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Abstract: Creating optimal logic mining is strongly dependent on how the learning data are struc-
tured. Without optimal data structure, intelligence systems integrated into logic mining, such as
an artificial neural network, tend to converge to suboptimal solution. This paper proposed a novel
logic mining that integrates supervised learning via association analysis to identify the most optimal
arrangement with respect to the given logical rule. By utilizing Hopfield neural network as an asso-
ciative memory to store information of the logical rule, the optimal logical rule from the correlation
analysis will be learned and the corresponding optimal induced logical rule can be obtained. In
other words, the optimal logical rule increases the chances for the logic mining to locate the optimal
induced logic that generalize the datasets. The proposed work is extensively tested on a variety
of benchmark datasets with various performance metrics. Based on the experimental results, the
proposed supervised logic mining demonstrated superiority and the least competitiveness compared
to the existing method.

Keywords: supervised learning; Hopfield neural network; logic mining; artificial neural network

MSC: 68T07

1. Introduction

In the area of artificial intelligence (AI), two important perspectives stand out. The
first is the applied rule that represents the given problem. The applied rule is vital in
decision making in order to explain the nature of the problem. The second perspective
is the automation process based on the rule which leads to neuro symbolic integration.
These two perspectives rely heavily on the practicality of the symbolic rule that governs the
AI system. The use of a satisfiability (SAT) perspective in software and hardware system
theories is currently one of the most effective methods in bridging the two perspectives.
SAT offers the promise, and often even the reality, that the model checks efforts with
feasible industrial application. There were several practical applications of SAT that can
be mentioned in this section. Ref. [1] utilized Boolean SAT by integrating satisfiability
modulo theories (SMT) in tackling the scheduling problem. The proposed SMT method was
reported to outperform other existing methods. Ref. [2] discovered vesicle traffic network
by model checking that incorporates Boolean SAT. The proposed SAT model established a
connection between vesicle transport graph connectedness and underlying rules of SNARE
protein. In another development, [3] developed several SAT formulations to deal with
the resource-constrained project scheduling problem (RCPSP). The proposed method is
reported to solve various benchmark instances and outperform the existing work in terms
of computation time and optimality. SAT formulation is a dynamic language that can be
used in representing problem in hand. Ref. [4] proposed a special SAT in modelling the
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circuit. The proposed method reconstructed the accurate circuit configuration up to 90%.
The application of SAT in very-large-scale integration (VLSI) inspires the authors to extend
the application of SAT into pattern reconstruction [5] where they used the variable in SAT
as a building block of the desired pattern. The practicality of SAT motivates researchers to
implement SAT in navigating the structure in an artificial neural network (ANN).

Logic programming in ANN has been initially proposed by [6]. In his work, logic
programming can be embedded into the Hopfield neural network (HNN) by minimizing
the logical inconsistencies. This is also a pioneer to the Wan Abdullah method which obtains
the synaptic weight by comparing cost function with Lyapunov energy function. Ref. [7]
further developed the idea of the logic programming in HNN by implementing Horn
satisfiability (HornSAT) as a logical structure of HNN. The proposed network achieved
more than 80% global minima ratio but high computation time due to the complexity of the
learning phase. Since then, logic programming in ANN was extended to another type of
ANN. Ref. [8] initially proposed logic programming in radial basis function neural network
(RBFNN) by calculating the centre and width of the hidden neurons that corresponds
to the logical rule. In the proposed method, the dimensionality of the logical rule from
input to output can be reduced by implementing Gaussian activation function. The further
development of logic programming in RBFNN were proposed in [9] where the centre
and the width of the RBFNN are systematically calculated. In another development, [10]
proposed a systematic logical rule by implementing a 2-satisfiability logical rule (2SAT) in
HNN. The proposed hybrid network is incorporated with effective learning methods, such
as genetic algorithm [11] and artificial bee colony [12]. The proposed network managed to
achieve more than 95% of global minima ratio and can sustain a high number of neurons. In
another development, [13] proposed the higher order non-systematic logical rule, namely
random k satisfiability (RANkSAT) that consists of random first-, second-, and third-order
logical rule. The proposed works run a critical comparison among a combination of
RANkSAT and demonstrate the capability of non-systematic logical rule to achieve optimal
final state. The practicality of the SAT in HNN was explored in pattern satisfiability [5]
and circuit satisfiability [4] where the user can capture the visual interpretation of logic
programming in HNN. However, up to this point, the choice of SAT structure in HNN has
received very little research attention, despite its practical importance.

