment with a very low noise level, the global optimal
position only had a small deviation, but the response of the fitness value changed greatly.

4.4.4. Griewank

As shown in Table 3, the experimental results for the Griewank problem were very
similar to the results of the ellipsoid problem. We found that the Griewank problem was
a multi-peak optimization problem, but the heights of the peaks were relatively small, so
the Griewank function and the Ellipsoid function were very similar roughly. Adding noise
would lead to the elimination of the particularity of the benchmark problem; hence, it
reduced the performance of DDEAs to a certain extent.

4.4.5. Rastrigin

As shown in Table 3, in the case of low dimension, there was no significant differ-
ence between the results of the Rastrigin problem in NES and the results in IES. At high
dimension, the number of cases significantly affected by the noise increased.

The Rastrigin problem is a relatively complex problem. We know from the landscape
of the problem that this problem has multiple peaks, and the height of the peaks is large.
Because of the complexity of Rastrigin, the results in IES were not ideal, and the effect of
noise in NES was slight.

4.4.6. Discussion

Generally, the addition of the noise changed the landscape of the optimization prob-
lems. Using the noisy data, DDEAs could only build biased surrogate models to replace the
real fitness function. Guided by biased surrogate models, the searching results obtained by
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the DDEAs were the optimization results of the biased optimization problems. However,
the quality of the optimization solution should be evaluated by the unbiased real fitness
function. From the above analysis of each benchmark problem, we can generalize the
relationship between the degree of noise influence and the characteristics of the benchmark
problem as follows.

(1) If the landscape of the benchmark problems shows that the neighborhood of the
global optimum is rugged, such as in the ellipsoid problem, the Griewank problem and
the Ackley problem, the noise will have serious influences on the performance of the
algorithms. This is because the original non-noisy environments of these benchmarks
show strong orientation information for the EA population to search. The addition of
noise blurs the orientation information and hence reduces the search efficiency of the EA
population significantly.

(2) If the original landscape is very complex, containing various types of peaks, such as
the Rastrigin problem, the performance degeneration by posing noise is not very prominent.
The reason is twofold. On the one hand, this type of problem itself is so challenging to
optimize that, even for the clean environment, the accuracy of EAs may not be very high.
On the other hand, for the multimodal landscapes, there is a chance that the existence
of noise diversifies the search of population and hence benefits the exploration ability
of algorithms.

(3) If the problem contains a relatively flat landscape, such as the Rosenbrock problem,
the noise will have the smallest influence on the performance of the DDEAs. Different
from the other cases, the noise may pose additional orientation information to the flat
landscape, which provides extra guidance to the EA population and hence improves the
search efficiency sometimes.

4.5. Effect on Algorithms

In this section, we analyze the effect of the noise on the four DDEAs. Through
the characteristics and the optimization results of the four DDEAs in IES and NES, we
analyze the degree to which and the reasons that the performances of the algorithms were
affected. The fitness of results in non-noisy environments and the rank of DDEAs in noisy
environments are shown in Table 4.

Table 4. Average fitness of DDEAs on different benchmark problems in non-noisy environments and
the rank of experimental results in noisy environments. The best results are in bold.

Benchmark D
DDEA-SE MGP-SLPSO CAL-SAPSO GPEME

Non-Noisy Rank Non-Noisy Rank Non-Noisy Rank Non-Noisy Rank

Ellipsoid
10 9.24 × 10−1 ± 5.63 × 10−1 1.00 1.45 × 101 ± 4.57 3.17 8.03 × 10−2 ± 1.40 × 10−1 3.67 3.48 × 101 ± 1.87 × 101 2.17

30 4.03 ± 1.35 1.25 2.38 × 10−3 ± 1.74 × 10−3 2.25 2.76 ± 2.20 2.50 1.05 × 103 ± 3.12 × 102 4.00

Rosenbrock
10 2.85 × 101 ± 7.74 1.00 2.12 × 102 ± 9.47 × 101 3.42 1.85 × 101 ± 7.25 2.00 1.56 × 102 ± 8.00 × 101 3.58

30 5.70 × 101 ± 4.64 1.00 1.21 × 102 ± 2.21 × 101 2.92 5.29 × 101 ± 8.96 2.08 1.57 × 103 ± 4.29 × 102 4.00

Ackley
10 5.62 ± 8.75 × 10−1 1.00 1.59 × 101 ± 1.39 2.42 1.88 × 101 ± 1.26 4.00 1.56 × 101 ± 3.09 2.58

30 4.78 ± 3.58 × 10−1 1.00 9.93 ± 2.51 2.00 1.46 × 101 ± 2.38 3.75 1.85 × 101 ± 1.07 3.25

Griewank
10 1.26 ± 1.39 × 10−1 1.00 1.22 × 101 ± 4.28 3.08 1.29 ± 3.04 × 10−1 2.00 2.60 × 101 ± 1.57 × 101 3.92

30 1.23 ± 9.43 × 10−2 1.00 1.23 × 10−1 ± 4.84 × 10−2 2.50 1.43 ± 1.21 × 10−1 2.50 2.41 × 102 ± 6.24 × 101 4.00

Rastrigin
10 5.71 × 101 ± 1.96 × 101 1.00 9.01 × 101 ± 1.15 × 101 3.17 7.24 × 101 ± 3.15 × 101 3.67 6.20 × 101 ± 1.41 × 101 2.17

30 1.10 × 102 ± 2.90 × 101 1.33 2.19 × 102 ± 3.00 × 101 2.75 3.72 × 101 ± 1.85 × 101 2.00 2.64 × 102 ± 3.82 × 101 3.92

4.5.1. DDEA-SE

According to Table 4, DDEA-SE, as an offline data-driven evolutionary algorithm,
achieved good results in both IES and NES. Especially in NES, compared with other DDEAs,
DDEA-SE showed better resistance to the noise. On the one hand, DDEA-SE used all the
computational cost for the initialization of the data, and the data points affected by noise
were distributed uniformly. Therefore, from the aspect of the landscape of the surrogate
model, the constructed surrogate model based on these data was slightly affected. On the
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other hand, the idea of DDEA-SE is to approximate the benchmark problem at one time and
then find the global optimum of the approximation or the surrogate model. Therefore, the
part affected by the noise is only the building part of the surrogate model. Moreover, the
surrogate model does not need to be completely correct. The most important key involves
whether the position of the global optimal solution is shifted too much compared to the
original benchmark problem. Note that DDEA-SE uses the model management strategy
of selective ensemble to increase the utilization rate of data and improve the accuracy of
the model.

4.5.2. MGP-SLPSO

As an online DDEA, MGP-SLPSO is designed for higher dimensional optimization
problems. In the optimization of the 30-dimensional benchmark problem in IES, MGP-
SLPSO was better at dealing with relatively simple benchmark problems such as the
ellipsoid and Griewank problems, while its performance of other benchmark problems
was not so good in terms of results. It can be seen in Figure 5, the convergence curve of
MGP-SLPSO on the 30-dimensional Ackley problems, that the poor performance of the
relatively complex benchmark problems was caused by the insufficient computational
cost. Although MGP-SLPSO generally had a strong ability to deal with the optimization
problem in IES, it was difficult to maintain that performance in NES. On the one hand,
MGP-SLSPO only uses part of the computational cost for the initialization, which leads to
low approximation accuracy for the benchmark problem and affects the convergence speed.
On the other hand, the noise might be introduced when using the real fitness function to
evaluate the candidate solutions. The distribution of these candidate solutions affected by
the noise was relatively concentrated near the optimum. Therefore, the performance of the
MGP-SLPSO was heavily affected by the noise because of the wrong guidance.
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4.5.3. CAL-SAPSO

CAL-SAPSO is similar to MGP-SLPSO. The difference is that CAL-SAPSO uses three
different kinds of surrogate models as a mixed surrogate model, which is suitable for
optimization problems of medium and low dimensions. The results of CAL-SAPSO were
also similar to the results of MGP-SLPSO. In IES, CAL-SAPSO also suffered from the lack
of the computational cost and thus had relatively poor performance. In NES, the degree
that CAL-SAPSO was affected was similar to MGP-SLPSO.
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4.5.4. GPEME

GPEME is a relatively simple online DDEA compared to the other three algorithms.
Correspondingly, the optimization results obtained by GPEME in IES were not good, espe-
cially in the case of high dimensions. In NES, the performance of GPEME was also relatively
poor. However, the results of GPEME on the 10-dimensional ellipsoid and Rastrigin prob-
lems are better than other two online DDEAs, indicating that simple algorithms could have
good performance when dealing with low-dimensional simple optimization problems.

