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Abstract: State-to-state numerical simulations of high-speed reacting flows are the most detailed
but also often prohibitively computationally expensive. In this work, we explore the usage of
machine learning algorithms to alleviate such a burden. Several tasks have been identified. Firstly,
data-driven machine learning regression models were compared for the prediction of the relaxation
source terms appearing in the right-hand side of the state-to-state Euler system of equations for
a one-dimensional reacting flow of a N2/N binary mixture behind a plane shock wave. Results
show that, by appropriately choosing the regressor and opportunely tuning its hyperparameters,
it is possible to achieve accurate predictions compared to the full-scale state-to-state simulation in
significantly shorter times. Secondly, several strategies to speed-up our in-house state-to-state solver
were investigated by coupling it with the best-performing pre-trained machine learning algorithm.
The embedding of machine learning algorithms into ordinary differential equations solvers may offer
a speed-up of several orders of magnitude. Nevertheless, performances are found to be strongly
dependent on the interfaced codes and the set of variables onto which the coupling is realized. Finally,
the solution of the state-to-state Euler system of equations was inferred by means of a deep neural
network by-passing the use of the solver while relying only on data. Promising results suggest that
deep neural networks appear to be a viable technology also for this task.

Keywords: machine learning; neural network; state-to-state kinetics; vibrational relaxation; chemical
reactions

MSC: 76-10

1. Introduction

Numerical simulation of non-equilibrium flows receives much attention in computa-
tional fluid dynamics due to their importance for aerospace and low-temperature plasma
applications. The state-to-state (STS) approach based on the assumption of fully coupled
vibrational-chemical kinetics and fluid dynamics has many advantages with respect to
commonly used one-temperature (1T) and multi-temperature (MT) models, since it is
capable of describing strong deviations from equilibrium and arbitrary vibrational distri-
butions. As it was shown in [1–4], the state-to-state formulation allows to obtain the best
agreement with experimental data. The price for such high level of detail description is the
computational cost, which is often prohibitive. This led several researchers to investigate
various energy binning approaches, in the framework of traditional CFD (Computational
Fluid Dynamics) and DSMC (Direct Simulation Monte Carlo) methods [5–11], as well as
MPI-CUDA approaches [12].

In recent years, we have observed a remarkable growth of research interest in machine
learning technologies, fostered by the coexistence of several factors, such as the increase of
the amount of generated data, the improvements in hardware manufacturing, the reduced
cost of computational resources, data storage and transfer, the smarter algorithms’ develop-
ment, the wide-spreading of open source software, and significant and ongoing investment
by industry.
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Typical machine learning applications regard classification, regression, clustering,
or dimensionality reduction tasks. In the early 1990s, neural networks were applied,
for example, in [13], to interpolate the rate coefficients of vibrational quantum exchange
processes between nitrogen molecules in a state-to-state simulation by means of a multilayer
neural network as a function of quantum numbers. In [14], a neural network was used to
interpolate the velocity coefficients of a chemical network for the kinetics of an excimer
laser, as a function of various parameters, in the state-to-state view for the HCl molecule.
In [15] neural networks were trained to emulate the solution of the inverse problem of
the Boltzmann transport equation and consequently obtain the excitation cross sections
of various molecular states starting from electron transport quantities as functions of the
electric field. Updated methods have been successfully applied more recently, for example
in [16,17]. Machine learning algorithms have also been used in fluid mechanics problems,
for example, in experimental data processing, shape optimization, turbulence closure
modeling, control and other traditionally intractable problems [18–21].

In this paper, we explore the possible ways of reducing the computational costs of
state-to-state non-equilibrium flow simulations using machine learning methods.

In order to estimate the importance of different terms to the total computational cost,
a simple overall profiling analysis was conducted for a typical two-dimensional simulation
of a hypersonic non-equilibrium viscous reacting flow across a blunt body geometry.
Details of input parameter settings and profile timings are given in Table 1. As expected,
the kinetic and transport modules are the most expensive. It is worth noting here that for
the computation of the transport properties, the Gupta [22] model has been adopted and
this is the reason why its cost is moderate. Nevertheless, as soon as state-to-state models
are employed for transport processes as well, the computational cost will be comparable or
greater than the kinetic one.

Table 1. Parameter settings and timings of one iteration (0.814 s) for a typical two-dimensional
simulation of a hypersonic non-equilibrium viscous reacting flow across a blunt body geometry.

Key Value

Flow Type Navier_Stokes
Species N2, O2, NO, N, O
Kinetic STS

Transport Gupta
Gas Model Nonequ_Gas

Simulation_Type 2D_AXI
Pressure 2.0

Temperature 195.0
Velocity 11,360.0

Mass Fractions N2: 0.79, O2: 0.21

Process Time

Exchange 0.00%
Update 0.26%

ComputeConvectionFlux 1.51%
ComputeDissipationFlux 21.93%

ComputeSourceTerms 76.27%
ComputeLocalResidual 0.01%

Consistently, it is possible to individuate several areas, as shown in Figure 1, in which
it may be convenient to apply or at least to investigate the use of machine learning in the
framework of state-to-state formulations. In the present paper, the Kinetic module will be
considered while the Transport one will be addressed in a following publication.
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Figure 1. Machine learning for state-to-state: conceptual map.

