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Abstract: In connection with applications, the solution of a system of logical equations plays an
important role in computational mathematics and in many other areas. As a result, many new
directions and algorithms for solving systems of logical equations are being developed. One of these
directions is transformation into the real continuous domain. The real continuous domain is a richer
domain to work with because it features many algorithms, which are well designed. In this study,
firstly, we transformed any system of logical equations in the unit n-dimensional cube Kn into a
system of polylinear–polynomial equations in a mathematically constructive way. Secondly, we
proved that if we slightly modify the system of logical equations, namely, add no more than one
special equation to the system, then the resulting system of logical equations and the corresponding
system of polylinear–polynomial equations in Kn+1 is equivalent. The paper proposes an algorithm
and proves its correctness. Based on these results, further research plans are developed to adapt the
proposed method.

Keywords: polylinear functions; algorithms; harmonic functions; Zhegalkin polynomials; logical
operations; systems of Boolean algebraic equations; algebraic cryptanalysis; approximation; Boolean
satisfiability problem; numerical optimization
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1. Introduction

For many decades in the history of digital science, logical variables have been the
primary variables used in most computer operations. Currently, there are many theoretical
and applied problems associated with logical variables, some of which lack satisfactory
solutions, despite the importance of the field. One of the most important and interesting
tasks is solving logical equations and systems of logical equations. Solving a system of
logical equations has many applications, such as synthesis, output data coding, the state
assignment of finite automata, the modeling and testing of digital networks, automatic
test pattern generation and the determination of the initial state in circuits, timing analysis,
and the generation of delayed failure tests for combinational circuits. The solution of a
system of logical equations in the field of cryptography is used to analyze and break block
ciphers, since they can be reduced to the problem of solving large-scale systems of logical
equations [1–6]. This is because, for a specific cipher, algebraic cryptanalysis consists of
two stages: the transformation of the cipher into a system of polynomial equations (usually
over Boolean ring), and the solution of the resulting system of polynomial equations [7–9].
For example, one of the first striking applications of the solution of a system of Boolean
algebraic equations in cryptography is the solution of a complex problem, cryptosystems
on hidden field mappings (Hidden Fields Equations) in cryptography with a public key.
This problem is described by a system of quadratic Boolean polynomials with 80 variables,
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and its solution was obtained precisely for the first time by solving a system of Boolean
algebraic equations with the F5 algorithm, and later with the F4 algorithm [10–13].

Many of the applied algorithms for solving a system of logical equations or the
Boolean satisfiability problem (SAT) that have been developed so far solve the prob-
lem in the Boolean domain. However, other areas have recently been developed and
improved [11,12,14]. One of these directions is transformation into the real continuous
domain. The essence of this direction is that the system of logical equations is transformed
into a system in the real domain and the solution is sought in the real continuous domain.
The real continuous domain is a richer domain to work with, as it involves many, well
developed algorithms. Already in a real continuous domain, the transformed system can
be reduced to a numerical optimization problem, making it possible to apply, analyze
and combine such methods as the steepest descent algorithm, Newton’s method and the
coordinate descent algorithm [1–6,14].

More recently, Barotov Dostonjon et al. [14] proposed a new idea with their inter-
esting formulas for solving systems of logical equations. The essence of their proposed
method is that systems of logical equations are transformed into systems of harmonic-
polynomial equations in a unit n-dimensional cube Kn with the usual operations of the
addition and multiplication of numbers, and the transformed system in Kn is solved by an
optimization method.

Since the proposed idea is new and under development, some of its open problems
have not been solved [14]. Firstly, the corresponding system of harmonic-polynomial
equations was found and the equivalence of the systems was established only when each
polynomial of the system of logical equations consisted of pairwise coprime monomials. It
was not clear whether there is a corresponding system of harmonic-polynomial equations
in Kn for an arbitrary system of logical equations. Secondly, the equivalence of systems
has not been established for any class of the system of logical equations when the solution
of the system of logical equations is not unique. In our opinion, these open problems are
extremely interesting and there is a demand for their solution both from the point of view of
mathematics and from the point of view of the applicability and constructive improvement
of the proposed method.

In this paper, we improve the proposed method from the mathematical point of view
and from the point of view of algorithmization. First, we propose a constructive proof, in
which for any system of logical equations, there exists in Kn a unique corresponding system
of polylinear-polynomial equations. Second, we constructively prove that if we slightly
modify the system of logical equations, that is, if we add no more than one special fictitious
equation to the system, then for the modified system of logical equations there exists in
Kn+1 the corresponding unique equivalent system of polylinear-polynomial equations.