4.5.5. Discussion

The effect of the noise on DDEAs mainly appeared in three ways. The first way was
that the poor quality of the historical data led to the poor quality of the surrogate model.
The noisy data interfered with the construction of the surrogate model and led to the
decrease in the quality of the surrogate model. The second way was that the poor quality
of the surrogate model led to the deviation of the selected global optimum or the candidate
solution. Under the guidance of the surrogate model with bias, the real fitness of final
or temporary results obtained could be not as good as the predicted fitness showed. The
wrong selection of the candidate solution caused the waste of the computational budget
or even caused the wrong searching direction. The last way was that, when evaluating
the solution selected by the algorithm with predicted fitness, the interference of the noise
caused the deviation of the real fitness of the solution, misleading the searching direction
of the algorithm. According to the above experimental results and analysis, we can obtain
some inferences as follows.

(1) The effect of the noise on online DDEAs is greater than the effect on offline DDEAs
because offline DDEAs are only affected in the first way and the second way regarding the
deviation of the global optimum, while online DDEAs are affected in all aspects.

(2) Building the surrogates ensemble and the selective strategy of surrogates are useful
for reducing the influence of the noise.

5. Conclusions

This paper presents a comprehensive investigation of DDEAs in noisy environments
which shows the impact of four representative DDEAs in NES. The main motivations
of the experimental investigation were as follows: (1) The quality of data obtained in
the real optimization problems is difficult to guarantee; (2) although it is known that the
optimization performance of DDEAs will be affected in noisy environments, the degree of
and reason for this influence have not been systematically analyzed yet.

Some significant findings to emerge from this investigation can be stated as follows:

1. In this investigation, a simulation scheme for noisy data-driven optimization problems
was proposed. The NES with various noise levels was constructed by controlling the
noise intensity SNR and the noise probability Pn.

2. Through comparing results of DDEAs in NES and in IES, we found that, because of
noise, the results of different DDEAs in NES were worse than the results in IES in
most cases. Generally, the higher the noise levels in NES, the worse the performances
were that the algorithms exhibited. However, there were also several special cases in
which, by posing low levels of noises, the results of algorithms in NES were better
than those in IES. For these cases, the existence of noise did not shift the position
of optimum, meanwhile it diversified the search of the DDEA population to avoid
premature convergence.

3. By comparing the influence degree of noise on different benchmark problems, the
relationships between the degree of noise influence and the characteristics of the
benchmark problems were found. (1) During the optimization of the benchmark
problem in which the neighborhood of the global optimum was rugged, the noise had
serious influence on the performance of the DDEAs. (2) When the original landscape
of the problem was very complex with various types of peaks, the performance
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degeneration by posing noise was not as prominent. (3) If the problem contained a
relatively flat landscape, the noise had the smallest influence on the DDEAs.

4. According to the optimization results of different DDEAs, it was found that the offline
DDEAs had stronger resistance to noise than online DDEAs. Meanwhile, the ensemble
and the selection strategies of surrogates were helpful in NES.

5. The effects of the noise on DDEAs occurred as follows: (1) For the online DDEAs, noise
affected the surrogates and then affected the selection of candidate solutions which
would then be evaluated by the real fitness function. Meanwhile, the noise could
be introduced during the evaluation of promising solutions, which would further
affect the search of the algorithms. (2) For the offline DDEA, the noise appeared in the
historical data and then affected the performance of the surrogate model, resulting in
the shift of the global optimum.

This study shows the influences on DDEAs in noisy environments and the reasons for
these influences. Based on the above observation, we found that when solving real-world
optimization problems in the noisy environment, if data-driven evolutionary algorithms
are used, offline DDEAs are more preferred than online DDEAs, and for online DDEAs, it is
recommendable to assign as large a computational budget as possible to acquire historical
data and train the surrogate.

This study indicates that there are several promising directions for future research:

1. So far, the existing DDEAs are all developed and tested for the ideal environment. In
the future, it is appealing to study the data-driven optimization in noisy environments,
as well as to explore the DDEAs with stronger noise resistance.

2. The current studies of DDEAs have not yet paid attention to carrying out preprocess-
ing on the data. In the data-mining area, preprocessing has always been a simple
but effective scheme to reduce the impact of noise. Therefore, based on this research
work, the performance of DDEAs in noisy environments after preprocessing the data
can be further investigated, and the influence of preprocessing on DDEAs in noisy
environments can be studied.
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Table A1. Experimental results (with standard deviation) and relative deterioration percent (RDP) of DDEAs on 10-dimensional ellipsoid problems. The RDP of
results that significantly differ from the results obtained in non-noisy environment are shown in bold. The average rank and p value are the results of the Friedman’s
test with a significance level of 0.05.

Ellipsoid D = 10

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 2.22 ± 1.23 140.1% 1.13 × 102 ± 1.05 × 102 679.7% 7.43 × 101 ± 1.10 × 102 92,496.7% 1.49 × 102 ± 8.53 × 101 328.3%

0.2 1.78 ± 9.97 × 10−1 92.5% 1.15 × 102 ± 9.93 × 101 691.7% 4.41 × 101 ± 8.18 × 101 54,816.7% 1.43 × 102 ± 8.36 × 101 310.8%

0.1 1.43 ± 7.93 × 10−1 54.4% 1.03 × 102 ± 1.13 × 102 611.0% 6.40 × 101 ± 1.14 × 102 79,658.7% 1.16 × 102 ± 6.53 × 101 233.1%

20

0.3 1.15 ± 5.10 × 10−1 24.0% 4.21 × 101 ± 1.78 × 101 189.7% 6.26 ± 4.10 7696.1% 8.13 × 101 ± 3.25 × 101 133.5%

0.2 1.14 ± 5.53 × 10−1 23.2% 3.73 × 101 ± 3.12 × 101 157.0% 6.63 ± 5.98 8153.6% 7.13 × 101 ± 3.49 × 101 104.8%

0.1 1.09 ± 4.18 × 10−1 17.8% 4.09 × 101 ± 1.62 × 101 181.3% 7.40 ± 1.32 × 101 9122.1% 7.63 × 101 ± 3.26 × 101 119.1%

30

0.3 1.03 ± 4.13 × 10−1 11.2% 4.00 × 101 ± 1.99 × 101 175.1% 4.12 ± 3.03 5027.1% 5.21 × 101 ± 2.60 × 101 49.6%

0.2 1.03 ± 4.28 × 10−1 11.2% 3.19 × 101 ± 1.26 × 101 119.3% 3.88 ± 2.96 4733.7% 5.42 × 101 ± 2.92 × 101 55.6%

