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Abstract: In quantum and quantum-inspired machine learning, a key step is to embed the data
in the quantum space known as Hilbert space. Studying quantum kernel function, which defines
the distances among the samples in the Hilbert space, belongs to the fundamental topics in this
direction. In this work, we propose a tunable quantum-inspired kernel function (QIKF) named
rescaled logarithmic fidelity (RLF) and a non-parametric algorithm for the semi-supervised learning
in the quantum space. The rescaling takes advantage of the non-linearity of the kernel to tune the
mutual distances of samples in the Hilbert space, and meanwhile avoids the exponentially-small
fidelities between quantum many-qubit states. Being non-parametric excludes the possible effects
from the variational parameters, and evidently demonstrates the properties of the kernel itself. Our
results on the hand-written digits (MNIST dataset) and movie reviews (IMDb dataset) support the
validity of our method, by comparing with the standard fidelity as the QIKF as well as several
well-known non-parametric algorithms (naive Bayes classifiers, k-nearest neighbors, and spectral
clustering). High accuracy is demonstrated, particularly for the unsupervised case with no labeled
samples and the few-shot cases with small numbers of labeled samples. With the visualizations
by t-stochastic neighbor embedding, our results imply that the machine learning in the Hilbert
space complies with the principles of maximal coding rate reduction, where the low-dimensional
data exhibit within-class compressibility, between-class discrimination, and overall diversity. The
proposed QIKF and semi-supervised algorithm can be further combined with the parametric models
such as tensor networks, quantum circuits, and quantum neural networks.

Keywords: quantum machine learning; semi-supervised learning; non-parametric learning; quantum
kernel function

MSC: 81P16

1. Introduction

In machine learning and other relevant fields, kernel [1,2] is defined as a special
function to characterize the similarity (or distance) between any two samples after mapping
them to a high-dimensional space. For the quantum and quantum-inspired machine
learning (QML), an essential step to process classical data is to embed the data (e.g., images,
texts, etc.) to the quantum space known as Hilbert space [3–7]. The quantum kernel
function (QKF) that characterizes the distributions in the Hilbert space [3–18] is usually a
critical factor for the performance of a QML scheme.

Among the existing mappings from data to the quantum state representations, a
widely recognized example is known as the quantum feature map (see, e.g., [10,19–21]). It
maps each feature to the state of one qubit, and each sample to an M-qubit product state
(with M the number of features). Such a quantum feature map brings interpretability from
the perspective of quantum probabilities, and have succeeded in the supervised [10,20,21]
and unsupervised learning [19,22] algorithms as well as in the QML experiments [23]. It is
unexplored to use such a quantum feature map for semi-supervised learning.

Mathematics 2022, 10, 940. https://doi.org/10.3390/math10060940 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10060940
https://doi.org/10.3390/math10060940
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1844-7268
https://doi.org/10.3390/math10060940
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10060940?type=check_update&version=1


Mathematics 2022, 10, 940 2 of 15

In quantum information and computation [24], fidelity serves as a fundamental quan-
tity to characterize the similarity of two quantum states, and has been applied in tomog-
raphy [25], verification [26], and detection of quantum phase transitions [27–32]. One
drawback of fidelity for the many-qubit states is that it usually decreases exponentially
with the number of qubits M, which is known as the “orthogonal catastrophe”. Instability
or overflow of the precisions may occur for large M. One way to avoid the “orthogonal
catastrophe” is to use the logarithmic fidelity as the QKF (for instance [27,33,34]). However,
it is unclear for machine learning how the mutual distances of the samples or the data
structure will be altered by taking logarithm on the fidelity.