The organization of the paper is as follows: firstly, the mathematical formulation
of the state-to-state formulation is recalled in Section 2. Further details can be found
in [23]. Subsequently, in Section 3, several machine learning algorithms are applied to
perform regression of the STS relaxation rates. In Section 4, we couple a state-to-state
ordinary differential equations (ODE) solver and machine learning in order to speed-up
the simulation by relieving the solver from the heavy computation of the kinetics source
terms, which are inferred by the machine learning. Section 5 reports the main results from
the inference of the set of equations for a one-dimensional inviscid reacting flow behind
the plain shock wave in the state-to-state formulation with a deep neural network (DNN).
Finally, Section 6 summarizes the conclusions, open issues, and future perspectives.

2. State-to-State Problem Formulation

Consider a chemically reacting gas mixture with translational, rotational, and vi-
brational degrees of freedom. Under high-temperature conditions, characteristic times
of translational and rotational relaxation τtr, τrot are much lower compared to those of
vibrational relaxation and chemical reactions, τvibr and τreact; this is confirmed in experi-
ments [24]. This allows one to introduce the following kinetic scaling:

τtr < τrot � τvibr < τreact ∼ θ, (1)

where θ is the fluid-dynamic time scale. On the basis of Equation (1), a detailed state-to-
state model for non-equilibrium gas flows with coupled vibrational relaxation, chemical
reactions, and gas dynamics can be developed [23]. Under this condition, translational and
rotational degrees of freedom are weakly non-equilibrium and their energy can be expressed
in terms of the Maxwell and Boltzmann distributions. At the same time, vibrational
relaxation and chemical reactions are strongly non-equilibrium, and therefore, variation
of vibrational level populations and chemical composition proceeds at the fluid-dynamic
time scale. In this case, conservation equations for mass, momentum, and energy are fully
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coupled with master equations for the vibrational level populations and atomic species
number densities.

A closed macroscopic flow model can be derived from the Boltzmann equation on
the basis of Equation (1) using the Chapman–Enskog method generalized by taking into
account different time scales [23]. In the zero-order approximation, we obtain the Euler
equations coupled to the master equations for the vibrational state populations including
vibrational and chemical production terms; in the first-order, the set of fluid-dynamic
equations corresponds to the Navier–Stokes–Fourier equations of viscous reacting flows,
and the master equations contain additional state-resolved diffusion fluxes. The general
theory is developed in [23].

In the present study, we consider a stationary one-dimensional (1D) flow of a shock
heated five-component air mixture including N2, O2, NO, N, and O species [25]. The set of
equations includes the 1D Euler equations of momentum and total energy

ρv
∂v
∂x

+
∂p
∂x

= 0, (2)

v
∂E
∂x

+ (E + p)
∂v
∂x

= 0, (3)

coupled to the master equations for the vibrational level populations nci of molecules (N2,
O2, NO)

v
∂nci
∂x

+ nci
∂v
∂x

= Rvibr
ci + Rreact

ci , i = 0, 1, . . . lc, c = 1, 2, . . . lm, (4)

and equations of chemical kinetics for the number densities nc of atoms (N, O)

v
∂nc

∂x
+ nc

∂v
∂x

= Rreact
c , c = 1, 2, . . . la. (5)

In Equations (2)–(5), where v is the gas velocity component in the x-direction, ρ and p
are density and pressure, lm, la correspond to the numbers of molecular and atomic species
in a mixture, and lc is the number of the last excited vibrational state in the molecular
species c. In this study, molecular vibrational energy levels are calculated according
to the anharmonic oscillator models. The total number of the excited states is 122 and
includes 47 states of N2, 36 of O2, and 39 of NO. The total energy per unit volume E
includes translational, rotational, vibrational energies, and formation energy [23]. While
the translational and rotational energies are calculated on the basis of the local equilibrium
Maxwell–Boltzmann distributions and functions of temperature and chemical species
number densities, the vibrational energy depends on the non-equilibrium populations of
vibrational states. Thus, the calorically-perfect gas model is not applicable in the state-to-
state approach.

The vibrational and chemical production rates Rvibr
ci , Rreact

ci , and Rreact
c depend on the

kinetic scheme and include state-resolved rate coefficients of non-equilibrium vibrational
energy transitions and chemical reactions. In the general form, they are given by the
expressions [23]

Rci = Rvibr
ci + Rreact

ci = RVT
ci + RVV

ci + R2
2
ci + R2
3

ci , (6)

where VT and VV correspond to the vibration-vibration and vibration-translation energy
transitions whereas notations 2 
 2 and 2 
 3 are chosen for the exchange and dissociation-
recombination chemical reactions:

RVT
ci = ∑

M
nM ∑

i′ 6=i

(
nci′k

M
c,i′i − ncikM

c,ii′

)
, (7)

RVV
ci = ∑

dki′k′

(
nci′ndk′k

d,k′k
c,i′i − ncindkkd,kk′

c,ii′

)
, (8)
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R2
2
ci = ∑

dc′d′
∑
ki′k′

(
nc′i′nd′k′k

d′k′ ,dk
c′i′ ,ci − ncindkkdk,d′k′

ci,c′i′

)
, (9)

R2
3
ci = ∑

M
nM

(
nc′n f ′k

M
rec,ci − ncikM

ci,diss

)
(10)

M stands for the collision partner whose internal state does not vary during the collision;
kM

ii′ , kd,kk′
c,ii′ , kdk,d′k′

ci,c′i′ , kM
ci,diss, kM

rec,ci are the state-resolved rate coefficients of vibrational energy
transitions, exchange reactions, dissociation, and recombination. The rate coefficients
depend on the temperature, chemical species, and vibrational states of all particles involved
in the specific reaction; the number of rate coefficients may achieve tens and hundreds
of thousands, depending on the mixture composition. Computation and storage of state-
specific rate coefficients is one of the most resource consuming parts of state-to-state
flow simulations.