Current data mining were reported to achieve good accuracy but the interpretability
of the output is poorly understood due to emphasize of the black box model. In other
words, the output makes sense for the AI but not for the user. One of the most useful
applications of logic programming in HNN is logic mining. Logic mining is a relatively
new perspective in extracting the behaviour of the dataset via logical rule. This method is a
pioneer work of [14]. In this work, the proposed RA extracted individual logical rule that
represents the performance of the students. The logical rule extracted from the datasets
is based on the number of induced Horn logics produced by HNN. Thus, there is very
limited effort to identify the “best” induced logical rule that represent the datasets. To
complement the limitation of the previous RA, several studies include specific SAT logical
rules to be embedded into HNN. Ref. [15] introduced 3-satisfiability (3SAT) as a logical rule
in HNN, thus creating the first systematic logic mining technique, i.e., the k satisfiability
reverse analysis method (kSATRA). The proposed hybrid logic mining is used to extract
logical rule in several fields of studies, such as social media analysis [15] and cardiovascular
disease [16]. In another development, different types of logical rule (2SAT) have been
implemented by [17]. They proposed 2SATRA by incorporating the 2SAT logical rule in
extracting a diabetes dataset [17] and student’s performance dataset [18]. Ref. [19] utilized
2SATRA by extracting logical rule for football datasets in several established football league
in the world. Pursuing that, the ability of 2SATRA is further tested when the proposed
method is implemented in e-games. The 2SATRA has been proposed to extract the logical
rule that explains the simulation game of the League of Legend (LOL) [20]. The proposed
method achieved an acceptable range of logical accuracy. The application of logic mining
was extended to several prominent areas, such as extracting the price information from
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commodities [21]. Another interesting development for kSATRA is by incorporating energy
in induced logic. Ref. [22] proposed an energy-based 2-satisfiability-based reverse analysis
method (E2SATRA) for e-recruitment. The proposed method reduced the suboptimal
induced logic and increased the classification accuracy of the network. Despite the increase
in application in data mining, the existing logic mining endured a significant drawback.
The induced logic produced by the proposed method suffers from a limited amount of
search space. This is due to the positioning of the neurons in kSAT formulation which
affects the classification ability of 2SATRA. In this case, the optimal choice of the neuron
pair in the kSAT clause in logic mining is crucial to avoid possible overfitting.

There were various studies that implemented regression analysis in ANN. Standalone
regression analysis was prone to data overfitting [23], easily affected by outlier [24], and
mostly limited to a linear relationship [25]. Due to the above weaknesses, regression
analysis was implemented to complement the intelligent system. In most studies, regression
analysis will be utilized in the pre-processing layer before it can be processed by the ANN.
Ref. [26] proposed a combination of regression analysis with a RBFNN. The proposed
method formed a prediction model for national economic data. Ref. [27] proposed an
ANN that combines with regression analysis via a mean impact value. The proposed
hybrid network identifies and extracts input variables that deal with irregularity and
vitality of Beijing International Airport’s passenger flow dataset. In [28], ANN is used
to predict the water turbidity level by using optical tomography. The proposed ANN
utilized the regression analysis value as an objective function of the network. Ref. [29] fully
utilized logistic regression to identify significant microseismic parameters. The significant
parameters will be trained by a simple neural network which results in the highly accurate
seismic model. By nature, ANN is purely unsupervised learning and logistic regression
analysis displays a major improvement to the overall performance. Although there were
many studies conducted to confirm the benefit logistic regression analysis in classification
and prediction paradigm, regression analysis has never been implemented in classifying
the SAT logical rule. Regression analysis has the ability to restructure the logical rule based
on the strength of relationship for each k variables in the kSAT clause. In that regard, the
ANN will learn the correct logical structure and the probability to achieve highly accurate
induced logical rule will increase dramatically. In that regard, relatively few studies have
examined the effectiveness of regression in analysing data features that correspond to the
kSAT. The choice of variable pair in the 2SAT clause can be made optimally by implementing
regression analysis without interrupting the value of the cost function.