Motivated by the growing needs on investigating QKFs for particularly machine
learning, we here propose the rescaled logarithmic fidelity (RLF) as a tunable quantum-
inspired kernel function (QIKF). To show its validity, we implement non-parametric semi-
supervised learning in the Hilbert space based on RLF, which we name as RLF-NSSL. Being
non-parametric, we can exclude the possible effects from the variational parameters and
focus on the space and kernel. Note for the parametrized models, say neural networks, the
performances are mainly determined by their architecture and parameter complexities, such
as the arrangements of different types of layers and the numbers of variational parameters
therein. In the RLF-NSSL, a given sample is classified by comparing the RLF’s between
this sample and the clusters that are formed by labeled and pseudo-labeled samples. A
strategy for pseudo-labeling is proposed. RLF-NSSL achieves better accuracy comparing
with several established non-parametric methods such as naive Bayes classifiers, k-nearest
neighbors, and spectral clustering. Particularly for the unsupervised or few-shot cases
where the choice of kernel is crucial, the high performance of our method indicates the
validity of RLF for QML.

The clusters formed by the samples with labels and pseudo-labels also define a map-
ping from the original space to a low-dimensional effective space. With the visualization
by t-SNE [35], we show that the low-dimensional data exhibit within-class compressibility,
between-class discrimination, and overall diversity. It implies that the machine learning
in the Hilbert space also complies with the principles of maximal coding rate reduction
(MCR2) [36,37]. We expect that these findings, including the RLF and the pseudo-labeling
strategy, would generally benefit the QML using the parametric models, such as tensor
networks [10,19–22,38–48], parametric quantum circuits [49–53,53–56], and quantum neu-
ral networks [57–63]. The connections to the maximal coding rate reduction shows the
possibility of understanding and evaluating the QML methods from the perspective of
coding rate. Our code can be publicly found on Github [64].

2. Hilbert Space and Rescaled Logarithmic Fidelity

Given a sample that we assume to be a M-component vector x = {x1, x2, . . . , xM}
with 0 ≤ xm ≤ 1, the feature map (see, e.g., [10,19–21]) to encode it to a M-qubit product
states is written as

|φ〉 =
M

∏
⊗m=1

[
cos(

xmπ

2
)|0m〉+ sin(

xmπ

2
)|1m〉

]
. (1)

Here, |0m〉 and |1m〉 form a set of orthonormal basis for the m-th qubit, which satisfy
〈am|bm〉 = δab.

In quantum information, the quantity to characterize the similarity between two
states |φ1〉 and |φ2〉 is the fidelity f defined as the absolute value of their inner product
f (|φ1〉, |φ2〉) = |〈φ1|φ2〉|. As each state is normalized, we have 0 ≤ f ≤ 1. With f = 0, the
two states are orthogonal to each other and have the smallest similarity. With f = 1, the
states satisfy |φ1〉 = eiα|φ2〉 with α a universal phase factor. In this case, |φ1〉 and |φ2〉 can
be deemed as a same state (meaning zero distance).



Mathematics 2022, 10, 940 3 of 15

The fidelity with the feature map in Equation (1) results in a QKF to characterize the
similarity between two samples x1 and x2, which reads

f (x1, x2) =
M

∏
m=1

∣∣∣cos
[π

2
(x1

m − x2
m)
]∣∣∣. (2)

In other words, the similarity between x1 and x2 is characterized by the fidelity
f between the two product states obtained by implementing the feature map on these
two samples.

Equation (2) shows that the fidelity is the product of M non-negative numbers∣∣cos
[

π
2 (x1

m − x2
m)
]∣∣ ≤ 1 (the equality holds when the corresponding feature takes the

same value in the two samples, i.e., x1
m = x2

m). Consequently, f (x1, x2) decreases expo-
nentially with the number of pixels that take different values in x1 and x2. Taking MNIST
dataset as an example, there are usually O(102) such pixels. Then, f will be extremely small,
meaning that the states from any two of the samples are almost orthogonal to each other.
This is known as the “orthogonal catastrophe”, where instability or precision overflow
may occur.

One way to resolve this problem is to use the logarithmic fidelity (for instance [27,33,34]).