For the five-component air mixture considered in the present study, the kinetic scheme
includes: VV vibrational energy transitions both within the same chemical species and
between molecules of different species; single-quantum VT exchanges; state-specific dis-
sociation reactions of N2, O2, NO in collisions with any species; exchange reactions with
formation of NO depending on the vibrational states of both reagents and products. For bi-
nary mixtures, we keep in the kinetic scheme only VV, VT transitions, and dissociation-
recombination reactions. The details of the kinetic scheme can be found in [26].

Thorough analysis and validation of recent models for state-resolved transition and
reaction rate coefficients has been carried out in [26]. On the basis of recommendations
given in the above paper, we use the following set of rate coefficients in the present study.
For binary mixtures, the Schwartz–Slawsky–Herzfeld (SSH) model [27,28] is used for
the VV and VT rate coefficients, whereas the state-specific dissociation reactions are de-
scribed in the frame of the preferential Marrone–Treanor model [29,30] with the parameter
U = D/6k. For the five-component air mixture, we use the Forced Harmonic Oscillator
(FHO) model [31] for the vibrational energy transitions as well as the recent model [32]
generalizing the Aliat model for chemical reactions [33] by accounting for the vibrational
levels of reaction products; the parameters of the model are derived by fitting the rate
coefficients to those obtained in quasi-classical trajectory calculations. Parameters in the
Arrhenius law are provided by Park [34]. The rate coefficients of backward reactions are
calculated using the detailed balance principle [23]. Note that evaluation of backward
reaction rate coefficients is computationally demanding since it requires calculation of
vibrational state-specific rotational partition functions.

As shown by the profiling analysis conducted in [26], the computational bottleneck
for the system of Equations (2)–(5) is represented by the right-hand side terms. Competing
coupled processes are embedded in these terms, which contain time consuming functions
(i.e., factorials, exponentials) to be evaluated at each time integration step. In addition, such
terms are often stiff and dedicated routines should be preferred.

It is interesting to observe that each of the aforementioned models is characterized
by its own computational efficiency, which can significantly affect the overall time-to-
simulation. Machine learning methods are agnostic in regards to this aspect, as they provide
approximately the same efficiency independently of the model or the processes involved.

3. Regression

Machine learning algorithms are usually grouped into supervised, semi-supervised,
and unsupervised [19]. In supervised learning, the algorithm is fed with labeled datasets.
Thus, input/output pairs are explicitly provided and regression methods are used to find
the best model for the given labeled data via optimization techniques. In unsupervised
learning, no labels are provided [35]. The two most popular supervised tasks are cer-
tainly classification and regression. The former has discrete output, while the latter is
characterized by continuous quantities prediction [36–38].
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This section presents the results of the regression of state-to-state relaxation rate terms,
Equation (6). Several state-of-the-art machine learning algorithms from the scikit-learn [39]
library were compared. Table 2 reports the list of the evaluated algorithms, specifically,
Kernel Ridge (KR), Support Vector Machines (SVM), k-Nearest Neighbor (kNN), Gaussian
Processes (GP), ensemble methods (Random Forest (RF), Extremely Randomized Trees
(ET), Gradient Boosting (GB), Histogram-Based Gradient Boosting (HGB), and Multi-
layer Perceptron (MLP). The optimal parameters’ combination found by the grid-search
algorithm is given in bold font.

Table 2. Hyperparameters settings. The parameters in quotations refer to scikit-learn names. Optimal
parameter values with respect to the considered task are indicated in bold font. Reproduced from [40]
with permission.

Algorithm Parameter Values

KR

kernel {poly, rbf}

alpha {1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3}

gamma {1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3}

SVM

kernel {poly, rbf}

gamma {scale, auto}

C {1e-2, 1e-1, 1e0, 1e1, 1e2}

epsilon {1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3}

coef0 {1e0, 1e-1, 2e-1}

kNN

algorithm {ball_tree, kd_tree, brute}

n_neighbors {1,2,3,4,5,6,7,8,9,10}

leaf_size {1, 10, 20, 30, 100}

weights {uniform, distance}

p {1, 2}

GP

n_restarts_optimizer {(0,1,10,100}

alpha {1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3}

kernel {RBF, ExpSineSquared, RationalQuadratic, Matern}

DT

criterion {mse, friedman_mse, mae}

splitter {best, random}

max_features {auto, sqrt, log2}

RF

n_estimators {10, 100, 1000}

min_weight_fraction_leaf {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

max_features {sqrt, log2, auto}

criterion {mse, mae}

min_samples_leaf {1, 2 ,3, 4, 5, 10, 100}

bootstrap {True, False}

warm_start {True, False}

max_impurity_decrease {0.1, 0.2, 0.3, 0.4, 0.5}

ET

n_estimators {10, 100, 1000}

min_weight_fraction_leaf {0.0, 0.25, 0.5}

max_depth {1, 10, 100, None}

max_leaf_nodes {2, 10, 100}

min_samples_split {2, 10, 100}

min_samples_leaf {1, 10, 100}
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Table 2. Cont.