0.1 1.03 ± 4.03 × 10−1 11.4% 3.23 × 101 ± 1.71 × 101 122.1% 2.69 ± 2.56 3252.7% 6.20 × 101 ± 3.16 × 101 78.2%

40

0.3 1.04 ± 3.92 × 10−1 12.8% 3.87 × 101 ± 1.74 × 101 166.5% 3.43 ± 2.08 4177.6% 3.56 × 101 ± 2.15 × 101 2.1%

0.2 1.03 ± 3.94 × 10−1 11.7% 3.06 × 101 ± 1.48 × 101 110.6% 2.84 ± 2.04 3435.2% 4.00 × 101 ± 2.34 × 101 14.9%

0.1 1.04 ± 4.20 × 10−1 13.0% 2.30 × 101 ± 1.36 × 101 58.6% 1.24 ± 1.46 1442.6% 4.69 × 101 ± 3.24 × 101 34.6%

∞ 0 9.24 × 10−1 ± 5.63 × 10−1 1.45 × 101 ± 4.57 8.03 × 10−2 ± 1.40 × 10−1 3.48 × 101 ± 1.87 × 101

Average rank 1.00 3.17 3.67 2.17

p value NA 0.0001 0.0000 0.0269

Table A2. Experimental results (with standard deviation) and RDP of DDEAs on 30-dimensional ellipsoid problems.

Ellipsoid D = 30

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 1.47 × 101 ± 5.22 264.2% 6.88 × 102 ± 2.78 × 102 28,911,903.6% 3.36 × 102 ± 4.89 × 102 12,051.6% 1.69 × 103 ± 4.82 × 102 62.0%

0.2 1.24 × 101 ± 4.88 207.8% 5.55 × 102 ± 2.69 × 102 23,330,788.4% 1.90 × 102 ± 1.06 × 102 6790.1% 1.75 × 103 ± 6.76 × 102 67.5%

0.1 8.75 ± 3.26 117.3% 3.73 × 102 ± 4.01 × 102 15,683,471.1% 3.10 × 102 ± 8.08 × 102 11,122.9% 1.71 × 103 ± 5.74 × 102 63.3%
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Table A2. Cont.

Ellipsoid D = 30

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

20

0.3 5.33 ± 2.12 32.4% 1.60 × 102 ± 1.19 × 102 6,717,975.8% 7.04 × 101 ± 4.03 × 101 2448.9% 1.46 × 103 ± 3.12 × 102 39.3%

0.2 5.16 ± 2.05 28.0% 9.95 × 101 ± 5.04 × 101 4,182,792.1% 6.84 × 101 ± 3.33 × 101 2376.6% 1.39 × 103 ± 3.28 × 102 33.3%

0.1 4.58 ± 1.58 13.8% 6.59 × 101 ± 5.76 × 101 2,768,904.2% 5.64 × 101 ± 3.28 × 101 1941.8% 1.38 × 103 ± 3.85 × 102 31.5%

30

0.3 4.21 ± 1.53 4.7% 2.73 × 101 ± 2.08 × 101 1,146,046.8% 4.88 × 101 ± 1.81 × 101 1668.3% 1.32 × 103 ± 3.47 × 102 26.0%

0.2 4.33 ± 1.56 7.6% 1.84 × 101 ± 1.79 × 101 775,467.2% 5.01 × 101 ± 2.59 × 101 1713.7% 1.21 × 103 ± 2.75 × 102 16.1%

0.1 4.28 ± 1.55 6.3% 1.55 × 101 ± 1.58 × 101 651,070.7% 4.71 × 101 ± 2.32 × 101 1604.5% 1.17 × 103 ± 2.81 × 102 11.5%

40

0.3 4.10 ± 1.41 1.7% 3.95 ± 4.89 165,770.3% 3.85 × 101 ± 9.94 1292.3% 1.13 × 103 ± 2.98 × 102 7.7%

0.2 4.23 ± 1.56 5.0% 3.02 ± 3.86 126,767.9% 3.67 × 101 ± 1.26 × 101 1227.0% 9.98 × 102 ± 2.79 × 102 −4.6%

0.1 4.17 ± 1.47 3.5% 1.39 ± 2.15 58,372.0% 3.38 × 101 ± 1.50 × 101 1122.3% 9.73 × 102 ± 2.69 × 102 −7.0%

∞ 0 4.03 ± 1.35 2.38 × 10−3 ± 1.74 × 10−3 2.76 ± 2.20 1.05 × 103 ± 3.12 × 102

Average rank 1.25 2.25 2.50 4.00

p value NA 0.0578 0.0354 0.0000

Table A3. Experimental results (with standard deviation) and RDP of DDEAs on 10-dimensional Rosenbrock problems.

Rosenbrock D = 10

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 2.71 × 101 ± 6.90 −4.9% 9.56 × 102 ± 8.82 × 102 350.4% 1.50 × 102 ± 1.31 × 102 711.5% 8.53 × 102 ± 4.06 × 102 445.7%

0.2 2.67 × 101 ± 6.80 −6.6% 9.22 × 102 ± 9.02 × 102 334.4% 2.71 × 102 ± 5.98 × 102 1364.4% 9.23 × 102 ± 7.04 × 102 490.8%

0.1 2.60 × 101 ± 5.95 −8.9% 1.01 × 103 ± 1.19 × 103 375.8% 3.67 × 102 ± 8.32 × 102 1886.6% 6.04 × 102 ± 4.91 × 102 286.8%

20

0.3 2.57 × 101 ± 6.21 −9.9% 3.34 × 102 ± 1.98 × 102 57.2% 8.44 × 101 ± 4.14 × 101 356.8% 3.94 × 102 ± 2.13 × 102 152.4%

0.2 2.55 × 101 ± 5.88 −10.6% 2.50 × 102 ± 1.53 × 102 17.8% 8.92 × 101 ± 6.19 × 101 382.8% 3.31 × 102 ± 1.91 × 102 111.6%

0.1 2.55 × 101 ± 5.81 −10.7% 2.05 × 102 ± 9.74 × 101 −3.3% 6.48 × 101 ± 4.08 × 101 250.7% 3.91 × 102 ± 2.57 × 102 150.4%



Mathematics 2022, 10, 943 18 of 26

Table A3. Cont.

Rosenbrock D = 10

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

30

0.3 2.55 × 101 ± 5.78 −10.8% 2.12 × 102 ± 8.96 × 101 −0.3% 7.48 × 101 ± 2.66 × 101 305.0% 2.62 × 102 ± 1.21 × 102 67.8%

0.2 2.55 × 101 ± 5.87 −10.7% 2.26 × 102 ± 9.99 × 101 6.4% 8.02 × 101 ± 5.09 × 101 334.1% 2.67 × 102 ± 1.59 × 102 71.1%

0.1 2.53 × 101 ± 5.71 −11.2% 1.86 × 102 ± 7.64 × 101 −12.4% 6.49 × 101 ± 3.72 × 101 251.4% 2.70 × 102 ± 1.50 × 102 72.5%

40

0.3 2.54 × 101 ± 5.67 −11.0% 1.96 × 102 ± 8.00 × 101 −7.5% 5.96 × 101 ± 2.44 × 101 222.8% 1.84 × 102 ± 9.23 × 101 18.0%

0.2 2.54 × 101 ± 5.84 −11.0% 2.23 × 102 ± 1.25 × 102 5.2% 5.85 × 101 ± 1.97 × 101 216.5% 1.38 × 102 ± 7.10 × 101 −11.5%

0.1 2.53 × 101 ± 5.69 −11.2% 1.74 × 102 ± 6.19 × 101 −18.3% 4.11 × 101 ± 2.30 × 101 122.5% 1.69 × 102 ± 9.44 × 101 8.4%

∞ 0 2.85 × 101 ± 7.74 2.12 × 102 ± 9.47 × 101 1.85 × 101 ± 7.25 1.56 × 102 ± 8.00 × 101

Average rank 1.00 3.42 2.00 3.58

p value NA 0.0000 0.0578 0.0000

Table A4. Experimental results (with standard deviation) and RDP of DDEAs on 30-dimensional Rosenbrock problems.