F(x1, x2) = log10 f (x1, x2)

= ∑M
m=1 log

{∣∣cos
[

π
2 (x1

m − x2
m)
]∣∣+ ε

} (3)

with ε a small positive constant to avoid log 0. F is a non-positive scalar that also character-
izes the similarity between the given states. Though F changes monotonously with f , the
mutual distances among the samples obtained by these two kernels are definitely different.
For instance, we might have ∑n F(x1, xn) < ∑n F(x2, xn) while ∑n f (x1, xn) > ∑n f (x2, xn),
due to the nonlinearity of the logarithmic function.

3. Rescaled Logarithmic Fidelity and Classification Scheme

In this work, we take advantage of the nonlinearity and define the rescaled logarithmic
fidelity (RLF) as

f̃β(x1, x2) = βF(x1 ,x2) = βlog10 f (x1 ,x2) (4)

with β a tunable parameter that we dub as the rescaling factor. In particular, for β = 10, the
RLF becomes the fidelity, i.e., f̃10(x1, x2) = f (x1, x2).

With certain labeled training samples {xl} from P classes, an unlabeled sample y can
be classified in a supervised learning process. First, we transform y to a P-dimensional
effective vector ỹ, where its p-th element is the average RLF with the training samples from
the p-th class

ỹp =
1

Np
∑

xl∈class-p

f̃β(xl , y), (5)

with Np the number of the labeled samples that belong to the p-th class. We call the labeled
samples in a same class as a cluster. The clusters define a dimensionality reduction map
given by Equation (5) from the original feature space to a P-dimensional space. In practice,
we take Np = N as a same number for all p. The classification of y is then indicated by the
largest element of ỹ as

c(y) = arg max
p

(ỹp). (6)

One can see that except certain hyper-parameters such as the rescaling factor β and
the number of labeled samples, the above method contains no variational parameters, thus
is dubbed as non-parametric supervised learning with RLF (RLF-NSL).
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Classically, RLF can be easily calculated. Therefore, the classification algorithms based
on RLF can be regarded as the quantum-inspired machine learning schemes running on
classical computers. Considering to run such algorithms on the quantum platforms, the
main challenge is the estimation of Equation (5) in order to obtain the similarity between a
given sample and the clusters. It requires to estimate the rescaled logarithmic fidelity f̃β

and calculate the summation over the samples in the cluster. In our cases, estimating f̃β

is much easier than estimating the fidelity or implementing the full-state tomography for
arbitrary states, since it is essentially the fidelity between two product states. Quantum
acceleration over classical computation is unlikely in calculating such a fidelity, however, it
is possible to gain quantum acceleration by parallelly computing the summations over the
samples. This requires to design the corresponding quantum circuit regarding RLF, which
is an open issue for the future investigations.

To demonstrate how β affects the classification accuracy, we choose the MNIST
dataset [65] as an example, and randomly take N = 10 labeled samples from each class of
the training set. The MNIST dataset contains the grey-scale images of hand-written digits,
where the resolution of each image is 28× 28 (meaning 784 features in each image). The
images are divided into two sets with 60,000 images as the training samples and 10,000
as the testing samples. We obtain the effective vectors {ỹ} of all testing samples using
Equation (5), and calculate the classification using Equation (6). The testing accuracy γ is
calculated as the number of the correctly classified testing samples divided by the total
number. Figure 1 shows the γ when the number of the labeled samples in each class is
small (few-shot learning with N = 10). We show the average of γ by implementing the
simulations for 20 times, and the variances are illustrated by the shadowed areas. All the
variances in this paper are obtained a similar way. One can see γ firstly rises and then
drops by increasing β, and reaches the maximum around 1.2 < β < 2. Note the β that gives
the maximal γ slightly changes with different N.

Figure 1. The β dependence of the testing accuracy γ of the testing samples for the ten classes in the
MNIST dataset, where εt is evaluated by randomly taking N=10 training samples from each classes.
Note the RLF becomes the standard fidelity for β = 10. We take the average of εt by implementing
the simulations for 20 times, and the variances are indicated by the shadowed area. By t-SNE, the
insets show the visualized distributions of 2000 effective vectors {ỹ} ( Equation (5)) that are randomly
taken from the testing samples.