2. Methods and Formulas for the Transformation of Any Zhegalkin Polynomial to the
Corresponding Kn Unique Non-Negative Polylinear Function

First, we define the necessary notation and formulas for further use.
Let Kn = {(x1, x2, . . . , xn) : 0 ≤ x1, x2, . . . , xn ≤ 1} be an n-dimensional unit cube and

let Bn = {(b1, b2, . . . , bn) : b1, b2, . . . , bn ∈ {0, 1}} be the vertices of Kn.
Let ⊕ be the logical operation xor (addition by mod 2), i.e., xor(y1, y2, . . . , yn) =

y1 ⊕ y2 ⊕ . . .⊕ yn, yi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n}.
Let ⊗ be the logical operation and (logical multiplication), i.e., and (y1, y2, . . . , yn) =

y1 ⊗ y2 ⊗ . . .⊗ yn, yi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n}.
Let xorapp(x1, x2, . . . , xn) =

1
2 −

1
2 (1− 2x1)(1− 2x2)(1− 2x3) . . . (1− 2xn), (x1, x2, . . . ,

xn) ∈ Kn.
Let andapp(x1, x2, . . . , xn) = x1 · x2 · . . . · xn, (x1, x2, . . . , xn) ∈ Kn.
In [14], the main properties of polynomials are presented and proved xorapp(x1, x2, . . . , xn)

and andapp(x1, x2, . . . , xn).
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Definition 1. A function f (x1, x2, x3, . . . , xn) is called a polylinear function in Kn if
∂2

∂x2
k

f (x1, x2, . . . , xn) = 0, ∀k ∈ {1, . . . , n}.

According to Definition 1, any harmonic function in each of its variables [14] is a
polylinear function, and vice versa.

Lemma 1. For any Zhegalkin polynomial p(x1, x2, x3, . . . , xn) = ⊕
(a1,a2,...,an)∈Bn

g(a1, a2, . . . , an) ·

xa1
1 ⊗ xa2

2 ⊗ . . . ⊗ xan
n , there exists a non-negative, polylinear function f (x1, x2, x3, . . . , xn) on

Kn such that p(x1, x2, x3, . . . , xn) = f (x1, x2, x3, . . . , xn) at (x1, x2, x3, . . . , xn) ∈ Bn and it
is unique.

Proof of Lemma 1. If f (x1, x2, x3, . . . , xn) is a polylinear function, then it has the follow-
ing form

f (x1, x2, x3, . . . , xn) = c(0,0,0,...,0) + c(1,0,0,...,0)x1 + c(0,1,0,...,0)x2 + . . . + c(0,0,0,...,1)xn
+c(1,1,0,...,0)x1x2 + c(1,0,1,...,0)x1x3 + . . . + c(0,0,...,1,1)xn−1xn + . . . + c(1,1,1,...,1)x1x2 · . . . · xn

= ∑
(a1,a2,...,an)∈Bn

c(a1,a2,...,an) · x
a1
1 xa2

2 . . . xan
n .

The value of the coefficients c(a1,a2,...,an) is determined by the condition p(x1, x2, x3, . . . , xn)
= f (x1, x2, x3, . . . , xn) at (x1, x2, x3, . . . , xn) ∈ Bn.

p(0, 0, 0, . . . , 0) = c(0,0,0,...,0) + 0
p(1, 0, 0, . . . , 0) = c(0,0,0,...,0) + c(1,0,0,...,0) + 0
p(0, 1, 0, . . . , 0) = c(0,0,0,...,0) + c(0,1,0,...,0) + 0

p(1, 1, 0, . . . , 0) = c(0,0,0,...,0) + c(1,0,0,...,0) + c(0,1,0,...,0) + c(1,1,0,...,0) + 0
. . . . . . . . . . . .

p(1, 1, 1, . . . , 1) = ∑
(a1,a2,...,an)∈Bn

c(a1,a2,...,an)

(1)

This lower-triangular system, that is, the corresponding matrix to the system, is lower-
triangular, and it has the following unique solution:

c(0,0,0,...,0) = p(0, 0, 0, . . . , 0)
c(1,0,0,...,0) = p(1, 0, 0, . . . , 0)− p(0, 0, 0, . . . , 0)
c(0,1,0,...,0) = p(0, 1, 0, . . . , 0)− p(0, 0, 0, . . . , 0)

c(1,1,0,...,0) = p(1, 1, 0, . . . , 0)− p(0, 1, 0, . . . , 0)− p(1, 0, 0, . . . , 0) + p(0, 0, 0, . . . , 0)
. . . . . . . . . . . .

c(1,1,1,...,1) = ∑
(a1,a2,...,an)∈Bn

(−1)n−(a1+a2+···+an)p(a1, a2, . . . , an)

thus, we have proven that for any Zhegalkin polynomial p(x1, x2, x3, . . . , xn)
= ⊕