Unfortunately, there is no recent effort to discover the optimal choice that leads to
the true outcome of the kSAT. The closest work that addresses this issue is shown by [30].
This work [30] utilized neuron permutation to obtain the most accurate induced logical
rule by considering n(n− 1)! neuron arrangement in kSAT. Hence, the aim of this paper
is to effectively explore the various possible logical structures in 2SATRA. The proposed
logic mining model identifies the optimal neuron pair for 2SAT clause forming a new
logical formula. Pearson chi-square association analysis will be conducted to examine
the connectedness of the neuron with respect to the outcome. By doing so, the new 2SAT
formula learned by HNN as an input logic and the new induced logical rule can be obtained.
Thus, the contributions of this paper are:

(a) To formulate a novel supervised learning that capitalize correlation filter among
variables in the logical rule with respect to the logical outcome;

(b) To implement the obtained supervised logical rule into HNN by minimizing the cost
function which minimizes the final energy;

(c) To develop a novel logic mining based on the hybrid HNN integrated with the
2-satisfiability logical rule;

(d) To construct the extensive analysis for the proposed logic mining in doing various
datasets. The proposed logic mining will be compared to the existing state of the art
logic mining.
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An effective 2SATRA model incorporating a new supervised model will be compared
with the existing 2SATRA model for several established datasets. In Section 2, we describe
satisfiability programming in HNN in detail. In Section 3, we describe some simulation of
HNN by using simulated result. Discussion follows in Section 4. The concluding remarks
in Section 5 complete the paper.

2. Motivation
2.1. Optimal Attribute Selection Strategy

Optimal attribute selection is vital to ensure HNN learn the correct logical rule dur-
ing the learning phase. Ref. [30] proposed logic mining that capitalize random attribute
combination that leads to creation of 2SAT logic. In this study, the synaptic weight con-
nection obtained from 2SAT is purely based on the most frequent logical incidence in the
datasets. The main question to ask: what happen if the 2SAT logical rule selected the wrong
attribute? Hence, there is a huge possibility of the logic mining to learn the wrong synaptic
which leads to suboptimal induced logic. A similar observation was made in the study
by [31] which proposed 3SAT for induced logic, with a heavy focus on the random attribute
selection. It is agreeable that the induced logic might produce accurate induced logic, but
this issue leads logic mining to choose the random attributes that reduce the interpretability
of induced logic. To solve this issue, the latest study by [30] proposed permutation operator
to optimize the random selection proposed by [20]. The permutation operator will increase
the accuracy of the induced logic when we change the attribute in the logical formula.
Despite the increase in the accuracy and other metrics, the interpretability issue remains
unsolvable. This is due to the random selection that contributes to a lack of interpretability
of the learned logic in HNN. In this paper, we capitalize the work of [20,30] by constructing
the dataset in the form of 2SAT logical rule and permutation operator. By selecting the
optimal attribute combination of 2SAT, we can obtain more search space which leads to
optimal induced logic.

2.2. Energy Optimization Strategy

Energy optimization in HNN is vital to ensure that every induced logic produced
during retrieval phase is always achieved by global minimum energy. This creates an
important question is: why HNN must achieve global minimum energy? Global minimum
energy indicates a good agreement between the learned logic during pre-processing stage
with the induced logic during retrieval phase. Induced logic that achieved global minimum
energy can be interpreted. In contrast, induced logic that can achieve local minimum energy
might achieve good accuracy, but this is difficult to interpret. In [22], the proposed logic
mining is mainly the focus on the energy stability. The main issue when the induced logic is
solely focusing on global minimum energy is limit on the possible search space of the HNN.
The proposed HNN tends to overfit and produce more redundant induced logic. This will
worsen when the proposed HNN selects the wrong attribute to learn. Non-optimal induced
logic obtained a lack of interpretability and generalization during the retrieval phase. We
tend to achieve similar induced logic which will lead to lower accuracy. Another factor
that might affect overfitting of the induced logic structure is the monotonous behaviour of
HNN that always converges to the nearest minimum energy. Hence, the feature of energy
optimization with the optimal attributes selection will lead to a result that is optimal and
easy to interpret.