In the insets, we randomly take 200 testing samples from each class, and reduce the
dimension of the effective vectors {ỹ} from 10 to 2 by t-SNE [35], in order to visualize the
distribution of the testing samples. The t-SNE is a non-linear dimensionality reduction
method. It maps the given samples to a lower-dimensional space by reducing the number
of features. The reduction is optimal in the sense that the mutual distances (or similarities)
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among the samples in the lower-dimensional space should be close to those in the original
space. By eyes, one can observe better separation for larger γ (e.g., β = 1.4) compared with
those β’s giving smaller γ. More discussions are given below from the perspective of rate
reduction [36,37]. We also confirm with more simulations that the fidelity (equivalently
with β = 10 in the RLF) gives lower accuracy with γ ' 50%. Note this accuracy is also not
stable since the fidelity is exponentially small.

Figure 2 demonstrates how the testing accuracy of RLF-NSL is affected by β with
different numbers of labeled samples N in each class. In all Ns that vary from 6 to 240, γ
firstly rapidly rises and the slowly decreases with β. Approximately for β ' 1.3, relatively
high testing accuracy is obtained in all cases.

Figure 2. Testing accuracy γ of non-parametric supervised learning using rescaled logarithmic fidelity
(RLF-NSL) on the MNIST dataset with different number of labeled samples N in each class.

4. Non-Parametric Semi-Supervised Learning with Pseudo-Labels

Based on RLF, we propose a non-parametric semi-supervised learning algorithm (RLF-
NSSL). Different from supervised learning where sufficiently many labeled samples are
required to implement the machine learning tasks, the key of semi-supervised learning
is, in short, to utilize the samples whose labels are predicted by the algorithm itself. The
generated labels are called pseudo-labels. The supervised learning can be considered as a
special case of semi-supervised learning with zero pseudo-labels. For the unsupervised
kernel-based classifications where there is no labeled samples, pseudo-labels can be useful
to implement the classification tasks in a way similar to the supervised cases. The strategy of
tagging the pseudo-labels is key to the prediction accuracy. Therefore, for the unsupervised
(and also the few-shot cases with a small number of labeled samples), the performance
should strongly rely on the choice of kernel. Here, we define P clusters, of which each
contains two parts: all the N labeled training samples in this class and Ñ unlabeled samples
that are classified to this class. The rescaling factor is taken as the optimal β with (N + Ñ)
labeled samples in RLF-NSL. The key is how to choose the Ñ samples with pseudo-labels
to expand the clusters.

Our strategy is to divide the unlabeled training samples into batches for classification
and pseudo-labeling. The clusters are initialized by the labeled samples. Then, for each
batch of the unlabeled samples, we classify them by calculating the effective vectors given
by Equation (5), where the summation is over all the samples with labels and pseudo-labels
(if any). Then, we add these samples to the corresponding clusters according to their
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classifications. The cluster is used to classify the testing set after all unlabeled training
samples are classified.

Inevitably, the incorrect pseudo-labels would be introduced into the clusters, which
may harm the classification accuracy. Therefore, we propose to update the samples in the
clusters. To this aim, we define the confidence. For a sample y in the p-th cluster, it is
defined as

η =
ỹp

∑P
p′=1 ỹp′

, (7)

with ỹp obtained by Equation (5). Then, in each cluster, we keep N∆ pseudo-labels with
the highest confidence. The rest pseudo-labels are removed, and the corresponding sam-
ples are thrown to the pool of the unlabeled samples, which are to be classified in the
future iterations.