(a1,a2,...,an)∈Bn

g(a1, a2, . . . , an) · xa1
1 ⊗ xa2

2 ⊗ . . .⊗ xan
n , there is f (x1, x2, x3, . . . , xn) polylinear

function such that p(x1, x2, x3, . . . , xn) = f (x1, x2, x3, . . . , xn) for (x1, x2, x3, . . . , xn) ∈ Bn
and it is unique, since the system (1) has a unique solution. Now, it remains to be proven
that f (x1, x2, x3, . . . , xn) in Kn is non-negative. Indeed, since f (x1, x2, x3, . . . , xn) polylin-
ear function and p(x1, x2, x3, . . . , xn) = f (x1, x2, x3, . . . , xn) at (x1, x2, x3, . . . , xn) ∈ Bn, the
following is true according to the maximum principle [14–16]:

0 ≤ min
x∈Bn

f (x1, x2, x3, . . . , xn) ≤ f (x1, x2, x3, . . . , xn) ≤ max
x∈Bn

f (x1, x2, x3, . . . , xn) ≤ 1,

which was to be proven. �
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The solution of system (1) shows that, in practice, this way of obtaining the function
f (x1, x2, x3, . . . , xn) is not always optimal. This is because, in order to calculate the value of
all coefficients, the values of the polynomial p(x1, x2, x3, . . . , xn) on all sets of values of the
arguments x1, x2, x3, . . . , xn must be determined and then be summed in a specific way. As
a result, we propose another algorithm for obtaining the function f (x1, x2, x3, . . . , xn).

The authors of [14] show that by replacing the functions xor(x1, x2, . . . , xn) and
and(x1, x2, . . . , xn) with functions xorapp(x1, x2, . . . , xn) and andapp(x1, x2, . . . , xn) with any
Zhegalkin polynomial p(x1, x2, x3, . . . , xn) = ⊕

(a1,a2,...,an)∈Bn

g(a1, a2, . . . , an) · xa1
1 ⊗ xa2

2 ⊗ . . .⊗

xan
n , we can obtain the corresponding function

fold(x1, x2, . . . , xn) =
1
2
− 1

2
· ∏
(a1,a2,...,an)∈Bn

(
1− 2 · g(a1, a2, . . . , an) · xa1

1 xa2
2 . . . xan

n
)
.

In this work, we denoted the last function as fold(x1, x2, . . . , xn) to emphasize that this
has already been obtained in [14]. In the current work, we implement a new modified
function.

From the proven properties of the formulas xorapp(x1, x2, . . . , xn) and
andapp(x1, x2, . . . , xn) it follows [14] that p(x1, x2, x3, . . . , xn) = fold(x1, x2, x3, . . . , xn) at
(x1, x2, x3, . . . , xn) ∈ Bn for all Zhegalkin polynomials p(x1, x2, x3, . . . , xn). The authors
of [14] prove that if the monomials p(x1, x2, x3, . . . , xn) are pairwise coprime, then the function
fold(x1, x2, . . . , xn) is a polylinear function and p(x1, x2, x3, . . . , xn) = fold(x1, x2, x3, . . . , xn)
at (x1, x2, x3, . . . , xn) ∈ Bn.

If the monomials are p(x1, x2, x3, . . . , xn) and not pairwise coprime, then we modify the
function fold(x1, x2, . . . , xn) =

1
2 −

1
2 ·∏(a1,a2,...,an)∈Bn

(
1− 2 · g(a1, a2, . . . , an) · xa1

1 xa2
2 . . . xan

n
)

and show an algorithm for obtaining a unique, non-negative, polylinear function
fnew(x1, x2, x3, . . . , xn) on Kn such that p(x1, x2, x3, . . . , xn) = fnew(x1, x2, x3, . . . , xn) at
(x1, x2, x3, . . . , xn) ∈ Bn.

On this occasion, the first basic idea is that in the expansion of the polynomial

fold(x1, x2, . . . , xn) =
1
2
− 1

2
· ∏
(a1,a2,...,an)∈Bn

(
1− 2 · g(a1, a2, . . . , an) · xa1

1 xa2
2 . . . xan

n
)

if all degrees xk
i where k = 2, 3, 4, . . . is replaced by xi, then the resulting polynomial is

fnew(x1, x2, x3, . . . , xn) or, in other words:

fnew(x1, x2, x3, . . . , xn) = f (x1, x2, . . . , xn) / < x2
1 − x1, x2

2 − x2, . . . , x2
n − xn >.

The second main idea is that, without expanding the polynomial mathematically,
fold(x1, x2, . . . , xn) replaces all degrees xk

i where k = 2, 3, 4, . . . on xi and produces
fnew(x1, x2, x3, . . . , xn), since in the expanded form of the polynomial, the fold(x1, x2, . . . , xn)
number of terms is probably large. If we expand the polynomial fold(x1, x2, . . . , xn) and
group by degrees xi, then it has the following form:

fold(x1, x2, . . . , xn) = amxm
i + am−1xm−1

i + . . . + a2x2
i + a1xi + a0,

where the coefficients are aj = aj(x1, x2, . . . , xi−1, xi+1, . . . , xn), with some polynomials
depending on x1, x2, . . . , xi−1, xi+1, . . . , xn and not depending on xi. If all degrees are xk

i
where k = 2, 3, 4, . . . , m replace with xi, then the resulting polynomial appears as amxi
+ am−1xi + . . . + a2xi + a1xi + a0, and this polynomial can still be implemented as follows:

amxi + am−1xi + . . . + a2xi + a1xi + a0 = (am + am−1 + . . . + a2 + a1 + a0)xi − a0xi + a0
= fold(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn)xi − fold(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn)(xi − 1)
= fold(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn)xi + fold(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn)(1− xi)

