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Abstract: In this work, we shifted a recent multiplicity result by B. Ricceri from a Hilbert space to
a Banach space setting by making use of a duality mapping relative to some increasing function.
Using the min–max arguments, we provide conditions for an action functional to have at least two
global minima.
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1. Introduction

Recently, in [1], the following result appeared:

Theorem 1. Let X be a topological space, (Y; 〈·, ·〉) a real Hilbert space, T ⊂ Y a convex set dense
in Y, and I : X → R, ϕ : X → Y be two functions such that, for each y ∈ T, the function:

x → I(x) + 〈ϕ(x), y〉

is lower semicontinuous and inf-compact. Assume that there exists a point x0 ∈ X satisfying
ϕ(x0) 6= 0 and such that:

(a) x0 is a global minimum of both functions I and ‖ϕ(·)‖2;
(b) infx∈X〈ϕ(x), ϕ(x0)〉 < ‖ϕ(x0)‖2.

Then, for each convex set S ⊆ T dense in Y, there exists ỹ ∈ S such that the function
x → I(x) + 〈ϕ(x), ỹ〉 has at least two global minima in X.

The proof relies on the Hilbert structure of the space Y, which leads to the application
of a min–max theorem, which is due to B. Ricceri and was given in [2]; see Theorem 2
below. Since the application of Theorem 2 is not restricted to the setting of a Hilbert space,
in this note, we ask the question whether in Theorem 1, one can replace the Hilbert space
Y with some suitable Banach space. Moreover, the second question arises whether this
generalization of Theorem 1 can be performed using the recent result [3] and its complement;
see [4]. We answer positively these questions by utilizing the notion of the duality mapping
relative to some increasing function. Our result seems to be of interest from a theoretical
point of view since it shows how to replace with success the inner product with the duality
mapping in certain cases. We show that results that require operations involving scalar
products can be formulated in terms of duality mappings and monotonicity arguments
about them.

This note is organized as follows. Firstly, we provide the necessary background
information and next proceed to the main multiplicity result. Our main tools to prove
it were provided by the recent results from [1,4]. Our approach to prove the main result
must incorporate some optimization techniques related to constrained problems, which
are not necessary in a Hilbert space setting, as well as arguments that are superfluous in
that case, thereby showing that the idea of replacing the scalar product with the duality
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mapping is not merely the case of exchanging these two notions. We finish with some
concluding remarks.

2. Preliminary Material

We provide a suitable background relying on the existing literature about the multi-
plicity theorem, the duality mapping, and the optimization tools coined so as to suit our
setting. These notes came from various sources, which we cite when necessary, and are
introduced in order to make our reasoning clear.

Following [2], we fix some notation and useful definitions. In R, the usual rules are
applied. In this section, X is a topological space and Y is a convex set in a real Hausdorff
topological vector space. Let S ⊂ Y be a convex subset. By AS, we denote the family
of functions f : X × Y → R such that for each fixed y ∈ S, the function x 7→ f (x, y)
is lower semicontinuous and inf-compact on X. By B, we mean the family of functions
f : X×Y → R such that, either, for each x ∈ X, the function y 7→ f (x, y) is quasi-concave
and continuous, or, for each x ∈ X, the function y 7→ f (x, y) is concave. We denote:

α f = sup
y∈Y

inf
x∈X

f (x, y),

β f = inf
x∈X

sup
y∈Y

f (x, y).

We denote by C f the family of all sets S ⊆ Y such that:

inf
x∈X

sup
y∈Y

f (x, y) = inf
x∈X

sup
y∈S

f (x, y)

and by C̃ f the family of all sets S ⊆ Y such that:

sup
y∈Y

f (x, y) = sup
y∈S

f (x, y) for all x ∈ X.

If for each x ∈ X, there is a topology on Y for which S is dense and y 7→ f (x, y) is upper
semicontinuous, then S ⊂ C̃ f . We denote by τf the topology on Y generated by the family:

{y ∈ Y : f (x, y) < r}x∈X,r∈R.

As a consequence, τf is the weakest topology on Y for which y 7→ f (x, y) is upper semicon-
tinuous for all x ∈ X. The theorem about the multiplicity due to B. Ricceri is as follows:

Theorem 2 (Theorem A). For every g ∈ AY ∩ B, at least one of the following assertions holds:

(a1) supY infX g = infX supY g;
(a2) There exists y∗ ∈ Y such that the function x 7→ g(x, y∗) has at least two global minima.

The above-mentioned theorem was used to prove Theorem 1 by showing that (a1)
does not hold, so (a2) must hold.

Now from [3] and next from [4], a more complete version of Theorem 2 is given. We
provide this result after [4]:

Theorem 3 (Theorem A′). Let f : X×Y → R. Assume that there is a function ξ : Y → R such
that f + ξ ∈ B and:

α f+ξ < β f+ξ .