2.3. Lack of Effective Metric to Assess the Performance of Logic Mining

Effective metric in logic mining is crucial to ensure the actual performance of the
induced logic in doing clustering and classification. According to the previous studies,
the point of assessment and type of metric are still shallow and do not represent the
performance of the logic mining. For instance, the work of [21] reported the error analysis
learning phase of HNN but a failure to provide metrics that are related to the contingency
table. As a result, the actual performance of the induced logic is still not well understood.
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Similar limitation reported in [14] where only metric of global minima ratio is used to
demonstrate the connection between neurons. The local minimum solution signifies the
induced logic rule does not correspond to the learned logic which contribute to the lack
of generalization capability. In this case, if the measurement is solely based on the energy
metric, then quantifying each element, in terms of confusion metric, is necessary so that
the induced logic can carry out the classification task. In addition, the building block that
leads to intermediate logics is solely based on the obtained synaptic weight. In this context,
without synaptic weight analysis, the connection of the induced logic is poorly understood.
For instance, logic mining [20] does not report the result of the strength of connection
between variables in the induced logic. As a result, there is no method to assess the logical
pattern stored in the content addressable memory (CAM). In this paper, comprehensive
analysis, such as error analysis, synaptic weight analysis, and statistical analysis will be
employed to get an overall view on the actual performance of all the logic mining models.

3. Satisfiability Representation

SAT is a representation of determining the interpretation that satisfies the given
Boolean formula. According to [32], SAT is proven to be an NP-complete problem and is
included to cover wide range of optimization problem. Extensive research on SAT leads
to the creation of variant SAT which is 2SAT. In this paper, the choice of k = 2 is due to
the two-dimensional decision-making system. Generally, 2SAT consist of the following
properties [19]:

(a) A set of defined x variables, q1, q2, q3, . . . , qx where qi ∈ {−1, 1} that exemplify false
and true, respectively.

(b) A set of literals. A literal can be variable or the negation of variable such that
qi ∈ {qi,¬qi}.

(c) A set of x definite clauses, C1, C2, C3, . . . , Cy. Every consecutive Ci is connected to
logical AND (∧). Each two literals in (b) are connected by logical OR (∨).
By taking property (a) into account until (c), one can define the explicit definition of

Q2SAT as follows:

Q2SAT =
y
∧

i=1
Ci (1)

where Ci is a list of clause with two variables each

Ci =
x
∨

i=1
(mi, ni) (2)

By considering the Equations (1) and (2), a simple example of Q2SAT can be written as

Q2SAT = (A ∨ ¬B) ∧ (¬M ∨ D) ∧ (¬E ∨ ¬F) (3)

where the clauses in Equation (3) are C1 = (A ∨ ¬B), C2 = (¬M ∨ D), and C3 = (¬E ∨ ¬F).
Note that each clauses mentioned above must be satisfied with specific interpretations [10].
For example, if the interpretation reads (M, D) = (1,−1), Q2SAT will evaluate false or
−1. Since Q2SAT contains an information storage mechanism and is easy to classify, we
implemented Q2SAT into ANN as a logical system.

4. Satisfiability in Discrete Hopfield Neural Network

HNN [33] consists of interconnected neurons without a hidden layer. Each neuron in
HNN is defined in bipolar state Si ∈ {1,−1} that represents true and false, respectively.
An interesting feature about HNN is the ability to restructure the neuron state until the
network reached its minimum state. Hence, the proposed HNN achieved the optimal final
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state if the collection of neurons in the network reached the lowest value of the minimum
energy. The general definition of HNN with the i-th activation is given as follows

Si =

 1 , i f
N
∑

i=0
WijSj ≥ θ

−1 , otherwise
(4)

where θ and Wij represent a threshold and synaptic weight of the network, respectively.
Without compromising the generality of HNN, some study used θ = 0 as the threshold
value. Note that N is the number of 2SAT variables. Wij is also defined as the connection
between neuron Si and Sj. The idea of implementing Q2SAT in HNN (HNN-2SAT) is due
to the need of some symbolic rule that can govern the output of the network. The cost
function EQ2SAT of the proposed Q2SAT in HNN is given as follows:

EQ2SAT =
NC

∑
i=1

2

∏
j=1

Mij (5)

where NC is the number of EQ2SAT clause. The definition of the clause Mij is given as
follows [9]

Mij =

{ 1
2
(
1− Sy

)
, i f ¬y

1
2
(
1 + Sy

)
, otherwise

(6)

where y is the negation of literal in Q2SAT . It is also worth mentioning that EQ2SAT = 0 if
the 1