Rosenbrock D = 30

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 6.36 × 101 ± 6.86 11.5% 1.74 × 103 ± 1.17 × 103 1341.8% 3.13 × 102 ± 1.76 × 102 491.3% 4.43 × 103 ± 1.79 × 103 181.8%

0.2 6.16 × 101 ± 7.35 8.1% 1.48 × 103 ± 8.96 × 102 1128.2% 2.60 × 102 ± 1.19 × 102 390.9% 3.74 × 103 ± 1.59 × 103 137.8%

0.1 5.85 × 101 ± 6.35 2.8% 1.18 × 103 ± 1.02 × 103 876.1% 3.83 × 102 ± 3.07 × 102 623.2% 3.73 × 103 ± 1.81 × 103 137.3%

20

0.3 5.79 × 101 ± 5.23 1.7% 6.35 × 102 ± 3.87 × 102 425.7% 3.09 × 102 ± 1.65 × 102 483.5% 3.10 × 103 ± 8.82 × 102 97.1%

0.2 5.75 × 101 ± 5.24 1.0% 5.42 × 102 ± 2.72 × 102 348.7% 2.95 × 102 ± 1.30 × 102 456.9% 3.21 × 103 ± 7.97 × 102 104.3%

0.1 5.71 × 101 ± 5.19 0.2% 5.92 × 102 ± 2.77 × 102 390.2% 3.17 × 102 ± 2.01 × 102 499.3% 3.02 × 103 ± 1.06 × 103 92.0%

30

0.3 5.72 × 101 ± 4.75 0.4% 3.77 × 102 ± 1.53 × 102 211.7% 3.04 × 102 ± 1.38 × 102 474.3% 2.47 × 103 ± 5.97 × 102 56.6%

0.2 5.69 × 101 ± 4.74 −0.1% 3.04 × 102 ± 8.69 × 101 151.7% 3.26 × 102 ± 1.56 × 102 516.2% 2.61 × 103 ± 7.16 × 102 66.1%

0.1 5.68 × 101 ± 5.09 −0.4% 2.72 × 102 ± 1.01 × 102 124.8% 2.60 × 102 ± 1.55 × 102 391.0% 2.48 × 103 ± 8.11 × 102 57.3%
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Table A4. Cont.

Rosenbrock D = 30

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

40

0.3 5.69 × 101 ± 4.63 −0.2% 1.98 × 102 ± 4.33 × 101 64.0% 1.84 × 102 ± 6.16 × 101 246.9% 2.16 × 103 ± 5.75 × 102 37.3%

0.2 5.71 × 101 ± 5.17 0.2% 2.29 × 102 ± 6.38 × 101 89.6% 1.74 × 102 ± 5.38 × 101 228.9% 1.93 × 103 ± 8.06 × 102 22.5%

0.1 5.70 × 101 ± 4.82 0.0% 1.99 × 102 ± 7.25 × 101 64.4% 1.44 × 102 ± 5.97 × 101 172.5% 1.92 × 103 ± 6.25 × 102 21.7%

∞ 0 5.70 × 101 ± 4.64 1.21 × 102 ± 2.21 × 101 5.29 × 101 ± 8.96 1.57 × 103 ± 4.29 × 102

Average rank 1.00 2.92 2.08 4.00

p value NA 0.0006 0.0398 0.0000

Table A5. Experimental results (with standard deviation) and RDP of DDEAs on 10-dimensional Ackley problems.

Ackley D = 10

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 1.70 × 101 ± 2.52 202.6% 2.10 × 101 ± 5.49 × 10−1 32.1% 2.14 × 101 ± 3.98 × 10−1 13.7% 2.12 × 101 ± 3.85 × 10−1 36.2%

0.2 1.68 × 101 ± 2.40 199.8% 2.10 × 101 ± 8.76 × 10−1 31.8% 2.12 × 101 ± 5.87 × 10−1 12.7% 2.07 × 101 ± 9.79 × 10−1 32.9%

0.1 1.60 × 101 ± 3.11 184.3% 2.12 × 101 ± 4.60 × 10−1 33.0% 2.13 × 101 ± 4.79 × 10−1 13.2% 2.03 × 101 ± 1.83 30.6%

20

0.3 1.23 × 101 ± 2.62 119.5% 2.09 × 101 ± 7.55 × 10−1 31.1% 2.12 × 101 ± 5.83 × 10−1 12.6% 1.90 × 101 ± 3.35 21.9%

0.2 1.15 × 101 ± 2.09 105.4% 1.94 × 101 ± 1.99 22.0% 2.09 × 101 ± 9.29 × 10−1 11.1% 1.86 × 101 ± 3.10 19.0%

0.1 1.01 × 101 ± 2.12 79.4% 1.84 × 101 ± 2.17 15.8% 2.09 × 101 ± 9.29 × 10−1 10.9% 1.87 × 101 ± 2.54 19.8%

30

0.3 7.32 ± 1.53 30.1% 1.63 × 101 ± 2.10 2.8% 1.99 × 101 ± 7.58 × 10−1 5.4% 1.68 × 101 ± 2.70 7.6%

0.2 6.89 ± 1.07 22.6% 1.65 × 101 ± 1.56 3.4% 1.98 × 101 ± 9.18 × 10−1 5.0% 1.65 × 101 ± 3.14 6.2%

0.1 6.35 ± 1.09 12.9% 1.63 × 101 ± 1.73 2.8% 1.97 × 101 ± 8.77 × 10−1 4.6% 1.60 × 101 ± 3.09 2.4%

40

0.3 5.80 ± 1.10 3.2% 1.57 × 101 ± 1.65 −1.4% 1.94 × 101 ± 9.02 × 10−1 2.7% 1.69 × 101 ± 2.76 8.3%

0.2 5.77 ± 9.51 × 10−1 2.6% 1.54 × 101 ± 1.76 −3.1% 1.91 × 101 ± 8.77 × 10−1 1.6% 1.62 × 101 ± 3.13 3.7%

0.1 5.67 ± 9.77 × 10−1 0.9% 1.56 × 101 ± 1.76 −2.2% 1.93 × 101 ± 6.55 × 10−1 2.3% 1.61 × 101 ± 3.23 3.2%

∞ 0 5.62 ± 8.75 × 10−1 1.59 × 101 ± 1.39 1.88 × 101 ± 1.26 1.56 × 101 ± 3.09
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Table A5. Cont.

Ackley D = 10

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

Average rank 1.00 2.42 4.00 2.58

p value NA 0.0072 0.0000 0.0053

Table A6. Experimental results (with standard deviation) and RDP of DDEAs on 30-dimensional Ackley problems.