Algorithm Parameter Values

GB

n_estimators {10, 100, 1000}

min_weight_fraction_leaf {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

max_features {sqrt, log2, auto, None}

warm_start {True, False}

max_depth {1, 10, 100, None}

criterion {friedman_mse, mse, mae}

min_samples_split {2, 5, 10}

min_samples_leaf {1, 10, 100}

loss {ls, lad, huber, quantile}

HGB

loss {least_squares, least_absolute_deviation, poisson}

min_sample_leaf {1, 5, 10, 15, 20, 25, 50, 100}

warm_start {True, False}

MLP

activation {tanh, relu}

hidden_layer_sizes {10, 50, 100, 150, 200}

solver {lbfgs, adam, sgd}

leaning_rate {constant, invscaling, adaptive}

nesterovs_momentum {True, False}

warm_start {True, False}

early_stopping {True, False}

alpha {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.0}

It is worth noticing that no deep neural networks have been investigated for simulating
the rates in the present Section. In particular, it is interesting to observe that in [41]
15 hidden layers of size 78 have been used to achieve a significant solution speedup for
atmospheric chemistry whereas in [42] 5 hidden layers of sizes 512, 256, 128, 64, and 16 have
been used for chemistry reduction applied to the DNS of a syngas turbulent oxy-flame,
while in [43] 3 hidden layers of sizes 1600, 400, and 400 have been used to solve stiff ordinary
differential equation systems related to chemical kinetics. These examples, highlight the
potential of deep neural networks architectures for detailed chemistry integration and
reduction. Nevertheless, such type of investigation has been deferred to future publication.

Preliminary evaluation of the aforementioned algorithms was carried out in [40]. In the
current analysis, previous results have been checked, updated ,and further used to realize
a coupling between an ODE solver and machine learning algorithms, as discussed in the
next section.

Considering the solution of the state-to-state one-dimensional flow relaxation behind
a shock wave, the dataset was generated by an in-house Matlab code. Further details can be
found in [26]. The dataset contains the relaxation rate terms as functions of shock distance,
number density (molecular and atomic), velocity, and temperature. A traditional data
splitting scheme was adopted: 75% of samples were used for training, while 25% were
used for testing. The train_test_split built-in scikit-learn function was used. Moreover,
the GridSearchCV algorithm was used to tune the hyperparameters. Table 2 reports the
parameter grid explored by each algorithm. The “optimal” parameters were selected by a
10-fold cross-validation performed on training data only.

The algorithms were fed with scaled data. It is generally regarded as good practice
to scale the input data, as it improves training and convergence history. Output targets
scaling also reduces the range of the output predictions, possibly making the network
train faster and model results better. Data leakage was prevented by using the built-in
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scikit-learn fit_transform function on the train data while only transforming the test
data. An assessment of data scaling influence on model performance as well as the choice
of the optimal preprocessing method was not conducted, as planned for future publication.

Table 3 reports the comparison of the aforementioned machine learning algorithms
for the regression of the relaxation rate terms. In order to evaluate the quality of a model’s
predictions, the following metrics are used: mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), and the regression score (coefficient of
determination, R2). Training and prediction times are also shown. No parallel processing is
adopted; simulations are run serially, which yields clean baseline estimates. In other terms,
n_jobs=1.

The problem that we are currently investigating can be recasted as a single-input,
single-output regression problem. Each machine learning algorithm estimates a single
vibrational level for each relaxation rate term as a function of temperature. Once the
“optimal” set of hyperparameters is found, the re-trained network is used to perform a
Multioutput regression and predict all the relaxation rate terms at once.

Table 3. Comparison of several machine learning algorithms for regression of relaxation rate terms.
Reproduced from [40] with permission.

Algorithm MAE MSE RMSE R2 Ttrain[s] Tpredict[s]

KR 7.868505e-08 3.800217e-14 1.949414e-07 0.999999 7.612628 0.075077

SVM 1.236652e-02 2.109761e-04 1.452501e-02 0.999786 5.317098 0.008577

kNN 8.655485e-04 2.659352e-06 1.630752e-03 0.999997 0.002296 0.004962

GP 7.235743e-07 2.436803e-12 1.561026e-06 0.999994 118.3911 0.098444

DT 2.417524e-03 1.623255e-05 4.028964e-03 0.999983 0.003520 0.000317

RF 1.140677e-03 5.016757e-06 2.239812e-03 0.999992 4.362630 0.038143

ET 1.595557e-03 6.005923e-06 2.450698e-03 0.999993 2.279543 0.202767

GB 2.300499e-03 1.478234e-05 3.844782e-03 0.999985 4.823793 0.006213

HGB 6.098571e-03 1.395461e-04 1.181296e-02 0.999859 14.385128 0.042188

MLP 6.023895e-03 7.539429e-05 8.682989e-03 0.999943 11.322764 0.009778

As shown in Table 3, the R2 score does not discriminate very much, assuming similar
values among models. Conversely, the error metrics are more reliable discriminators.
Kernel Ridge reports the lowest error levels while the Support Vector Machine reports
the highest. Comparable error levels are reported by the remaining algorithms; however,
there are noticeable differences in the prediction time. Decision Tree is found to be the
fastest algorithm. Relatively small prediction time is attained by k-Nearest Neighbor, which
occurs considerably faster than Kernel Ridge, providing at the same time very low error
levels (better accuracy is achieved only by Kernel Ridge and Gradient Boosting).

Figure 2 shows the parity plot of the predictions of the Decision Tree algorithm.
A similar level of closeness between predictions and actual ground truth values, lying close
to the diagonal and evenly distributed above and below the diagonal, have been achieved
with all other algorithms, but was omitted for brevity.
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Figure 2. Parity plot of cross-validated predictions against “ground truth” values for the Decision
Tree algorithm.