The following algorithm is based on this.
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Let Xdegree =
{

xi1 , xi2 , . . . , xik
}

be the set of all variables such that each variable xis
is included in at least two monomials of the polynomial p(x1, x2, x3, . . . , xn). If another
variable occurs in at most one monomial of polynomial p(x1, x2, x3, . . . , xn), then the poly-
nomial fold(x1, x2, . . . , xn) is, at most, first-degree in that variable. We are ready to write an
algorithm for obtaining fnew(x1, x2, x3, . . . , xn) from the polynomial fold(x1, x2, x3, . . . , xn)
(Algorithm 1).

Algorithm 1: Obtaining fnew(x1, x2, x3, . . . , xn) from the polynomial fold(x1, x2, x3, . . . , xn)

Input: polynomial fold(x1, x2, x3, . . . , xn) and set
{

xi1 , xi2 , . . . , xik

}
.

Output: polynomial fnew(x1, x2, x3, . . . , xn)
Xdegree :=

{
xi1 , xi2 , . . . , xik

}
f0(x1, x2, x3, . . . , xn) := fold(x1, x2, x3, . . . , xn)
for s from 1 to k
do

fs(x1, x2, x3, . . . , xn) := fs−1
(

x1, x2, . . . , xis−1, 1, xis+1, . . . , xn
)

xis+
fs−1

(
x1, x2, . . . , xis−1, 0, xis+1, . . . , xn

)(
1− xis

)
end for
fnew(x1, x2, x3, . . . , xn) := fk(x1, x2, x3, . . . , xn)
return fnew(x1, x2, x3, . . . , xn)

Next, we prove that Algorithm 1 is correct:

(i) p(x1, x2, x3, . . . , xn) = fnew(x1, x2, x3, . . . , xn) at (x1, x2, x3, . . . , xn) ∈ Bn.
(ii) fnew(x1, x2, x3, . . . , xn) is a polylinear function.
(iii) If (x1, x2, x3, . . . , xn) ∈ Kn, then 0 ≤ fnew(x1, x2, x3, . . . , xn) ≤ 1.
(iv) fnew(x1, x2, x3, . . . , xn) is unique and polylinear function such that p(x1, x2, x3, . . . , xn)

= fnew(x1, x2, x3, . . . , xn) at (x1, x2, x3, . . . , xn) ∈ Bn.

Proof of Algorithm 1. (i) In this article, we have already established that p(x1, x2, x3, . . . , xn)
= fold(x1, x2, x3, . . . , xn) for (x1, x2, x3, . . . , xn) ∈ Bn. Furthermore, it is clear that 0k = 0 and
1k = 1 and, therefore, fold(x1, x2, x3, . . . , xn) = fnew(x1, x2, x3, . . . , xn) for (x1, x2, x3, . . . , xn)
∈ Bn ⇒ p(x1, x2, x3, . . . , xn) = fnew(x1, x2, x3, . . . , xn) as (x1, x2, x3, . . . , xn) ∈ Bn.

(ii) To prove this point of the assertion, it suffices to show that ∂2

∂x2
k
( fnew(x1, x2, . . . , xn))

= 0 ∀k ∈ {1, 2, . . . , n}. If xk /∈
{

xi1 , xi2 , . . . , xik
}

, then ∂2

∂x2
k
( fold(x1, x2, . . . , xn)) = 0 ⇒ ∂2

∂x2
k

( fnew(x1, x2, . . . , xn)) = 0, and if xk ∈
{

xi1 , xi2 , . . . , xik
}

, then ∂2

∂x2
k
( fnew(x1, x2, . . . , xn)) =

∂2

∂x2
k
( fk(x1, x2, x3, . . . , xn)) =

∂2

∂x2
k
(amxk + am−1xk + . . . + a2xk + a1xk + a0) = 0.

(iii) From the properties (i)− (ii) and from the maximum principle, the following
inequality follows [14,17–19]:

0 ≤ min
x∈Bn

fnew(x1, x2, . . . , xn) ≤ fnew(x1, x2, . . . , xn) ≤ max
x∈Bn

fnew(x1, x2, . . . , xn) ≤ 1.