Then, for every convex set S ⊂ C f+ψ, for every bounded function ψ : X → R, and for every λ > 0
such that λ f + ψ ∈ AS and:

λ >
sup

x∈X
ψ(x)− infx∈X ψ(x)

β f+ξ − α f+ξ
,
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there exists y∗ ∈ Y such that the function x 7→ λ f (x, y∗) + ψ(x) has at least two global minima.

A normed linear space Y is called uniformly convex, if for each ε ∈ (0, 2], there exists
δ(ε) > 0 such that if ‖x‖ = 1, ‖y‖ = 1 and if ‖x− y‖ ≥ ε, then ‖x + y‖ ≤ 2(1− δ(ε)).
A uniformly convex space is necessarily reflexive due to the Pettis–Milman theorem.

In the proof of our main result, we need the notion of a duality mapping relative to a
normalization function, which we recall from [5], in a special case when both Y and Y∗ are
uniformly convex. The notes in [5] were about a more general case, but we need only some
specific settings. A continuous function φ : R+ → R+ is called a normalization function
if it is strictly increasing, φ(0) = 0 and φ(r) → ∞ with r → ∞. A duality mapping on Y
corresponding to a normalization function φ is an operator A : Y → Y∗ such that:

‖A(u)‖∗ = φ(‖u‖), 〈A(u), u〉 = ‖A(u)‖∗‖u‖ for all u ∈ Y.

Then, A : Y → Y∗ is a homeomorphism, d-monotone, and with the potential ψ(u) =∫ ‖u‖
0 φ(t)dt.

We require the Karush–Kuhn–Tucker theorem, which provides necessary optimality
conditions and which was taken after [6].

Theorem 4. Let f , g : Y → R be Fréchet differentiable. Assume that u0 is a minimizer of a
functional f : Y → R satisfying the constraint:

g(x) ≤ 0.

Let the Slater constraint qualification hold, i.e., there is some x0 that g(x0) < 0. Then, there is a
number µ ≥ 0 such that:

f
′
(u0) + µg

′
(u0) = 0.

3. A Multiplicity Result

Let p ≥ 2 be fixed. In what follows, we assumed that Y and Y∗ are uniformly convex,
and we took a duality mapping A : Y → Y∗ corresponding to a normalization function
t 7→ tp−1. Note that when p = 2, we recover the original result by Ricceri, and we do not
need to proceed in the way we do below.

Theorem 5. Let X be a topological space, T ⊂ Y be a convex set dense in Y, and I, ψ : X → R,
ϕ : X → Y be three functions such that ψ is bounded and for each y ∈ T, the function:

x → I(x) + ψ(x) + 〈A(ϕ(x)), y〉

is lower semicontinuous and inf-compact. Moreover, assume that there exists a point x0 ∈ X,
with ϕ(x0) 6= 0, such that:

(a) x0 is a global minimum of both I and ‖ϕ(·)‖p−1;
(b) infx∈X〈A(ϕ(x)), ϕ(x0)〉 < ‖ϕ(x0)‖p.

Then, for each convex set S ⊆ T that is dense in Y, there exists ỹ ∈ S such that the function
x → I(x) + ψ(x) + 〈A(ϕ(x)), ỹ〉 has at least two global minima over X.

Proof. Using Assumption (b), we found x̃ ∈ X and r > 0 such that:

supx∈X ψ(x)− infx∈X ψ(x)

< I(x0)− I(x̃) +
(
‖ϕ(x0)‖p−1 − 〈A(ϕ(x̃),ϕ(x0)〉

‖ϕ(x0)‖

)
r

(1)
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Next, by Condition (a), we have:

I(x0) + r‖ϕ(x0)‖ = inf
x∈X

(I(x) + r‖ϕ(x)‖).

Observe that since functional:

y→ inf
x∈X

(I(x) + 〈A(ϕ(x)), y〉)

is weakly upper semicontinuous, it has an argument of a maximum over a weakly compact
set Br (a closed ball centred at zero with radius r). Hence, there is some ỹ ∈ Br that:

inf
x∈X

(I(x) + 〈A(ϕ(x)), ỹ〉) = sup
y∈Br

inf
x∈X

(I(x) + 〈A(ϕ(x)), y〉).

By the standard application of the Karush–Kuhn–Tucker Theorem, we know that functional
y→ 〈A(ϕ(x0)), y〉 attains its unique argument of a maximum at the boundary of the ball
Br at a point:

y0 =
rϕ(x0)

‖ϕ(x0)‖
. (2)

Indeed, let us consider the following optimization problem:

−〈A(ϕ(x0)), y〉 → inf

subject to the conditions:
‖y‖p − rp ≤ 0.