Genetic Algorithms

The family of genetic algorithms deserve a special mention because it can be used for
several purposes, among others, to increase the performance by selecting the best subset of
features from the input data and by tuning the hyperparameters of the models. An in-depth
discussion about genetic algorithms is out of the scope of the paper. The interested reader
may refer to [44–48].

In this study, we explore feature selection [49–54]. Advantages of successful feature
selection are: possible increasing of accuracy; reducing the training times; simplifying
the trained model. Feature selection [55] has been applied to the same dataset described
in the previous Section. AdaBoostRegressor was adopted as the estimator. Figure 3a
shows the mean squared error as function of the number of features. It can be noted
that more than three or four features do not improve the prediction. Figure 3b shows
the minimum/average fitness function used for the evolution of the genetic algorithm as
function of generations.

1 5 9 13 17 21 25 29 33 37 41 45 49 53
n First Features

10−5

10−4

10−3

M
SE

MSE over Features Selected

(a) (b)

Figure 3. (a) Plot of the mean squared error values for the relaxation source terms regression problem.
(b) Min/Average fitness function value over generations for the genetic algorithm.

The algorithm was run for 30 generations with a population size of 30. This yields the
following results:

-- Best Ever Individual = [1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0,
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0,
1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1]
-- Best Ever Fitness = 3.0083253440920882e-06
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which indicates the features selected to provide the best MSE for the test, which is ∼3e-06,
slightly better than the previous result. It is interesting that the genetic algorithm does not
use any assumptions about the scanned set of features, but it simply searches for the best
possible subset of features based on evolutionary selection principles.

Let us compare the performance of grid and genetic search for the best combinations
of hyperparameters. The random grid search supported by the sklearn (https://github.
com/scikit-learn/scikit-learn) library is conducted over all the possible combinations,
which can be very time consuming. A genetic algorithm is capable of searching for the
best combinations of hyperparameters within the predefined grid; this option is supported
by the sklearn-deap (https://github.com/rsteca/sklearn-deap) library, see [56] (https:
//github.com/DEAP/deap). (All accessed on 1 March 2022).

In the following listing, the scores of default, grid, and genetic grid search approaches
are compared for the same aforementioned dataset and estimator. Apart from observing the
huge increase of the computational time (and a slight improvement in the score) introduced
by the grid search with respect to the default values, we notice the time reduction obtained
with the genetic search for a very similar score.

*** Default Regressor Hyperparameter values:
{learning_rate: 1.0, loss: linear, n_estimators: 50, random_state: 42}
Score with default values = 0.9980733620530691
Time Elapsed = 0.00024271011352539062~s

*** Performing Grid Search...
Best parameters: {learning_rate: 1.0, loss: square, n_estimators: 30}
Best score: 0.9987849200477441
Time Elapsed = 1080.802133321762~s

*** Performing Genetic Grid Search...
--- Evolve in 300 possible combinations ---
gen nevals avg min max std
0 20 0.997418 0.996355 0.998481 0.000614776
1 15 0.997736 0.996508 0.998611 0.000582864
2 11 0.997967 0.997001 0.998614 0.000521943
3 14 0.998238 0.997351 0.998682 0.000403602
4 12 0.998421 0.997624 0.998682 0.00032174
5 9 0.998547 0.997658 0.998682 0.000216111
Best individual is: {n_estimators: 80, learning_rate: 0.215, loss: square}
with fitness: 0.9986822271396701
Time Elapsed = 352.01691937446594 s

Moreover, genetic algorithms can be used to directly search the entire parameter space.
In particular, differently from the previous result where the genetic algorithm was used
to scan a pre-defined hyperparameter space, we can represent each hyperparameter as a
variable participating in the search. The results are shown in Figure 4. It is worth observing
the opposite concavity of the curves in Figures 3b and 4. This is due to the different
definition of the fitness function, which, consequently, in one case is minimized and in the
other is maximized. By running a direct genetic search we obtained the following results,
which achieved the best score for the considered dataset and estimator.

- Best solution is:
params = n_estimators = 25, learning_rate = 0.929, loss = square
Accuracy = 0.99900

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/rsteca/sklearn-deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
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Figure 4. Min/Average fitness function value over generations of the hyperparameters direct genetic
search approach.

As a final remark, it is interesting to note that genetic algorithms provide the additional
capability of symbolic regression [57–59]. This could be a significant advantage with
respect to other techniques, especially when considering coupling of machine learning and
ODE/CFD solvers, since it allows the immediate implementation of an algebraic expression.
Such promising direction will be further investigated in future work.

4. Machine Learning Coupled with ODE Solver

In the previous section, several machine learning methods for the regression of the
relaxation terms, Equation (6), defined in the framework of the state-to-state formulation,
have been compared. It was found that by an appropriate selection of hyperparameters,
for example, through a cross-validation technique, satisfactorily accurate predictions can
be achieved in shorter times with respect to traditional methods. A further continuation of
the previous task may then consist in exploiting the potential of the machine learning to
alleviate the computational cost of kinetic processes.

In the present section, an interface between the best-performing machine learning
algorithm and an ODE solver is explored. Specifically, the same code has been implemented
in Matlab and Fortran. In [26] a further comparison between the two implementations
was provided. The baseline solution and dataset were generated by running the Matlab
version, as described in the previous section, until the equilibrium was reached. The best-
performing machine learning algorithm, previously trained, tested, and validated was
deployed as a pickle module to be fed with input data from the solver.

4.1. Matlab-Python Interface

On the application side, direct Python call functionality from Matlab is used. It is
possible, in fact, to access Python libraries, functions or classes from Matlab by adding the
py prefix to the Python name, which calls the machine learning regressor model, which
simply loads scalers, reshapes, and transforms the input variable array and performs
the prediction.