Figure 3 shows the testing accuracy γ of the MNIST dataset with different numbers
of the labeled samples N. The accuracy of RLF-NSL (green line) already surpasses the
recognized non-parametric methods including k-nearest neighbors (KNN) [66] with k = 1
and 10, and the naive Bayesian classifier [67]. KNN is also a kernel-based classification
method. One first calculates the distances (or similarities) between the target sample and
all labeled samples, and then find the k labeled samples with the smallest distances. The
classification of the target sample is given by finding the class that has the largest number
in these k samples. The performance of RLF-NSL significantly surpasses a baseline model,
where we simply replace the RLF fβ in Equation (5) by the Euclidean kernel

fE = ||xl − y||. (8)

Figure 3. Testing accuracy γ of non-parametric semi-supervised and supervised learning using
rescaled logarithmic fidelity (RLF-NSSL and RLF-NSL , respectively) on the MNIST dataset. Our
results are compared with k-nearest neighbors with k = 1 and 10, naive Bayesian classifiers, and a
baseline model by simply replacing RLF by the Euclidean distance. For more results of the KNN with
different values of k and those of the p-norm distance with different values of p, please refer to the
Appendix A.

The RLF-NSSL achieves the highest accuracy among all the presented methods. Sig-
nificant improvement is observed particularly for the few-shot learning with small N, as
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shown in the inset. Note for different N, we optimize β in RLF-NSL and we fix β = 1.3
in RLF-NSSL.

For the unsupervised learning, we assume there are no labeled samples from the very
beginning. All samples in the clusters will be those with pseudo-labels. To start with, we
randomly chose one sample to form a cluster. From all the unlabeled samples, every time
we select a new sample (denoted as x̃) that satisfies two conditions:

x̃ = argminx ∑
xi∈clusters

F(x, xi); (9)

F(x̃, xi) < µ for ∀ xi ∈ clusters. (10)

with µ a preset small constant. Repeating the above procedure for (P− 1) times, we have
P clusters, of which each contains one sample. These samples have relatively small mutual
similarities, thus are reasonable choices to initialize the clusters. We classify all the samples
out of the clusters using the method explained in Section 3. Then, all samples will be added
to the corresponding clusters according to the classifications.

The next step is to use the semi-supervised learning method introduced in Section 4 to
update the samples in the clusters. Specifically, we remove the pseudo-labels for part of
the samples in each cluster with the lowest confidence, and throw them to the pool of the
unlabeled samples. We subsequently classify all the unlabeled samples and add them to
the clusters correspondingly. Repeat the processes above until the clusters converge.

Table 1 compares the testing accuracy γ of our RLF-NSSL with other two unsupervised
methods k-means [68,69] and spectral clustering [70–72]. We use the way proposed in [73]
to determine the labels of the clusters. For each iteration in the RLF-NSSL to update the
clusters, we remove the pseudo-labels of 35% of the samples with the lowest confidence
in each cluster, which are to be re-classified in the next iteration. Our RLF-NSSL achieves
the highest accuracy among these three methods. RLF-NSSL exhibits relatively high
standard deviation, possibly due to the large fluctuation induced by the (nearly) random
initialization of the clusters. Such fluctuation can be suppressed by incorporating a proper
initialization strategy.

Table 1. The testing accuracy γ and the standard deviation (std.) on the MNIST dataset using k-means,
spectral clustering, and RLF-NSSL (N = 0, i.e., no labeled samples). We use the way proposed in [73]
to determine the labels of the clusters in the case of unsupervised learning. For the k-means, we use
the randomly initialized clustering center and take 270 iteration steps. The similarity is characterized
by Euclidean distance. For spectral clustering, we use the SpectralClustering function from the
“sklearn” package in Python.

k-Means Spectral Clustering RLF-NSSL (N = 0)

γ (%) 56.21 65.46 72.64
Std. 1.83 0.1 5.43

We compare the testing accuracy by using different kernels and classification strategies,
as shown in Figure 4. We choose IMDb [74], a recognized dataset in the field of natural
language processing. Each sample is a comment on a movie, and the task is to predict
whether it is positive or negative. The dataset contains 50,000 samples, in which half for
training and half for testing. For convenience, we limit the maximal number of the features
in a sample (i.e., the maximal number of words in a comment) to Mmax = 100, and finally
use 2773 training samples and 2963 testing samples. The labeled samples are randomly
selected from the training samples, and the testing accuracy is evaluated by the testing
samples. We test two classification strategies, which are KNN and NSL. We also compare
different kernels. The Euclidean distance fE is given by Equation (8). For the Gaussian
kernel, the distance is defined by a Gaussian distribution, which satisfies
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fG(x1, x2) = e−
f 2
E(x1,x2)