4
(
1± Sy

)
= 0 is because the neuron state Sy associated to Q2SAT is fully satisfied. Each

variable inside a particular Mij will be connected by Wij. Structurally, the synaptic weight
of Q2SAT is always symmetrical for both the second- and third-order logical rule:

W(2)
AB = W(2)

BA (7)

with no self-connection between neurons:

W(2)
AA = W(2)

BB = 0 (8)

Note that Equations (5)–(8) only account for a non-redundant logical rule because the
logical redundancies will result in the diminishing effect of the synaptic weight. The goal
of the learning in HNN is to minimize the logical inconsistency that leads to Q2SAT = −1
or ¬Q2SAT = 1. Although synaptic weight of the HNN can be properly trained by us-
ing conventional method, such as Hebbian learning [33], ref. [14] demonstrated that the
Wan Abdullah method can obtain the optimal synaptic weight with minimal neuron os-
cillation compared to Hebbian learning. For example, if the embedded logical clause is
C1 = (A ∨ ¬B), the synaptic weights will read (WA, WB,WAB) = (0.25, 0.25,−0.25). Dur-
ing retrieval phase of HNN-2SAT, the neuron state will be updated asynchronously based
on the following equation.

Si =


1 ,

N
∑

j=1,i 6=j
W(2)

ij Sj + W(1)
i ≥ ξ

−1 ,
N
∑

j=1,i 6=j
W(2)

ij Sj + W(1)
i < ξ

(9)

where Si is a final neuron state with pre-defined threshold ξ. In terms of output squashing,
the Sigmoid function can be used to provide non-linearity effects during neuron classi-
fication. Potentially, the final state of the neuron must contain information that lead to
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EQ2SAT = 0, and the quality of the obtained state can be computed by using Lyapunov
energy function:

HQ2SAT = −1
2

N

∑
i=0,i 6=j

N

∑
j=0,j 6=i

W(2)
ij SiSj −

N

∑
i=0

W(1)
i Si (10)

According to [33], the symmetry of the synaptic weight is sufficient condition for the
existence of the Lyapunov function. Hence, the value of HQ2SAT in Equation (10) decreases
monotonically with network. The absolute minimum energy H min

Q2SAT
can pre-determined

by substituting interpretation that leads to EQ2SAT = 0. In this case, if the obtained neuron

state can satisfy
∣∣∣HQ2SAT − H min

Q2SAT

∣∣∣ ≤ Tol, the final neuron state achieved global minimum
energy. Note that the current conventions of Si ∈ {1,−1} can be converted to binary by
implementing different a Lyapunov function coined by [6].

5. Proposed Method

2SATRA is a logic mining method that can extract a logical rule from the dataset. The
philosophy of the 2SATRA is to find the most optimal logical rule of Equation (1), which
corresponds to the dynamic system of Equation (9). In the conventional 2SATRA proposed
by [20], the choice of variable in 2SATRA will be determined randomly which leads to
poor quality of the induced logic. The choices of the neurons are arranged randomly
before the learning of HNN can take place. In this section, chi-square analysis will be used
during the pre-processing stage. The aim of the association method is to assign the two
best neurons/clauses that correspond to the outcome Q2SAT . These neurons will take part
during the learning phase of HNN-2SAT which leads to better induced logic. In other
words, the additional optimization layer is added to reduce the pre-training effort for
2SATRA to find the best logical rule.

Let N the number of neurons represent the attribute of the datasets Si = (S1, S2, S3, . . . , SN)
where each neuron is converted into bipolar interpretation Si = {−1, 1}. Necessarily,
2SATRA is required to select d neurons that will be learned by HNN-2SAT. In this case, the
number of possible neuron permutation after considering the learning logic Ql

i structure is
N!