A one-dimensional reactive shock flow relaxation in the framework of state-to-state
formulation is considered. Further details about this test case and results can be found
in [26]. From the computational point of view, the problem reduces to the integration of an
ODE system up to the equilibrium state within selected relative and absolute error toler-
ances, as shown in Appendix A Listing A1. Due to the stiff nature of the test case, ode15s
is used which, in turn, calls the rpart function, which is responsible for the computation of
the right-hand side of the system of equations, whose algorithm is reported in Appendix A
Algorithm A1. It is worth observing that Algorithm A1 presents the solver code for the
binary mixture. Nevertheless, it can be easily modified to consider air mixtures.

The first aspect to consider is where to actually apply the machine learning. To the best
of the authors’ knowledge, in fact, this aspect has not been fully detailed in the literature.
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Considering Algorithm A1, at least four places appear to be possible candidates, and
correspondingly the regression of different targets can be performed:

1. Regression of chemical reaction rate coefficients, kci, (lines 5–8 of Algorithm A1);
2. Regression of chemical reaction relaxation terms, Rci, Equation (6) (lines 9–10 of

Algorithm A1, before matrix inversion at line 12);
3. Regression of the right-hand side inside ODE function call, dy (after matrix inversion

at line 12 of (lines 5–8 of Algorithm A1);
4. Regression of the ODE solver function call output, [X,Y] at line 2 of Listing A1).

Option (1) would certainly be possible due to the simple temperature dependence of
the rate coefficients, which would make their regression quite straightforward. Neverthe-
less, it would provide a minimal speed-up as we should still perform the expensive main
loop to compute the relaxation terms, Rci, (lines 9–10 of Algorithm A1 and a non-negligible
communication time would be required for the Python function calls within the loop itself.
This option, then, was not further investigated but it may be a reasonable choice depending
on the problem’s features.

Option (4), to learn and predict the output of the ODE solver, would allow us to
circumvent the call to the integrator, tout court, providing the greatest speed-up with respect
to the baseline solution. In this case, the distance from the shock wave (or equivalently,
the relaxation time) was employed as input feature while the species number density
(molecule vibrational levels), velocity, and temperature were predicted. Figures 5 and 6
report the profile of temperature and number density for the selected vibrational levels
obtained with this approach by Matlab and machine learning for binary and air mixture.
Satisfactory agreement was obtained in both cases.

Another relevant aspect to note is the computational cost. Table 4 shows the time-to-
solution obtained with Matlab and machine learning for binary and air mixture. As ex-
pected, there is no appreciable gain in using machine learning for simple binary mixtures
for whom traditional methods perform well. Nevertheless, it is also worth mentioning here
that for N2/N, a computationally simple SSH model is used, whereas for air5, a much more
expensive FHO model was adopted. Indeed, by considering air5 mixtures with FHO model
a remarkable speed-up (∼300×) was observed. Moreover, the computational cost (CPU
time) of the machine learning is almost independent of the number of kinetic processes
taking place, which means that the more complex the mixtures, the more significant of a
gain will be obtainable with machine learning with respect to the Matlab baseline. Further-
more, the CPU time is independent of the timestep and local stiffness of the ODE. The most
advantageous characteristic is that we expect only a moderate increase in the storage re-
quirements with rising number of input scalars [60]. These characteristics appear to be
quite appealing in the framework of state-to-state approaches, which tend to saturate the
computational resources with bottlenecks associated to chemical (and transport) processes.
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Figure 5. Comparison of Matlab and machine learning solution for the 1D reacting flow behind the
shock wave in state-to-state approach for binary N2/N mixture.
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shock wave in state-to-state approach for air5 mixture.

Table 4. Comparison of time-to-simulation for Matlab and machine learning solutions for the same
number of integration points.

N2/N air5

Matlab ML FANN Matlab ML FANN

Time [s] 7.3541 6.8475 0.09 1874.7 6.8974 0.11

Options (2) and (3), to learn the relaxation terms before or after the A matrix inversion,
would both permit to avoid the main loop (lines 9–10 of Algorithm A1) but evidently,
option (3) will be faster by-passing the A matrix computation and inversion at each step.
Nevertheless, when trying to apply this option (2 or 3, equivalently), using the same
solver settings as (1) and (4), the results shown in Figure 7 were obtained. The machine
learning solution time tends to diverge as soon as the tolerance is decreased. As already
observed in [41,61], this behavior is connected to the nature of the solution methods for
initial value problems (IVPs). Stiff chemistry solvers fall into this class, in which the usage
of machine learning applied to the primary state variables is difficult but still suitable for
secondary property prediction. For boundary value problems (BVPs), to which the majority
of CFD problems belong to, the field can be more easily predicted by machine learning and
corrected to a defined tolerance.

This distinction turned out to be relevant in the effort to couple Matlab ODE solver
with machine learning. The problem with using machine learning to predict the integration
of the relaxation rate terms is that the accuracy of the predicted values is not sufficient
when such values are repeatedly fed into the machine learning model. Even with relative
prediction errors reaching as low as 10−5, the solver solution slowly diverges. Consequently,
even if machine learning predictions can be very fast, the nature of the IVP does not easily
allow for an effective correction.