2σ2 . (11)

where σ controls the variance. For the Euclidean-NSL algorithm, we use fE in Equation (5)
to obtain the classifications. The rest parts are the same as RLF-NSL. For the Euclidean-
KNN algorithm, we use fE to obtained the k labeled samples with the smallest distances. In
RLF-NSL, we flexibly adjust the rescaling factor β as the number of labeled samples varies.
The RLF-NSL achieves the highest testing accuracy among these algorithms.

Figure 4. The testing accuracy of the RLF-NSL on the IMDb dataset comparing different kernels
(Euclidean, Gaussian, and RLF) and classification strategies (KNN and NSL). The x-axis shows the
number of labeled samples in each class. For more results of the KNN with different values of k and
those of the Gaussian kernel with different values of σ, please refer to the Appendix A.

To demonstrate how the classification precision is improved by updating the pseudo-
labeled samples in the clusters, we take the few-shot learning by RLF-NSSL as an example.
At the beginning, there are N = 6 labeled samples in each class to define the cluster. For the
zeroth epoch, the low-dimensional data and classifications are obtained by these labeled
samples. In the update process, each epoch contains three sub-steps. In the first sub-step,
we classify 500 samples with the highest RLF samples and add them to the corresponding
clusters according to their classifications. In the second and third sub-steps, we update the
clusters by replacing part of the pseudo-labeled samples. Specifically, we move 500 samples
that have the lowest confidence η from each cluster to the pool of the unclassified samples.
Then we calculate the classifications of all samples in the pool, and add the 500 samples
with the highest RLF to the corresponding clusters.

In Figure 5a,b, we show the confidence η and classification accuracy γc for the samples
inside the clusters. Each time when we add new samples to the clusters in the first sub-step
of each epoch (see red markers), both η and γc decrease. By updating the clusters, we
observe obvious improvement of η by replacing the less confident samples in the clusters.
Slight improvement of γc is observed in general after the second sub-step. Even though the
pseudo-labels of the samples in the clusters become less accurate as the clusters contain
more and more pseudo samples, we observe monotonous increase (with insignificant
fluctuations) of the testing accuracy γ as shown in Figure 5c. This is a convincing evidence
on the validity of our RLF-NSSL and the pseudo-labeling strategy.
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Figure 5. For the RLF-NSSL on the MNIST dataset with N = 6 labeled samples in each class (few-
shot case), (a,b) show the confidence η and classification accuracy γc of the samples in the clusters,
respectively, in different epochs. (c) shows the classification accuracy γ for the testing set. The insets
of (c) illustrate the visualizations by applying t-SNE to the testing samples in the low-dimensional
space (Equation (5)). See the details in the main text.

5. Discussion from the Perspective of Rate Reduction

In Refs. [36,37], several general principles were proposed on the continuous mapping
from the original feature space to a low-dimensional space for the purposes of classification
or clustering, known as the principles of maximal coding rate reduction (MCR2). Consider-
ing the classification problems, the representations should satisfy the following properties:
(a) samples from the same class should belong to low-dimensional linear subspaces; (b)
samples from different classes should belong to different low-dimensional subspaces and
be uncorrelated; (c) the variance of features for the samples in the same class should be as
large as possible as long as (b) is satisfied. These three principles are known as within-class
compressibility, between-class discrimination, and overall diversity, respectively.
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Our results imply that MCR2 should also apply to the machine learning in the Hilbert
space of many qubits. In our scheme, the clusters map each sample ( the product state ob-
tained by the feature map given by Equation (4)) to a P-dimensional vector. The distribution
of these vectors is defined by their mutual distances based on the RLF.