(iv) Prove by contradiction, let there be another non-negative polylinear function
h(x1, x2, . . . , xn) (h(x1, x2, . . . , xn) 6= fnew(x1, x2, . . . , xn)) such that h(x1, x2, . . . , xn)
= p(x1, x2, x3, . . . , xn) at (x1, x2, x3, . . . , xn) ∈ Bn. Now, let us observe the function
d(x1, x2, x3, . . . , xn) = fnew(x1, x2, . . . , xn) − h(x1, x2, . . . , xn). Firstly, it is obvious that if
(x1, x2, x3, . . . , xn) ∈ Bn, then d(x1, x2, x3, . . . , xn) = fnew(x1, x2, . . . , xn)− h(x1, x2, . . . , xn)
= p(x1, x2, x3, . . . , xn)− p(x1, x2, x3, . . . , xn) = 0. Secondly, the function d(x1, x2, x3, . . . , xn)

is polylinear, because ∂2

∂x2
k
d(x1, x2, . . . , xn) = ∂2

∂x2
k

f (x1, x2, . . . , xn) − ∂2

∂x2
k
h(x1, x2, . . . , xn) =

0− 0 = 0 ∀k ∈ {1, . . . , n}. It now follows from the last argument and from the maximum
principle [14,20–22] that

0 = min
x∈Bn

d(x1, x2, x3, . . . , xn) ≤ d(x1, x2, x3, . . . , xn) ≤ max
x∈Bn

d(x1, x2, x3, . . . , xn) = 0⇒
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d(x1, x2, x3, . . . , xn) ≡ 0 ⇒ h(x1, x2, . . . , xn) ≡ f (x1, x2, . . . , xn) is a contradiction. �

3. Transformation of a System of Logical Equations into a System of
Polylinear-Polynomial Equations

After proving the correctness of Algorithm 1, we are ready to transform an arbitrary
system of Boolean algebraic equations into a system of polylinear-polynomial equations in
a unit n-dimensional cube Kn with the usual operations of the addition and multiplication
of numbers.

Consider the following arbitrary system of Boolean algebraic equations:

p1(x1, x2, . . . , xn) = ⊕
(a1,a2,...,an)∈Bn

g1(a1, a2, . . . , an) · xa1
1 ⊗ xa2

2 ⊗ . . .⊗ xan
n = 0

p2(x1, x2, . . . , xn) = ⊕
(a1,a2,...,an)∈Bn

g2(a1, a2, . . . , an) · xa1
1 ⊗ xa2

2 ⊗ . . .⊗ xan
n = 0

. . .
pm(x1, x2, . . . , xn) = ⊕

(a1,a2,...,an)∈Bn

g3(a1, a2, . . . , an) · xa1
1 ⊗ xa2

2 ⊗ . . .⊗ xan
n = 0

(2)

where is pi(x1, x2, . . . , xn) a Zhegalkin polynomial, i ∈ {1, 2, . . . , m}.
Replacing functions xor(x1, x2, . . . , xn) and and(x1, x2, . . . , xn) in system (2), we obtain

an intermediate transformationed system:

fold1(x1, x2, . . . , xn) =
1
2 −

1
2 · ∏

(a1,a2,...,an)∈Bn

(
1− 2·g1(a1, a2, . . . , an)·xa1

1 xa2
2 . . . xan

n
)
= 0

fold2(x1, x2, . . . , xn) =
1
2 −

1
2 · ∏

(a1,a2,...,an)∈Bn

(
1− 2·g2(a1, a2, . . . , an)·xa1

1 xa2
2 . . . xan

n
)
= 0

foldm(x1, x2, . . . , xn) =
1
2 −

1
2 · ∏

(a1,a2,...,an)∈Bn

(
1− 2·gm(a1, a2, . . . , an)·xa1

1 xa2
2 . . . xan

n
)
= 0

(3)
Modifying each polynomial of the foldi (x1, x2, . . . , xn) intermediate system (3) ac-

cording to Algorithm 1, we obtain the corresponding system of polylinear-polynomial
equations: 

fnew1(x1, x2, . . . , xn) = 0
fnew2(x1, x2, . . . , xn) = 0
fnew3(x1, x2, . . . , xn) = 0

. . .
fnewm(x1, x2, . . . , xn) = 0

(4)

For system (4), define the following objective function in Kn:

t f (x1, x2, . . . , xn) :=
m

∑
i=1

fnewi (x1, x2, . . . , xn)

Below, we formulate and check the main properties of the objective function t f (x1, x2, . . . , xn).

Proposition 1. Let t f (x1, x2, . . . , xn) = ∑m
i=1 fi(x1, x2, . . . , xn) and (x1, x2, . . . , xn) ∈ Kn, then:

(i) In Kn, the objective function t f (x1, x2, . . . , xn) is on-negative.
(ii) The objective function t f (x1, x2, . . . , xn) does not have a local extreme inside edges and faces

of the n—dimensional cube Kn.
(iii) Takes its extreme at the vertices of the n—dimensional cube Kn, that is, on Bn.
(iv) If (b1, b2, . . . , bn) ∈ Bn is a solution to the system (2), then (b1, b2, . . . , bn) is a solution to

the system (4) and t f (b1, b2, . . . , bn) = 0.
(v)

(
s∗1 , s∗2 , .., s∗n

)
∈ Kn is the solution to the system (4) ⇔ t f

(
s∗1 , s∗2 , .., s∗n

)
= 0 .