Ackley D = 30

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 1.69 × 101 ± 1.77 253.5% 2.08 × 101 ± 4.22 × 10−1 110.0% 2.15 × 101 ± 2.98 × 10−1 47.2% 2.11 × 101 ± 3.21 × 10−1 13.7%

0.2 1.68 × 101 ± 1.97 251.9% 2.09 × 101 ± 3.93 × 10−1 110.6% 2.13 × 101 ± 3.67 × 10−1 46.2% 2.10 × 101 ± 4.46 × 10−1 13.5%

0.1 1.61 × 101 ± 2.30 237.7% 2.08 × 101 ± 4.67 × 10−1 109.6% 2.14 × 101 ± 4.52 × 10−1 46.6% 2.09 × 101 ± 7.85 × 10−1 12.9%

20

0.3 1.39 × 101 ± 1.95 191.6% 2.03 × 101 ± 7.13 × 10−1 104.3% 2.14 × 101 ± 3.13 × 10−1 46.5% 2.09 × 101 ± 5.47 × 10−1 12.5%

0.2 1.33 × 101 ± 1.94 178.5% 1.97 × 101 ± 1.52 98.5% 2.13 × 101 ± 3.39 × 10−1 45.8% 2.05 × 101 ± 9.79 × 10−1 10.8%

0.1 1.18 × 101 ± 1.95 146.6% 1.78 × 101 ± 2.55 79.0% 2.12 × 101 ± 8.36 × 10−1 45.5% 2.06 × 101 ± 7.70 × 10−1 11.2%

30

0.3 8.66 ± 1.15 81.1% 1.40 × 101 ± 2.28 40.6% 2.06 × 101 ± 9.25 × 10−1 41.3% 1.95 × 101 ± 1.10 5.4%

0.2 7.99 ± 1.13 67.1% 1.42 × 101 ± 2.44 43.1% 2.00 × 101 ± 1.66 37.1% 1.95 × 101 ± 7.37 × 10−1 5.2%

0.1 6.82 ± 9.83 × 10−1 42.7% 1.27 × 101 ± 1.96 28.0% 1.94 × 101 ± 1.64 33.3% 1.94 × 101 ± 1.04 4.7%

40

0.3 5.52 ± 5.87 × 10−1 15.4% 1.17 × 101 ± 2.52 17.7% 1.75 × 101 ± 1.86 20.1% 1.92 × 101 ± 9.18 × 10−1 3.7%

0.2 5.29 ± 5.10 × 10−1 10.6% 1.04 × 101 ± 2.04 5.0% 1.63 × 101 ± 2.64 12.0% 1.88 × 101 ± 1.05 1.6%

0.1 5.06 ± 6.01 × 10−1 5.8% 1.01 × 101 ± 2.44 1.3% 1.65 × 101 ± 2.12 12.9% 1.93 × 101 ± 6.99 × 10−1 4.1%

∞ 0 4.78 ± 3.58 × 10−1 9.93 ± 2.51 1.46 × 101 ± 2.38 1.85 × 101 ± 1.07

Average rank 1.00 2.00 3.75 3.25

p value NA 0.0578 0.0000 0.0000
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Table A7. Experimental results (with standard deviation) and RDP of DDEAs on 10-dimensional Griewank problems.

Griewank D = 10

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 2.00 ± 6.72 × 10−1 59.3% 9.71 × 101 ± 8.69 × 101 695.1% 2.96 × 101 ± 3.28 × 101 2184.0% 1.17 × 102 ± 6.82 × 101 350.8%

0.2 1.65 ± 4.40 × 10−1 31.5% 1.04 × 102 ± 7.78 × 101 752.3% 3.36 × 101 ± 6.44 × 101 2493.1% 9.40 × 101 ± 5.78 × 101 262.2%

0.1 1.44 ± 2.32 × 10−1 14.8% 3.93 × 101 ± 4.54 × 101 221.8% 1.23 × 101 ± 4.10 × 101 846.5% 8.21 × 101 ± 7.50 × 101 216.3%

20

0.3 1.35 ± 1.65 × 10−1 7.2% 2.90 × 101 ± 1.13 × 101 137.8% 4.89 ± 2.84 277.5% 5.17 × 101 ± 2.80 × 101 99.2%

0.2 1.33 ± 1.48 × 10−1 5.6% 2.90 × 101 ± 1.23 × 101 137.6% 5.38 ± 8.85 316.0% 5.86 × 101 ± 2.91 × 101 125.7%

0.1 1.30 ± 1.50 × 10−1 3.1% 2.86 × 101 ± 1.63 × 101 134.4% 2.93 ± 2.10 126.0% 4.82 × 101 ± 2.55 × 101 85.6%

30

0.3 1.29 ± 1.30 × 10−1 2.4% 2.74 × 101 ± 1.14 × 101 124.2% 3.01 ± 1.61 132.6% 4.12 × 101 ± 1.91 × 101 58.8%

0.2 1.28 ± 1.23 × 10−1 2.0% 2.59 × 101 ± 1.23 × 101 112.1% 2.23 ± 9.37 × 10−1 71.9% 3.84 × 101 ± 2.24 × 101 48.1%

0.1 1.28 ± 1.44 × 10−1 1.9% 2.78 × 101 ± 1.39 × 101 127.4% 2.85 ± 2.52 120.0% 4.05 × 101 ± 2.54 × 101 55.9%

40

0.3 1.30 ± 1.62 × 10−1 3.5% 2.45 × 101 ± 1.26 × 101 100.7% 2.22 ± 7.46 × 10−1 71.2% 3.30 × 101 ± 1.89 × 101 27.3%

0.2 1.29 ± 1.47 × 10−1 2.4% 2.54 × 101 ± 1.18 × 101 108.4% 1.85 ± 5.12 × 10−1 43.0% 2.55 × 101 ± 1.52 × 101 −1.9%

0.1 1.28 ± 1.47 × 10−1 1.7% 2.03 × 101 ± 1.40 × 101 66.6% 2.08 ± 6.98 × 10−1 60.6% 3.13 × 101 ± 2.13 × 101 20.6%

∞ 0 1.26 ± 1.39 × 10−1 1.22 × 101 ± 4.28 1.29 ± 3.04 × 10−1 2.60 × 101 ± 1.57 × 101

Average rank 1.00 3.08 2.00 3.92

p value NA 0.0002 0.0578 0.0000

Table A8. Experimental results (with standard deviation) and RDP of DDEAs on 30-dimensional Griewank problems.

Griewank D = 30

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 4.49 ± 1.18 263.5% 1.70 × 102 ± 8.61 × 101 137,681.1% 7.42 × 101 ± 1.38 × 102 5103.3% 4.37 × 102 ± 1.42 × 102 80.9%

0.2 3.37 ± 5.68 × 10−1 172.9% 1.04 × 102 ± 6.41 × 101 84,725.9% 8.23 × 101 ± 1.82 × 102 5665.5% 3.94 × 102 ± 1.31 × 102 63.3%

0.1 2.33 ± 4.33 × 10−1 88.6% 6.10 × 101 ± 3.98 × 101 49,390.6% 4.07 × 101 ± 1.18 × 102 2751.2% 4.14 × 102 ± 1.82 × 102 71.5%
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Table A8. Cont.