This problem is obviously solvable by some y0 since the action functional is sequentially
weakly continuous and the constraint set is sequentially weakly compact. Since the Slater
constraint qualification is satisfied (i.e., minimization takes place over a closed ball) and
the functionals involved are continuously differentiable, we see that there is some λ0 ≥ 0
such that for all h ∈ Y, it holds that:

−〈A(ϕ(x0)), h〉+ λ
p−1
0 〈A(y0), h〉 = 0, λ0

(
‖y0‖p − rp) = 0

Let us consider two cases about λ0. When λ0 = 0, it follows that ϕ(x0) = 0, which is
impossible. Hence, λ0 > 0; therefore, ‖y0‖p − rp = 0, and also by a direct calculation, we
see that:

y0 = A−1

(
1

λ
p−1
0

A(ϕ(x0))

)
=

1
λ0

ϕ(x0)

We further see that λ0 = ‖ϕ(x0)‖
r , and so, (2) holds. Moreover, the maximal value is

calculated as follows:〈
A(ϕ(x0)),

1
λ0

ϕ(x0)

〉
=

1
λ0
〈A(ϕ(x0)), ϕ(x0)〉 =

1
λ0
‖ϕ(x0)‖p = r‖ϕ(x0)‖p−1.

With these calculations in mind, we consider two cases for ỹ, namely ỹ = y0 and ỹ 6= y0.
Let us first take ỹ 6= y0. Then, we have, due to the uniqueness of the argument of a
maximum, that:

inf
x∈X

(I(x) + 〈A(ϕ(x)), ỹ〉) ≤ I(x0) + 〈A(ϕ(x0)), ỹ〉 < I(x0) + r‖ϕ(x0)‖p−1.

When ỹ = y0, we see using (1) that:

infx∈X(I(x) + 〈A(ϕ(x)), ỹ〉) ≤ I(x̃) + 〈A(ϕ(x̃)), ỹ〉 = I(x̃) + 〈A(ϕ(x̃)), ỹ〉 =

I(x̃) + r
‖ϕ(x0)‖ 〈A(ϕ(x̃)), ϕ(x0)〉 < I(x0) + r‖ϕ(x0)‖p−1.
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It now follows that:

sup
y∈Br

inf
x∈X

(I(x) + 〈A(ϕ(x)), y〉) < inf
x∈X

sup
y∈Br

(I(x) + 〈A(ϕ(x)), y〉)

For a set S ⊂ T, which is a convex set dense in Y, we obtain:

sup
y∈Br∩S

〈A(ϕ(x)), y〉 = sup
y∈Br

〈A(ϕ(x)), y〉.

Hence:

supy∈Br∩S infx∈X(I(x) + 〈A(ϕ(x)), y〉) < infx∈X supy∈Br
(I(x) + 〈A(ϕ(x)), y〉) =

infx∈X supy∈Br∩S(I(x) + 〈A(ϕ(x)), y〉)

Therefore, we have:

I(x0)− I(x̃) +
(
‖ϕ(x0)‖p−1 − 〈A(ϕ(x̃), ϕ(x0)〉

‖ϕ(x0)‖

)
r

≤ inf
x∈X

sup
y∈Br∩S

(I(x) + 〈A(ϕ(x)), y〉)− sup
y∈Br∩S

inf
x∈X

(I(x) + 〈A(ϕ(x)), y〉) .

Due to (1), we can choose λ = 1 in Theorem 3 in order to obtain the assertion.

As a corollary, we obtain a direct counterpart of Theorem 1:

Theorem 6. Let X be a topological space, T ⊂ Y be a convex set dense in Y, and I : X → R,
ϕ : X → Y be two functions such that, for each y ∈ T, the function:

x → I(x) + 〈A(ϕ(x)), y〉

is lower semicontinuous and inf-compact. Moreover, assume that there exists a point x0 ∈ X, with
ϕ(x0) 6= 0, such that:

(a) x0 is a global minimum of both functions I and ‖ϕ(·)‖p−1;
(b) infx∈X〈A(ϕ(x)), ϕ(x0)〉 < ‖ϕ(x0)‖p.

Then, for each convex set S ⊆ T dense in Y, there exists ỹ ∈ S such that the function
x → I(x) + 〈A(ϕ(x)), ỹ〉 has at least two global minima in X.

Proof. ψ = 0 in Theorem 5 in order to obtain the assertion.

4. Conclusions

In this work, using the min–max arguments, we provided conditions under which
an action functional acting on a uniformly convex Banach space with a uniformly convex
dual has at least two global minima. We extended known results from a Hilbert space
setting to the Banach space one. Thereby, we can ask questions about extensions of some
already published works, such as for example [7] from the Hilbert space to the Banach
one, as well as ask questions about providing applications for Theorem 1 as an example
for non-local problems, such as those given in [8]. Theorem 1 was applied just once to a
system of Dirichlet problems driven by the (negative) Laplacian in the same work, as well
as to the case of systems involving the (negative) p-Laplacian in [9], and to the system of
equations involving the (negative) Laplacian in [1].
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