Proof of Proposition 1. (i) It follows from Algorithm 1 that if (x1, x2, . . . , xn) ∈ Kn,
then 0 ≤ fnewi (x1, x2, . . . , xn) ≤ 1 ∀i ∈ {1, 2, . . . , m} ⇒ if (x1, x2, . . . , xn) ∈ Kn, then 0 =

∑m
i=1 0 ≤ ∑m

i=1 fnewi (x1, x2, . . . , xn) = t f (x1, x2, . . . , xn) ≤ ∑m
i=1 1 = m.
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To prove parts (ii) and (iii), it suffices to show that ∂2

∂x2
k
t f (x1, x2, . . . , xn) = 0 ∀k ∈

{1, 2, . . . , n} is really ∂2

∂x2
k
t f (x1, x2, . . . , xn) =

∂2

∂x2
k
(∑m

i=1 fnewi (x1, x2, . . . , xn)) = ∑m
i=1

∂2

∂x2
k

fnewi

(x1, x2, . . . , xn) = ∑m
i=1 0 = 0.

(iv) If (b1, b2, . . . , bn) ∈ Bn is a solution to system (2), then it pi(b1, b2, . . . , bn) = 0 ∀i ∈
{1, 2, . . . , m} also follows from Algorithm 1 that fnewi (b1, b2, . . . , bn) = 0 ∀i ∈ {1, 2, . . . , m}.
This means that (b1, b2, . . . , bn) ∈ Bn is a solution to system (4) and t f (b1, b2, . . . , bn) =

∑m
i=1 fnewi (b1, b2, . . . , bn) = ∑m

i=1 0 = 0.
(v) If

(
s∗1 , s∗2 , .., s∗n

)
∈ Kn is a solution to system (4), then fnewi

(
s∗1 , s∗2 , .., s∗n

)
= 0

∀i ∈ {1, 2, . . . , m} ⇒ t f
(
s∗1 , s∗2 , .., s∗n

)
= 0 and if t f

(
s∗1 , s∗2 , .., s∗n

)
= 0 for

(
s∗1 , s∗2 , .., s∗n

)
∈ Kn,

then it follows from Algorithm 1 that fnewi

(
s∗1 , s∗2 , .., s∗n

)
= 0 ∀i ∈ {1, 2, . . . , m}. This means

that
(
s∗1 , s∗2 , .., s∗n

)
is a solution to system (4). �

Theorem 1. If system(2) has, at most, one solution, then in Kn system (4) and system (2)
are equivalent.

Proof of Theorem 1. Case 1. Let system (2) have no solution. We prove that system (4)
in Kn does not have a solution either. Proof by contradiction: let system (4) in Kn have
the following solution (c1, c2, . . . , cn), because (c1, c2, . . . , cn) ∈ Kn. Therefore, it follows
from Proposition 1 that t f (c1, c2, . . . , cn) = 0, but, on the other hand, t f (x1, x2, . . . , xn) is a
polylinear function and the following inequality follows from Algorithm 1:

0 < min
x∈Bn

t f (x1, x2, . . . , xn) ≤ t f (x1, x2, . . . , xn) ≤ max
x∈Bn

t f (x1, x2, . . . , xn) ≤ m,

∀(x1, x2, . . . , xn) ∈ Kn. Since system (2) has no solution, the first inequality on the left
is strict. If in the last inequality we substitute (c1, c2, . . . , cn) ∈ Kn for (x1, x2, . . . , xn), then
we obtain the following inequality: 0 < min

x∈Bn
t f (x1, x2, . . . , xn) ≤ t f (c1, c2, . . . , cn) = 0 ≤

max
x∈Bn

t f (x1, x2, . . . , xn) ≤ m contradiction, which was to be proven.

Case 2. Let system (2) have a unique solution
(
x∗1 , x∗2 , . . . , x∗n

)
. In this case, we prove

that system (4) in Kn has a unique solution
(

x∗1 , x∗2 , . . . , x∗n
)
. According to Algorithm 1

pi(x1, x2, x3, . . . , xn) = fnewi (x1, x2, x3, . . . , xn) at (x1, x2, x3, . . . , xn) ∈ Bn ∀i ∈ {1, 2, . . . , m}.
In particular, it follows that pi