Griewank D = 30

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

20

0.3 1.59 ± 1.77 × 10−1 29.2% 2.37 × 101 ± 1.89 × 101 19,106.1% 1.09 × 101 ± 6.29 660.7% 3.55 × 102 ± 7.64 × 101 47.1%

0.2 1.47 ± 1.10 × 10−1 19.5% 2.61 × 101 ± 3.62 × 101 21,089.5% 6.21 ± 2.36 335.4% 3.46 × 102 ± 7.45 × 101 43.4%

0.1 1.37 ± 1.08 × 10−1 10.9% 1.13 × 101 ± 8.03 9100.3% 7.14 ± 4.33 400.5% 3.21 × 102 ± 6.66 × 101 33.1%

30

0.3 1.29 ± 1.21 × 10−1 4.2% 5.61 ± 6.26 4455.6% 5.86 ± 2.61 311.0% 3.04 × 102 ± 5.74 × 101 25.8%

0.2 1.26 ± 8.30 × 10−2 2.2% 4.40 ± 2.79 3473.8% 5.18 ± 2.07 262.9% 2.98 × 102 ± 6.25 × 101 23.5%

0.1 1.27 ± 1.00 × 10−1 2.7% 3.54 ± 3.30 2772.2% 5.59 ± 3.59 291.6% 2.66 × 102 ± 5.09 × 101 10.3%

40

0.3 1.25 ± 8.76 × 10−2 1.0% 1.97 ± 1.18 1501.6% 5.56 ± 2.66 289.7% 2.28 × 102 ± 4.22 × 101 −5.6%

0.2 1.23 ± 8.68 × 10−2 −0.2% 1.80 ± 1.45 1357.4% 4.82 ± 2.02 238.0% 2.54 × 102 ± 6.25 × 101 5.1%

0.1 1.24 ± 8.58 × 10−2 0.7% 1.28 ± 5.52 × 10−1 935.6% 4.42 ± 2.90 209.7% 2.35 × 102 ± 6.01 × 101 −2.7%

∞ 0 1.23 ± 9.43 × 10−2 1.23 × 10−1 ± 4.84 × 10−2 1.43 ± 1.21 × 10−1 2.41 × 102 ± 6.24 × 101

Average rank 1.00 2.50 2.50 4.00

p value NA 0.0044 0.0044 0.0000

Table A9. Experimental results (with standard deviation) and RDP of DDEAs on 10-dimensional Rastrigin problems.

Rastrigin D = 10

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 8.82 × 101 ± 2.06 × 101 54.3% 1.37 × 102 ± 3.30 × 101 51.7% 1.48 × 102 ± 3.27 × 101 104.8% 1.25 × 102 ± 2.10 × 101 101.7%

0.2 7.77 × 101 ± 2.51 × 101 36.0% 1.30 × 102 ± 3.12 × 101 44.8% 1.41 × 102 ± 3.25 × 101 95.0% 1.49 × 102 ± 4.15 × 101 140.7%

0.1 7.23 × 101 ± 2.59 × 101 26.6% 1.31 × 102 ± 4.59 × 101 45.9% 1.33 × 102 ± 4.24 × 101 84.1% 1.14 × 102 ± 4.07 × 101 84.2%

20

0.3 6.16 × 101 ± 2.02 × 101 7.8% 9.18 × 101 ± 1.79 × 101 2.0% 1.08 × 102 ± 1.47 × 101 49.1% 8.60 × 101 ± 1.92 × 101 38.7%

0.2 5.53 × 101 ± 2.05 × 101 −3.2% 9.59 × 101 ± 1.80 × 101 6.4% 1.01 × 102 ± 1.83 × 101 39.9% 7.13 × 101 ± 2.16 × 101 15.1%

0.1 5.30 × 101 ± 2.10 × 101 −7.2% 8.64 × 101 ± 1.40 × 101 −4.0% 9.55 × 101 ± 2.51 × 101 31.9% 7.49 × 101 ± 1.94 × 101 20.8%
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Table A9. Cont.

Rastrigin D = 10

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

30

0.3 5.02 × 101 ± 1.91 × 101 −12.2% 8.87 × 101 ± 1.49 × 101 −1.5% 8.88 × 101 ± 2.38 × 101 22.7% 6.76 × 101 ± 1.88 × 101 9.0%

0.2 4.87 × 101 ± 1.86 × 101 −14.8% 8.95 × 101 ± 1.28 × 101 −0.7% 8.67 × 101 ± 2.34 × 101 19.8% 6.39 × 101 ± 1.79 × 101 3.0%

0.1 4.79 × 101 ± 1.77 × 101 −16.1% 8.56 × 101 ± 1.53 × 101 −4.9% 8.40 × 101 ± 2.56 × 101 16.0% 6.95 × 101 ± 1.48 × 101 12.2%

40

0.3 4.83 × 101 ± 2.00 × 101 −15.4% 8.37 × 101 ± 1.32 × 101 −7.1% 8.64 × 101 ± 2.74 × 101 19.3% 6.04 × 101 ± 1.59 × 101 −2.6%

0.2 4.97 × 101 ± 1.80 × 101 −13.0% 8.84 × 101 ± 1.05 × 101 −1.8% 8.63 × 101 ± 2.70 × 101 19.2% 5.96 × 101 ± 9.95 −3.9%

0.1 4.76 × 101 ± 1.79 × 101 −16.7% 8.47 × 101 ± 1.54 × 101 −6.0% 8.48 × 101 ± 2.40 × 101 17.1% 6.59 × 101 ± 1.77 × 101 6.4%

∞ 0 5.71 × 101 ± 1.96 × 101 9.01 × 101 ± 1.15 × 101 7.24 × 101 ± 3.15 × 101 6.20 × 101 ± 1.41 × 101

Average rank 1.00 3.17 3.67 2.17

p value NA 0.0001 0.0000 0.0269

Table A10. Experimental results (with standard deviation) and RDP of DDEAs on 30-dimensional Rastrigin problems.

Rastrigin D = 30

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

10

0.3 2.90 × 102 ± 4.59 × 101 164.4% 4.06 × 102 ± 4.41 × 101 85.5% 4.57 × 102 ± 8.59 × 101 1129.7% 4.60 × 102 ± 6.49 × 101 74.0%

0.2 2.80 × 102 ± 3.85 × 101 154.7% 3.88 × 102 ± 5.46 × 101 77.5% 4.48 × 102 ± 8.10 × 101 1105.0% 4.35 × 102 ± 8.08 × 101 64.9%

0.1 2.26 × 102 ± 5.76 × 101 105.6% 3.73 × 102 ± 5.03 × 101 70.7% 4.18 × 102 ± 1.08 × 102 1025.1% 4.43 × 102 ± 8.22 × 101 67.7%

20

0.3 1.56 × 102 ± 3.84 × 101 41.6% 3.08 × 102 ± 3.89 × 101 41.1% 2.66 × 102 ± 5.43 × 101 616.1% 3.48 × 102 ± 4.36 × 101 31.9%

0.2 1.44 × 102 ± 3.61 × 101 31.5% 2.96 × 102 ± 4.72 × 101 35.3% 2.37 × 102 ± 4.16 × 101 536.6% 3.50 × 102 ± 5.93 × 101 32.7%

0.1 1.28 × 102 ± 3.57 × 101 16.2% 2.62 × 102 ± 3.96 × 101 20.1% 2.12 × 102 ± 6.09 × 101 469.4% 3.32 × 102 ± 6.39 × 101 25.7%

30

0.3 1.15 × 102 ± 3.20 × 101 5.1% 2.21 × 102 ± 2.80 × 101 0.9% 1.46 × 102 ± 4.38 × 101 292.0% 3.01 × 102 ± 3.96 × 101 13.9%

0.2 1.14 × 102 ± 3.23 × 101 4.1% 2.19 × 102 ± 2.89 × 101 0.2% 1.16 × 102 ± 4.15 × 101 210.8% 2.93 × 102 ± 4.51 × 101 11.0%

0.1 1.14 × 102 ± 3.10 × 101 4.2% 2.29 × 102 ± 1.97 × 101 4.7% 9.23 × 101 ± 4.07 × 101 148.1% 2.86 × 102 ± 3.65 × 101 8.1%
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Table A10. Cont.