The insets of Figure 5c show the visualizations of the P-dimensional vectors from
the testing set at the 0th and 11th epochs. At the 0th epoch, we simply use the labeled
samples to define the clusters. The testing accuracy is less than 70%. At the 11th epoch, the
clusters consist of the labeled and pseudo-labeled samples. The pseudo-labeled samples
are updated using the RLF-NSSL algorithm. The testing accuracy is round 85%. Comparing
the two distributions in the two-dimensional space, it is obvious that at the 11th epoch,
the samples in the same class tend to form a one-dimensional stream in the visualization,
indicating the within-class compressibility. The samples are distributed as “radiations”
from the middle toward the edges, indicating the overall diversity. Each two neighboring
radial lines give a similar angel, indicating the between-class discrimination. Inspecting
from these three aspects, one can see that the samples at the 11th epoch better satisfy the
MCR2 than those at the 0th epoch. Similar phenomena can be observed in the insets of
Figure 1. The β giving higher testing accuracy would better obey the MCR2, and vice
versa. These results provide preliminary evidence for the validity of MCR2 for the machine
learning in the Hilbert space.

6. Summary

With the fast development of quantum and quantum-inspired machine learning, there
are the strong needs of understanding and exploring the quantum kernel functions. In
this work, we propose the rescaled logarithmic fidelity (RLF) to define a tunable quantum-
inspired kernel function for characterizing the similarity between many-body states. The
advantages of RLF are revealed by applying it for non-parametric semi-supervised learn-
ing. Higher accuracy is achieved particularly for the unsupervised and few-shot cases,
compared with the standard fidelity and several well-established non-parametric methods.
From the visualization of the data in the low-dimensional effective space defined by the
RLF, our results support the applicability of MCR2 theory. Surely, more tests on different
datasets should be done to verify the advantages of the RLF over the classical kernel
functions. The proposed RLF and the semi-supervised learning strategies contribute to
understand and improve the QML methods, including those with parametric models (such
as parametrized quantum circuits [49–53,53–56] and tensor networks [10,19–22,38–48]).
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Appendix A. Supplemental Results on the MNIST and IMDb Datasets

In the appendix, we compare the accuracies by tuning the hyperparameters including
k in the KNN, σ in the Gaussian distribution, and p of the p-norm. Our results show that the
RLF-NSL achieves in general the highest accuracy by taking the optimal rescaling factor β.

Appendix A.1. MNIST Dataset

Tables A1 and A2 give the classification accuracies γ and the standard deviation of
KNN for different values of k with the numbers of labeled samples N = 6 (the few-shot
case) and N = 600. The accuracies of the RLF-NSL are also given for comparison, where
we take the rescaling factor β = 1.08 and 1.35 for N = 6 and 600, respectively.

Table A1. The classification accuracy γ and the standard deviation (std.) on the MNIST dataset for
N = 6 by KNN with different k and by the RLF-NSL with β = 1.08.

k 1 2 3 4 6 8 10 12 RLF-NSL

γ (%) 66.53 60.52 60.15 60.52 56.07 54.84 52.90 50.77 68.40
std. 1.86 1.95 2.32 1.64 2.54 2.22 2.59 3.06 2.03

Table A2. The classification accuracy γ and the standard deviation (std.) on the MNIST dataset for
N = 600 by KNN with different k and by the RLF-NSL with β = 1.35.

k 1 2 3 4 6 8 10 12 RLF-NSL

γ (%) 93.86 93.67 93.90 93.67 93.73 93.60 93.34 93.23 94.78
std. 0.14 0.11 0.05 0.11 0.17 0.15 0.16 0.12 0.16

In Figure A1, we show the classification accuracy γ by replacing the RLF kernel in the
RLF-NSL algorithm with the p-norm kernel, where p varies from 0 to 20. Note the p-norm
gives the sparsity for p = 0, and gives the maximum of the absolute values of the elements
for p → ∞. The horizontal dash line shows the accuracy of the RLF-NSL with β = 1.08.
The shadows illustrate the standard deviation. Our results suggest that γ increases with
p, but soon converges for about p > 10. The converged accuracy is lower than that of the
RLF-NSL.