(
x∗1 , x∗2 , . . . , x∗n

)
= fnewi

(
x∗1 , x∗2 , . . . , x∗n

)
= 0 ∀i ∈ {1, 2, . . . , m},

which means that
(

x∗1 , x∗2 , . . . , x∗n
)

is a solution to system (4). Now, we prove that in Kn it is
the only solution of the system (4). Let us prove by contradiction. Let (c1, c2, . . . , cn) ∈ Kn
be another solution of system (4). According to Proposition 1 (c1, c2, . . . , cn) ∈ Kn is
the solution to system (4) ⇔ t f (c1, c2, . . . , cn) = 0 . Since the system (7) has a unique
solution and the objective function t f (x) = t f (x1, x2, . . . , xn) is polylinear, it follows
that (c1, c2, . . . , cn) ∈ Bn, which means that fnewi (c1, c2, . . . , cn) = pi(c1, c2, . . . , cn) = 0
∀i ∈ {1, 2, . . . , m} ⇒ (c1, c2, . . . , cn) is a solution to the system (2), since, according to
the condition Case 2 of the theorem, system (2) has a unique solution

(
x∗1 , x∗2 , . . . , x∗n

)
⇒(

x∗1 , x∗2 , . . . , x∗n
)
= (c1, c2, . . . , cn) is a contradiction, which was proven. �

If the number of solutions to system (2) is at least two, then, in general, the equivalence
of systems (2) and (4) is violated. For clarity, consider a few counterexamples:

a)
{

x1 ⊗ x2 ⊕ x1 = 0
x1 ⊗ x2 ⊕ 1 = 1

, b)
{

x1 ⊗ x2 ⊕ x3 = 0
x1 ⊕ x3 ⊕ 1 = 1

, c)


x1 ⊗ x2 ⊕ x1 = 0
x1 ⊗ x3 ⊕ x1 = 0
x1 ⊗ x2 ⊕ 1 = 1

, . . .

Indeed, we can transform these systems in Kn in systems of polylinear-polynomial equa-
tions with the usual operations of the addition and multiplication of numbers:

a′)
{

x1 − x1x2 = 0
x1x2 = 0

, b′)
{

x1x2 + x3 − 2x1x2x3 = 0
x1 + x3 − 2x1x3 = 0

, c′)


x1 − x1x2 = 0
x1 − x1x3 = 0
x1x2 = 0

, . . .
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Solving these systems in Kn, compare the corresponding solutions:

• the system (a) has solutions (0, 0) ∪ (0, 1), and the system (a′) has solutions (0, x2),
where is x2 any number from the segment [0, 1].

• the system (b) has solutions (0, 0, 0) ∪ (0, 1, 0) ∪ (1, 1, 1), and the system (b′) has
solutions (0, x2, 0) ∪ (1, 1, 1), where is x2 any number from the segment [0, 1].

• the system (c) has solutions (0, 0, 0) ∪ (0, 0, 1) ∪ (0, 1, 0) ∪ (0, 1, 1), and the system
(c′) has solutions (0, x2, x3), where x2 and x3 are any numbers from the segment [0, 1].

4. Method for Obtaining Equivalent Systems in Kn+1

In this section, we slightly modify system (2); namely, we add one fictitious equation
to the system and prove the equivalence of new systems.

Let
{

xj1 , xj2 , . . . , xjl
}

be the set of all the variables, such that each variable xjs s =
1, 2, . . . , l occurs only in monomials of at least the second degree. In this case, the modified
system of Boolean algebraic equations has the following form:

p1(x1, x2, . . . , xn) = ⊕
(a1,a2,...,an)∈Bn

g1(a1, a2, . . . , an)·xa1
1 ⊗ xa2

2 ⊗ . . .⊗ xan
n = 0

p2(x1, x2, . . . , xn) = ⊕
(a1,a2,...,an)∈Bn

g2(a1, a2, . . . , an)·xa1
1 ⊗ xa2

2 ⊗ . . .⊗ xan
n = 0

pm(x1, x2, . . . , xn) = ⊕
(a1,a2,...,an)∈Bn

gm(a1, a2, . . . , an)·xa1
1 ⊗ xa2

2 ⊗ . . .⊗ xan
n = 0

xj1 ⊕ xj2 ⊕ . . .⊕ xjl ⊕ xn+1 = 0

(5)

Replacing the functions xor(x1, x2, . . . , xn) and and(x1, x2, . . . , xn) in system (5), we
obtain an intermediate transformationed system:

fold1(x1, x2, . . . , xn) =
1
2 −

1
2 · ∏

(a1,a2,...,an)∈Bn

(
1− 2·g1(a1, a2, . . . , an)·xa1

1 xa2
2 . . . xan

n
)
= 0

fold2(x1, x2, . . . , xn) =
1
2 −

1
2 · ∏

(a1,a2,...,an)∈Bn

(
1− 2·g2(a1, a2, . . . , an)·xa1

1 xa2
2 . . . xan

n
)
= 0

foldm(x1, x2, . . . , xn) =
1
2 −

1
2 · ∏

(a1,a2,...,an)∈Bn

(
1− 2·gm(a1, a2, . . . , an)·xa1

1 xa2
2 . . . xan

n
)
= 0

foldm+1(x1, x2, . . . , xn, xn+1) =
1
2 −

1
2 ·
(
1− 2xj1

)(
1− 2xj2

)
· . . . ·

(
1− 2xjl

)
(1− 2xn+1) = 0

(6)