Rastrigin D = 30

SNR Pn DDEA-SE RDP MGP-SLPSO RDP CAL-SAPSO RDP GPEME RDP

40

0.3 1.14 × 102 ± 2.93 × 101 3.5% 2.24 × 102 ± 1.96 × 101 2.5% 6.76 × 101 ± 2.74 × 101 81.7% 2.76 × 102 ± 4.28 × 101 4.5%

0.2 1.12 × 102 ± 3.20 × 101 2.2% 2.25 × 102 ± 2.76 × 101 3.1% 5.23 × 101 ± 1.90 × 101 40.6% 2.55 × 102 ± 4.88 × 101 −3.3%

0.1 1.13 × 102 ± 3.08 × 101 3.2% 2.21 × 102 ± 2.85 × 101 1.3% 5.53 × 101 ± 1.98 × 101 48.7% 2.67 × 102 ± 3.32 × 101 1.0%

∞ 0 1.10 × 102 ± 2.90 × 101 2.19 × 102 ± 3.00 × 101 3.72 × 101 ± 1.85 × 101 2.64 × 102 ± 3.82 × 101

Average rank 1.33 2.75 2.00 3.92

p value NA 0.0144 0.2059 0.0000



Mathematics 2022, 10, 943 25 of 26

References
1. Jin, Y.; Wang, H.; Chugh, T.; Guo, D.; Miettinen, K. Data-Driven Evolutionary Optimization: An Overview and Case Studies.

IEEE Trans. Evol. Comput. 2019, 23, 442–458. [CrossRef]
2. Wu, Z.; Yu, S.; Li, T. A Meta-Model-Based Multi-Objective Evolutionary Approach to Robust Job Shop Scheduling. Mathematics

2019, 7, 529. [CrossRef]
3. Yao, X. Evolving Artificial Neural Networks. Proc. IEEE 1999, 87, 1423–1447.
4. Yao, X.; Liu, Y. A New Evolutionary System for Evolving Artificial Neural Networks. IEEE Trans. Neural Netw. 1997, 8, 694–713.

[CrossRef]
5. Wang, H.; Jin, Y.; Jansen, J.O. Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System.

IEEE Trans. Evol. Comput. 2016, 20, 939–952. [CrossRef]
6. Liu, Y.; Shang, F.; Jiao, L.; Cheng, J.; Cheng, H. Trace Norm Regularized CANDECOMP/PARAFAC Decomposition with Missing

Data. IEEE Trans. Cybern. 2015, 45, 2437–2448. [CrossRef]
7. Wang, S.; Yao, X. Multiclass Imbalance Problems: Analysis and Potential Solutions. IEEE Trans. Syst. Man Cybern. Part B (Cybern.)

2012, 42, 1119–1130. [CrossRef]
8. Wang, S.; Minku, L.L.; Yao, X. Resampling-Based Ensemble Methods for Online Class Imbalance Learning. IEEE Trans. Knowl.

Data Eng. 2015, 27, 1356–1368. [CrossRef]
9. Gao, Y.; Wang, K.; Gao, C.; Shen, Y.; Li, T. Application of Differential Evolution Algorithm Based on Mixed Penalty Function

Screening Criterion in Imbalanced Data Integration Classification. Mathematics 2019, 7, 1237. [CrossRef]
10. Wang, H.; Zhang, Q.; Jiao, L.; Yao, X. Regularity Model for Noisy Multiobjective Optimization. IEEE Trans. Cybern. 2016, 46,

1997–2009. [CrossRef]
11. Beyer, H.-G. Evolutionary Algorithms in Noisy Environments: Theoretical Issues and Guidelines for Practice. Comput. Methods

Appl. Mech. Eng. 2000, 186, 239–267. [CrossRef]
12. Nissen, V.; Propach, J. On the Robustness of Population-Based versus Point-Based Optimization in the Presence of Noise. IEEE

Trans. Evol. Comput. 1998, 2, 107–119. [CrossRef]
13. Arnold, D.V.; Beyer, H.-G. Noisy Optimization with Evolution Strategies; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2002.
14. Arnold, D.V. Evolution Strategies in Noisy Environments—A Survey of Existing Work. In Theoretical Aspects of Evolutionary

Computing; Kallel, L., Naudts, B., Rogers, A., Eds.; Natural Computing Series; Springer: Berlin/Heidelberg, Germany, 2001;
pp. 239–249.

15. Arnold, D.V.; Beyer, H.-G. Local Performance of the (1 + 1)-ES in a Noisy Environment. IEEE Trans. Evol. Comput. 2002, 6, 30–41.
[CrossRef]

16. Back, T.; Hammel, U. Evolution Strategies Applied to Perturbed Objective Functions. In Proceedings of the First IEEE Conference
on Evolutionary Computation. IEEE World Congress on Computational Intelligence, Orlando, FL, USA, 27–29 June 1994;
Volume 1, pp. 40–45.

17. Branke, J.; Schmidt, C.; Schmeck, H. Efficient Fitness Estimation in Noisy Environments. In Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation, GECCO’01, Francisco, CA, USA, 7–11 July 2001; Morgan Kaufmann
Publishers Inc.: San Francisco, CA, USA, 2001; pp. 243–250.

18. Hughes, E.J. Evolutionary Multi-Objective Ranking with Uncertainty and Noise. In Evolutionary Multi-Criterion Optimization; Zit-
zler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 329–343.

19. Wang, H.; Jin, Y.; Sun, C.; Doherty, J. Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles. IEEE
Trans. Evol. Comput. 2019, 23, 203–216. [CrossRef]

20. Tian, J.; Tan, Y.; Zeng, J.; Sun, C.; Jin, Y. Multiobjective Infill Criterion Driven Gaussian Process-Assisted Particle Swarm
Optimization of High-Dimensional Expensive Problems. IEEE Trans. Evol. Comput. 2019, 23, 459–472. [CrossRef]

21. Wang, H.; Jin, Y.; Doherty, J. Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive
Problems. IEEE Trans. Cybern. 2017, 47, 2664–2677. [CrossRef]

22. Liu, B.; Zhang, Q.; Gielen, G.G.E. A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for Medium Scale
Expensive Optimization Problems. IEEE Trans. Evol. Comput. 2014, 18, 180–192. [CrossRef]

23. Li, J.-Y.; Zhan, Z.-H.; Wang, H.; Zhang, J. Data-Driven Evolutionary Algorithm with Perturbation-Based Ensemble Surrogates.
IEEE Trans. Cybern. 2021, 51, 3925–3937. [CrossRef]

24. Marchetti, F.; Minisci, E. Genetic Programming Guidance Control System for a Reentry Vehicle under Uncertainties. Mathematics
2021, 9, 1868. [CrossRef]

25. Fox, M.; Yang, S.; Caraffini, F. An Experimental Study of Prediction Methods in Robust Optimization Over Time. In Proceedings
of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–7.