The complementary nature between machine learning models and differential equa-
tions has been recently noted in [62,63] where a possible solution was proposed from the
perspective of neural ODE. Moreover, various investigations of stiff systems have been pre-
sented in the literature. For example, combustion applications also involve stiff chemistry
and deep neural networks have been implemented notably in [42,43]. Such alternatives,
nevertheless have been not investigated in the present paper and were deferred to further
publication.
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Figure 7. Comparison of Matlab and machine learning time-to-solution for the 1D reacting flow
behind the shock wave in state-to-state approach for binary N2/N mixture. The machine learning
call is performed within the ODE system integration before the matrix inversion.

4.2. Fortran-Python Interface

Python has de facto become the lingua-franca of the machine learning community.
Numerous packages like Scikit-Learn [39], TensorFlow [64], PyTorch [65], Caffe [66],
MXNet [67], and Theano [68], even if written in C/C++/CUDA, always rely on a Python
interface. On the other hand, C/C++ and Fortran still represent the mainstream languages
for HPC applications. While the realization of a Matlab-Python interface is straightforward,
integrating trained machine learning components back into Fortran-based codes is not
trivial [69] and is well documented. In this regards, as we plan to undertake such a task,
we investigated the existing options.

There are, in fact, several ways to interface machine learning frameworks into a
Fortran code:

• Re-coding specific model architectures into Fortran;
• Calling Python from within Fortran (e.g., using wrapper libraries such as Python’s C

API [70], Cython [71], CFFI (https://cffi.readthedocs.io), SWIG [72] (http://www.swig.
org/projects.html), Babel [73], SIP (https://riverbankcomputing.com/software/sip/
intro) or Boost.python library (https://wiki.python.org/moin/boost.python);

• Use a pure Fortran NN library, or bridging library (there are several existing solu-
tions, e.g., FANN (https://github.com/libfann), neural-fortran (https://github.com/
modern-fortran/neural-fortran), FKB (https://github.com/scientific-computing/FKB),
frugally-deep (https://github.com/Dobiasd/frugally-deep), Ro-boDNN [74], Tensor-
flowLite [64] C/C++ API and tiny-dnn (https://github.com/tiny-dnn/tiny-dnn), (all
accessed on 1 March 2022);

• Intrinsic Fortran procedures, such as get_command_argument, get_command to invoke
Python scripts and exchange data through I/O files.

The first option would most likely provide efficient solutions and good compatibility
with existing Fortran codes. Nevertheless, it would be time-consuming and inflexible as
changing the machine learning model architecture means recoding in Fortran. The last
option is the easiest and the less efficient and certainly not adequate for HPC frameworks.

https://cffi.readthedocs.io
http://www.swig.org/projects.html
http://www.swig.org/projects.html
https://riverbankcomputing.com/software/sip/intro
https://riverbankcomputing.com/software/sip/intro
https://wiki.python.org/moin/boost.python
https://github.com/libfann
https://github.com/modern-fortran/neural-fortran
https://github.com/modern-fortran/neural-fortran
https://github.com/scientific-computing/FKB
https://github.com/Dobiasd/frugally-deep
https://github.com/tiny-dnn/tiny-dnn
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Pure Fortran or bridging libraries can provide fast solutions and good compatibility
with Fortran codes. At the present moment, the existing solutions only have limited
architectures and algorithms available, since they are either Fortran re-implementations of
methods or APIs that mirror common machine learning frameworks. Translations from
native machine learning model format are often required. The case of bridging libraries in
C/C++ would introduce again the necessity of having an additional interface layer.

Using wrappers is by far one of the most frequent solutions [75–78]. In this case,
no re-coding is required as the machine learning model remains in Python but various
compatibility issues and technicalities may arise depending on the wrapping approach.

Finally, the direct interface to C/C++ machine learning frameworks (i.e., TensorFlow)
may be an interesting option. The primary benefit to this approach is flexibility: the imple-
mentation can be changed, extended, or optimized without affecting the code integration,
the library can be integrated into new codes without requiring a complicated extraction,
and the code runs on multiple types of hardware and performs lightweight inference
without requiring the full TensorFlow ecosystem.

Considering, for example, the frugally-deep package, it first converts DNN models
to json files; then it creates C++ header classes, allowing one to load json files as object
graphs; the latter can be evaluated on the input data.

After installation, a typical workflow would be as follows:

• Create, train and save deep learning model from Python:
model.save("keras_model.h5", include_optimizer=False);

• Convert the saved model into the required format:
python3 convert_model.py keras_model.h5 fdeep_model.json;

• Load model in C++ using frugally-deep:
const auto model = fdeep::load_model("fdeep_model.json");

• Load data from Fortran:

– pass it to function in C++;
– make inference;
– pass inference result back to Fortran.

In order to obtain an estimate of the speed-up attainable by using a direct interface
to C/C++ machine learning frameworks, in the present paper, a simple experiment was
conducted. Specifically, the C Fast Artificial Neural Network library (FANN) was binded
to the Fortran version of the state-to-state 1D Euler shock relaxation solver. With this
configuration, the simulation reported in Table 4 for the air mixture was repeated. It was
found that without any appreciable difference in the qualitative agreement of the results,
the time-to-simulation was about 0.1 s, as reported in Table 4, that is, 70 times faster that
the Matlab/Python interface and about four orders of magnitude faster that the original
Matlab solution. This kind of speed-up is in agreement with results found in [41].