Modifying each polynomial of the foldi (x1, x2, . . . , xn) intermediate system (6) according to
Algorithm 1, we obtain the corresponding system of polylinear-polynomial equations:

fnew1(x1, x2, . . . , xn) = 0
fnew2(x1, x2, . . . , xn) = 0
fnew3(x1, x2, . . . , xn) = 0

. . .
fnewm(x1, x2, . . . , xn) = 0

fnewm+1(x1, x2, . . . , xn, xn+1) = 0

(7)

For system (7), define the following objective function in Kn+1:

t f (x1, x2, . . . , xn, xn+1) :=
m

∑
i=1

fnewi (x1, x2, . . . , xn) + fnewm+1(x1, x2, . . . , xn, xn+1).

Now we are ready to formulate and prove the theorem of the equivalence of systems (5)
and (7).

Theorem 2. In Kn+1, system (5) and system (7) are equivalent.

Proof of Theorem 2. (i) If
(
x∗1 , x∗2 , . . . , x∗n, x∗n+1

)
∈ Kn+1 is a solution to system (5), then

from the Algorithm 1 and from the properties of formulas xorapp(x1, x2, . . . , xn) and
andapp(x1, x2, . . . , xn) it follows [14] that

(
x∗1 , x∗2 , . . . , x∗n, x∗n+1

)
is a solution to system (7).

Conversely, if
(

x∗1 , x∗2 , . . . , x∗n, x∗n+1
)
∈ Kn+1 is a solution to system (7), then by the form of
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the last equation of system (7) and from the properties of the formulas xorapp(x1, x2, . . . , xn)
and andapp(x1, x2, . . . , xn), it follows [14] that

(
x∗1 , x∗2 , . . . , x∗n, x∗n+1

)
∈ Bn+1. Now, if(

x∗1 , x∗2 , . . . , x∗n, x∗n+1
)
∈ Bn+1, then according to Algorithm 1 and from the properties of the

formulas it xorapp(x1, x2, . . . , xn) follows that:
fnewi

(
x∗1 , x∗2 , . . . , x∗n

)
= pi

(
x∗1 , x∗2 , . . . , x∗n

)
∀i ∈ {1, 2, . . . , m} and x∗n+1 = x∗j1 ⊕ x∗j2 ⊕

. . .⊕ x∗jl or
(

x∗1 , x∗2 , . . . , x∗n, x∗n+1
)

is the solution of system (5).
(ii) If system (5) has no solution, then Theorem 1 implies that in Kn+1, system (7) also

has no solution. Conversely, if system (7) does not have a solution, then system (5) also
does not have a solution, since the last equation added to systems (5)–(7) allows us to say
that in Kn+1, any solution to system (7) belongs to Bn+1. �

5. Conclusions

In this paper, firstly, we managed to transform any system of logical equations in Kn
into a system of polylinear-polynomial equations. Secondly, we proved the correctness
of such a transformation, and the corresponding proof was mathematically constructive.
Based on this, we proposed a transformation algorithm and proved its correctness.

In addition, we also proved that if we slightly modify the system of logical equations,
namely, if we add no more than one special equation to the system, then, firstly, all
the solutions of the unmodified system of logical equations are the initial n coordinates
of the solutions of the modified system of logical equations, and vice versa. Secondly,
the modified system of logical equations and the corresponding system of polylinear-
polynomial equations in Kn+1 are equivalent.

In terms of transformation into a real continuous domain and the application of
numerical optimization methods to solving a transformed system into a real continuous
domain, that is, minimizing the objective function corresponding to the transformed system,
then there are many approaches to transformation into a real continuous domain. However,
one of the main problems with this is that the objective function in the desired continuous
domain can have many local minimums, and this greatly hinders the suitability of the
method in practice. Currently, as far as we know, all numerical optimization algorithms find
only a local minimum, and, in general, there is no effective method for finding the global
minimum of the objective function. As far as we know, our transformation method is the
most optimal in terms of reducing the number of local minimums of the objective function
t f (x1, x2, . . . , xn), because the minimized objective function compiled according to the
system of logical equations is such that it is polylinear for any system of logical equations.
Therefore, in Kn, this minimizing objective function does not have a local extremum inside,
or on the edges and faces of Kn and takes a minimum value at the vertices of Kn.

We must also admit that, firstly, it is not clear to what extent these theoretical re-
sults will be suitable in practice. Secondly, if we want to solve the transformed system of
polylinear-polynomial equations using numerical optimization methods, then the prob-
lem of developing, improving and finding the asymptotic complexity of the numerical
optimization algorithm used for our particular polylinear objective function remains open.
Therefore, based on the results of the current work, in future work, we plan to publish
a comparative analysis of the most well-known optimization methods to minimize our
specific polylinear function.
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