26. Chugh, T.; Jin, Y.; Miettinen, K.; Hakanen, J.; Sindhya, K. A Surrogate-Assisted Reference Vector Guided Evolutionary Algorithm
for Computationally Expensive Many-Objective Optimization. IEEE Trans. Evol. Comput. 2018, 22, 129–142. [CrossRef]

27. Buche, D.; Schraudolph, N.N.; Koumoutsakos, P. Accelerating Evolutionary Algorithms with Gaussian Process Fitness Function
Models. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2005, 35, 183–194. [CrossRef]

http://doi.org/10.1109/TEVC.2018.2869001
http://doi.org/10.3390/math7060529
http://doi.org/10.1109/72.572107
http://doi.org/10.1109/TEVC.2016.2555315
http://doi.org/10.1109/TCYB.2014.2374695
http://doi.org/10.1109/TSMCB.2012.2187280
http://doi.org/10.1109/TKDE.2014.2345380
http://doi.org/10.3390/math7121237
http://doi.org/10.1109/TCYB.2015.2459137
http://doi.org/10.1016/S0045-7825(99)00386-2
http://doi.org/10.1109/4235.735433
http://doi.org/10.1109/4235.985690
http://doi.org/10.1109/TEVC.2018.2834881
http://doi.org/10.1109/TEVC.2018.2869247
http://doi.org/10.1109/TCYB.2017.2710978
http://doi.org/10.1109/TEVC.2013.2248012
http://doi.org/10.1109/TCYB.2020.3008280
http://doi.org/10.3390/math9161868
http://doi.org/10.1109/TEVC.2016.2622301
http://doi.org/10.1109/TSMCC.2004.841917


Mathematics 2022, 10, 943 26 of 26

28. Jin, Y.; Olhofer, M.; Sendhoff, B. A Framework for Evolutionary Optimization with Approximate Fitness Functions. IEEE Trans.
Evol. Comput. 2002, 6, 481–494.

29. Willmes, L.; Back, T.; Jin, Y.; Sendhoff, B. Comparing Neural Networks and Kriging for Fitness Approximation in Evolution-
ary Optimization. In Proceedings of the 2003 Congress on Evolutionary Computation, CEC ’03, Canberra, ACT, Australia,
8–12 December 2003; Volume 1, pp. 663–670.

30. Jin, Y.; Sendhoff, B. Reducing Fitness Evaluations Using Clustering Techniques and Neural Network Ensembles. In Genetic and
Evolutionary Computation–GECCO 2004; Deb, K., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2004; pp. 688–699.

31. Zapotecas Martínez, S.; Coello Coello, C.A. MOEA/D Assisted by Rbf Networks for Expensive Multi-Objective Optimization
Problems. In Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference-GECCO ’13; ACM
Press: Amsterdam, The Netherlands, 2013; p. 1405.

32. Regis, R.G. Evolutionary Programming for High-Dimensional Constrained Expensive Black-Box Optimization Using Radial Basis
Functions. IEEE Trans. Evol. Comput. 2014, 18, 326–347. [CrossRef]

33. Sun, C.; Jin, Y.; Zeng, J.; Yu, Y. A Two-Layer Surrogate-Assisted Particle Swarm Optimization Algorithm. Soft Comput. 2015, 19,
1461–1475. [CrossRef]

34. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
35. Friedman, J.H.; Hall, P. On Bagging and Nonlinear Estimation. J. Stat. Plan. Inference 2007, 137, 669–683. [CrossRef]
36. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
37. Cheng, R.; Jin, Y. A Social Learning Particle Swarm Optimization Algorithm for Scalable Optimization. Inf. Sci. 2015, 291, 43–60.

[CrossRef]
38. Stein, M. Large Sample Properties of Simulations Using Latin Hypercube Sampling. Technometrics 1987, 29, 143–151. [CrossRef]
39. Chatterjee, A.; Siarry, P. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization. Comput.

Oper. Res. 2006, 33, 859–871. [CrossRef]
40. Alexandrov, N.M.; Hussaini, M.Y. Multidisciplinary Design Optimization: State of the Art; SIAM: Philadelphia, PA, USA, 1997.
41. Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2006.
42. Deb, K.; Beyer, H. Real-Coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multi-Modal and Multi-Objective

Problems. Complex Syst. 1995, 9, 431–454.
43. Deb, K. An Efficient Constraint Handling Method for Genetic Algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338.

[CrossRef]
44. Hughes, E.J. Constraint Handling with Uncertain and Noisy Multi-Objective Evolution. In Proceedings of the 2001 Congress on

Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Korea, 27–30 May 2001; Volume 2, pp. 963–970.
45. Sano, Y.; Kita, H. Optimization of Noisy Fitness Functions by Means of Genetic Algorithms Using History of Search with Test of

Estimation. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), Honolulu, HI,
USA, 12–17 May 2002; Volume 1, pp. 360–365.

46. Arnold, D.V.; Beyer, H.-G. On the Effects of Outliers on Evolutionary Optimization. In Intelligent Data Engineering and Automated
Learning; Liu, J., Cheung, Y., Yin, H., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003;
pp. 151–160.

47. Jin, Y.; Branke, J. Evolutionary Optimization in Uncertain Environments—A Survey. IEEE Trans. Evol. Comput. 2005, 9, 303–317.
[CrossRef]

48. Goh, C.K.; Tan, K.C. An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization. IEEE Trans. Evol.
Comput. 2007, 11, 354–381. [CrossRef]

49. Suganthan, P.; Hansen, N.; Liang, J.; Deb, K.; Chen, Y.; Auger, A.; Tiwari, S. Problem Definitions and Evaluation Criteria for the
CEC 2005 Special Session on Real-Parameter Optimization. Natural Comput. 2005, 2005, 341–357.

50. Xu, J.; Jin, Y.; Du, W.; Gu, S. A Federated Data-Driven Evolutionary Algorithm. Knowl.-Based Syst. 2021, 233, 107532. [CrossRef]
51. Huang, P.; Wang, H.; Jin, Y. Offline Data-Driven Evolutionary Optimization Based on Tri-Training. Swarm Evol. Comput. 2021, 60,

100800. [CrossRef]
52. Li, J.-Y.; Zhan, Z.-H.; Wang, C.; Jin, H.; Zhang, J. Boosting Data-Driven Evolutionary Algorithm with Localized Data Generation.

IEEE Trans. Evol. Comput. 2020, 24, 923–937. [CrossRef]
53. Caraffini, F.; Kononova, A.V.; Corne, D. Infeasibility and Structural Bias in Differential Evolution. Inf. Sci. 2019, 496, 161–179.

[CrossRef]

http://doi.org/10.1109/TEVC.2013.2262111
http://doi.org/10.1007/s00500-014-1283-z
http://doi.org/10.1007/BF00058655
http://doi.org/10.1016/j.jspi.2006.06.002
http://doi.org/10.1109/4235.996017
http://doi.org/10.1016/j.ins.2014.08.039
http://doi.org/10.1080/00401706.1987.10488205
http://doi.org/10.1016/j.cor.2004.08.012
http://doi.org/10.1016/S0045-7825(99)00389-8
http://doi.org/10.1109/TEVC.2005.846356
http://doi.org/10.1109/TEVC.2006.882428
http://doi.org/10.1016/j.knosys.2021.107532
http://doi.org/10.1016/j.swevo.2020.100800
http://doi.org/10.1109/TEVC.2020.2979740
http://doi.org/10.1016/j.ins.2019.05.019

	Introduction 
	Data-Driven Evolutionary Algorithms (DDEAs) 
	DDEA-SE 
	MGP-SLPSO 
	CAL-SAPSO 
	GPEME 

	Noisy Environment Simulation (NES) 
	Preliminaries and Basic Definitions 
	Noise Parameter Settings 
	Benchmark Problems 

	Experiments and Analysis 
	Experimental Settings 
	Experimental Results 
	Effect of Noise Levels 
	Effect on Benchmark Problems 
	Ellipsoid 
	Rosenbrock 
	Ackley 
	Griewank 
	Rastrigin 
	Discussion 

	Effect on Algorithms 
	DDEA-SE 
	MGP-SLPSO 
	CAL-SAPSO 
	GPEME 
	Discussion 


	Conclusions 
	Appendix A
	References