5. Deep Neural Network for 1D STS Euler Shock Flow Relaxation

In this section, a deep neural network (DNN) is used to infer the 1D Euler system
of the equation’s solution for high-speed non-equilibrium reacting flows according to a
state-to-state description [23]. We consider the relaxation of a flow across a normal shock
wave for a binary N2/N mixture and we shall infer the number density of pseudo-species
(47 vibrational levels of N2) and atomic N, nci, density ρ, velocity v, pressure p, specific
internal energy E as well as relaxation source terms Rci for all the considered processes by
using the DNN and adopting the distance from the shock front x as input feature descriptor.
The dataset is the same as the one described in Section 3. Hence, the output vector is made
up of 100 variables:

y = [nci, ρ, v, p, E, Rci] (11)

The dataset was divided by using the built-in train_test_split scikit-learn function,
where 75% of samples were used for the training phase, while 25% were used for testing
and successively normalized with MinMaxScaler. For this task, we used a multi-layer
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perceptron (MLP) architecture, a type of ANN that is well suited for nonlinear regression
problems. We train the neural network by minimizing average mean-squared-error (MSE)
using stochastic gradient descent with two optimizers, an external one by Scipy (L-BFGS-B),
a quasi-Newton, full-batch gradient-based optimization algorithm, and an internal one by
TensorFlow (Adam). Such strategy was found to be beneficial for convergence. The learning
rate was kept constant as equal to the default value. We use a limited number of experiments
to select the network architecture, batch size, and epochs based on performance of the
evaluation dataset. It found that this task was not particularly sensible to such parameters
as soon as a shallow network was not employed.

In early attempts at training the DNN, the network was trained to simultaneously
fit all targets. This was the favored approach because (1) the softmax function could be
used as the output activation function and (2) previous researchers have succeeded with
this approach. However, it was realized that, due to the non-convex and stiff nature
of the optimization problem, the learning algorithm would often get trapped in local
minima. It was therefore opted to train individual networks for each target output variable
independently. This made the DNN both faster to train and much more accurate, as well as
easier to modify. This approach is in line with the work of other authors [41,61,79–81].

Figure 8 reports the profiles of number density, relaxation rates for few selected
vibrational levels, pressure, and velocity, while Table 5 summarizes the mean relative errors.
Values inferred by the DNN are compared with the “ground truth”. Satisfactory agreement
was obtained for all targets. Nevertheless, several open questions remain, for example,
regarding the generalization skills and interpretability of such an approach. We would like
to have a robust DNN able to generalize with respect to variations of the full set of initial
conditions and able to distinguish the contribution of the different physical processes.
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Figure 8. Solution of the state-to-state 1D shock flow relaxation inferred by DNN.



Mathematics 2022, 10, 928 17 of 21

Table 5. Mean relative error associated to inferred variables.

Variable Mean Relative Error

nci [m−3] 4.890 × 10−4

Rci [J/m3/s] 4.039 × 10−4

ρ [kg/m3] 3.793 × 10−4

u [m/s] 3.673 × 10−4

p [Pa] 1.083 × 10−4

E [eV] 1.248 × 10−4

6. Conclusions

In this work, we presented an assessment of a subset of machine learning methods to
state-to-state formulations applied to a one-dimensional post-shock flow relaxation.

First, several state-of-the-art machine learning algorithms were compared for the
regression of the relaxation rate terms. Decision Tree was found to be the fastest (shortest
prediction time) while Kernel Ridge to be the most accurate (smallest errors). Good trade-
off solution between prediction time and accuracy was provided by k-Nearest Neighbor.
The machine learning-based prediction accuracy could be further improved by training a
bigger dataset and refined hyperparameters tuning/optimization.

Secondly, due to the very small prediction time of the best-performing regressor,
a coupling between an ODE solver and machine learning was attempted. In this case,
the aim was to investigate possible speed-up, obtainable by relieving the solver from the
heavy computation of the stiff kinetic terms. Several strategies have been discussed and
few issues reported.

The third task consisted in directly inferring the solution of the Euler system of
equations for the one-dimensional state-to-state reacting shock flow by exploiting a deep
neural network (DNN). In this regards, satisfactory agreement was obtained for all variables
of interest. Nevertheless, further research is going on in order to improve generalizability
and interpretability.

In future work, we plan to explore the possibility of the regression of state-specific
transport coefficients; this will allow to speed-up the computation of the transport module
for two-dimensional problems. Moreover, feature extraction and selection techniques are
worth being further investigated as another promising way to face the curse of dimension-
ality imposed by the use of bigger datasets associated to more complex mixtures such as
air or CO2. In this regard, genetic algorithms proved to be a valuable instrument not only
for feature selection and hyperparameters tuning but also to perform symbolic regression,
whose output can be directly implemented into ODE/CFD solvers.
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Appendix A. Machine Learning Coupled with ODE Solver—Matlab-Python
Interface Code

Listing A1. Matlab function call to the stiff ODE solver.

options = odeset ( ’ RelTol ’ , 1e −12 , ’ AbsTol ’ , 1e −12) ;
[X , Y] = ode15s ( @rpart , xspan , Y0_bar , opt ions ) ;

Algorithm A1 Source term calculation.

1: function RPART(t, y, dy)
2: compute A . A x = B
3: compute Kdr . diss/rec eq. constant
4: compute Kvt . vibr/trans. eq. constant
5: compute kd . diss. rates
6: compute kr . rec. rates
7: compute kvt . vibr/trans. rates
8: compute kvv . vibr/vibr. rates
9: for i← 1 : l do . l, vibrational levels

RD ← y, kr, kd . dis./rec. source terms
RVT ← y, kvt . vibr./trans. source terms
RVV ← y, kvv . vibr./vibr. source terms

10: end for
11: B← RD + RVT + RVV . full source terms
12: dy← A−1 · B
13: return dy
14: end function
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