Figure A1. The classification accuracy γ on the MNIST dataset for (a) N = 6 and (b) N = 600. The
solid line with symbols show the results by using p-norm as the kernel in the NSL algorithm. The
horizontal dash lines show the accuracies of the RLF-NSL with β = 1.08 and 1.35, respectively. The
shadows demonstrate the standard deviation.
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Appendix A.2. IMDb Dataset

Tables A3 and A4 give the classification accuracies γ and the standard deviation of
KNN for different values of k with the numbers of labeled samples N = 100 and N = 1200.
The accuracies of the RLF-NSL are also given for comparison, where we take the rescaling
factor β = 1.06 in both tables.

Table A3. The classification accuracy γ and the standard deviation (std.) on the IMDb dataset for
N = 100 by KNN with different k and by the RLF-NSL with β = 1.06.

k 1 2 4 6 8 10 12 14 16 RLF-NSL

γ (%) 55.92 50.47 54.69 55.60 57.09 58.72 57.93 59.67 56.69 65.78
std. 5.02 5.21 5.13 4.81 5.16 4.16 3.92 4.17 4.45 5.62

Table A4. The classification accuracy γ and the standard deviation (std.) on the IMDb dataset for
N = 1200 by KNN with different k and by the RLF-NSL with β = 1.06.

k 1 2 4 6 8 10 12 14 16 RLF-NSL

γ (%) 50.82 48.89 55.54 56.63 57.19 56.68 58.04 56.51 51.14 74.46
std. 4.58 0.86 1.70 2.86 2.21 3.63 2.18 3.58 2.21 1.24

Tables A5 and A6 give the classification accuracies γ and the standard deviation of
NSL algorithm by using the Gaussian kernel functions with σ varying from 0.05 to 0.5. The
highest accuracy appears near σ ' 0.2 for N = 100, and near σ ' 0.1 for N = 1200. In both
tables, we take β = 1.06 in the RLF-NSL algorithm, which obtains the highest accuracies
comparing with those from the Gaussian kernel function.

Table A5. The classification accuracy γ and the standard deviation(std.) on the IMDb for N = 100 by
the NSL with the Guassian and RLF kernels. For the Guassian kernel, we vary σ from 0.05 to 0.5. For
the RLF-NSL, we take β = 1.06.

σ 0.05 0.1 0.15 0.2 0.25 0.5 RLF-NSL

γ (%) 53.35 58.25 60.84 63.97 61.66 61.48 65.78
std. 3.62 4.623 4.99 5.80 5.97 7.50 5.62

Table A6. The classification accuracy γ and the standard deviation(std.) on the IMDb for N = 1200
by the NSL with the Guassian and RLF kernels. For the Guassian kernel, we vary σ from 0.05 to 0.5.
For the RLF-NSL, we take β = 1.06.

σ 0.05 0.1 0.15 0.2 0.25 0.5 RLF-NSL

γ (%) 61.78 71.91 70.03 65.14 62.53 58.76 74.46
std. 1.18 0.93 2.12 2.59 1.91 1.57 1.24

Figure A2 demonstrates the classification accuracies γ on the IMDb dataset for (a)
N = 100 and (b) N = 1200. The solid lines with symbols show the γ obtained by the NSL
algorithm using the p-norm as the kernel, where p varies from 0 to 10. Our data suggest
that the value of p does not cause much difference on the accuracy. The results by the
RLF-NSL algorithm with β = 1.06 are given by the horizontal dash lines. The shadows
illustrate the standard deviation. In general, the RLF-NSL achieves higher accuracy than
those using the p-norm kernel.
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Figure A2. The classification accuracies γ on the IMDb dataset for (a) N = 100 and (b) N = 1200,
obtained by the NSL with the p-norm for different values of p (solid lines with symbols) and with the
RLF as the kernel (horizontal dash lines). The shadows show the standard deviation.
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