2(N−d)! . By considering the relationship between Ql
i and neuron Si, we can optimally select

the pair of Si for each clause Ci. The Si selection for each Ci is given as follows:

Ql
i =

NC
∧

i=0,i 6=j

(
Smin|Pi |

i ∨ S
min|Pj |
i

)
, i 6= j, 0 ≤ Pi ≤ α, 0 ≤ Pj ≤ α (11)

where Pi is the P value between Ql
i and the neuron Si. min|Pi| signifies the minimized value

of Pi recorded between Ql
i and Si, and the value of α is pre-defined by the network. Note that

i 6= j does not significy a self-connection between the same neurons. By considering the best-
and worst-case scenario, the neuron will be chosen at random if min|Pi| = min

∣∣Pj
∣∣. If the

examined neurons do not achieve the pre-determined association, HNN-2SAT will reset the
search space, which fulfils the threshold association value. Hence, by using Equation (11),
the proposed 2SATRA is able to learn the early feature of the dataset. After obtaining the
right set of neurons for Ql

i , the dataset will be converted into bipolar representation:

Si =

{
1 , Si = 1
−1 , otherwise

(12)

Note that we only consider the second-order clause or C(2)
i for each clause in Ql

i .
Hence, the collection of Si that leads to positive outcome of the learning data or Ql

i = 1 will

be segregated. By calculating the collection of C(2)
i that leads to Ql

i = 1, the optimum logic
Qbest is given as follows:

Qbest = max
[
n
(

C(2)
i

)]
, Ql

i = 1 (13)
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where n
(

C(2)
i

)
is the number of Ql

i that leads to Ql
i = 1. Hence, the logical feature of the

Qbest can be learned by obtaining the synaptic weight of the HNN. In this case, the cost
function in Equation (11) which corresponds to Qbest will be compared to Equation (5). By
using Equation (9), we obtain the final neuron state SB

i .

Sinduced
i =

{
Si , SB

i = 1
¬Si , SB

i = −1
(14)

Since the proposed HNN-2SAT only allows an optimal final neuron state, the quality
of the SB

i will be verified by using
∣∣∣HQ2SAT − Hmin

Q2SAT

∣∣∣ ≤ Tol. In this case, SB
i that leads

to local minima will not be considered. Hence, the classification of the induced QB
i is

as follows:

QB
i =

 QB
i ,

∣∣∣∣HQB
i
− Hmin

QB
i

∣∣∣∣ ≤ ∂

0 , otherwise
(15)

where Hmin
QB

i
can be obtained from Equation (10). It is worth mentioning that if the two

neurons do not have the strong association, the neurons will not be considered. Thus, if
the association value for all neurons does not achieve the threshold variable 0 ≤ ρi ≤ α,
the proposed network will be reduced to conventional kSATRA proposed by [21,31].
Figure 1 shows the implementation of the proposed supervised logic mining or (S2SATRA).
Algorithm 1 shows Pseudo code of the Proposed S2SATRA.

Algorithm 1. Pseudo code of the Proposed S2SATRA.

Input: Set all attributes A1, A2, A3, . . . , AN with respect to Qlearn.
Output: The best induced logic QB

i .
1 Begin
2 Initialize algorithm parameters;
3 Define the Attribute for A1, A2, A3, . . . , AN with respect to Ql

i ;
4 Find the correlation value between Ai with Ql

i ;
5 for

(
Ql

i ≤ Ql
Ndata

)
do

6 if Equation (11) is satisfied then
7 Assign Ai as Si, and continue;
8 while (i ≤ Per) do
9 Using the found attributes, find Qbest using Equation (13);
10 Check the clause satisfaction for Qbest;
11 Compute Hmin

Qbest
using Equation (10);

12
Compute the synaptic weight associated with Qbest using the WA
method;

13 Initialize the neuron state;
14 for (g ≤ trial)
15 Compute hi using Equation (9);
16 Convert SB

i to the logical form using Equation (14);
17 Evaluate the HQB

i
by using Equation (10);

18 If Condition (15) is satisfied then
19 Convert to induced logic QB

i ;

20
Compare the outcome of the QB

i with
Qtest and continue;

21 g← g + 1 ;
22 end for
23 i← i + 1 ;
24 end while
25 end for
26 End
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Figure 1. The implementation of the proposed S2SATRA.

6. Experiment and Discussion
6.1. Experiment Setup

In this section, we describe the components of the experiments carried out here. The
purpose of this experiment is to elucidate the different logic mining mechanism that leads to
Qbest before it can be learned by HNN. To guarantee the reproducibility of the experiment,
we set up our experiment as follows.

6.1.1. Benchmark Datasets

In this experiment, 12 publicly available datasets are obtained from UCI repository
https://archive.ics.uci.edu/mL/datasets.php (accessed on 10 December 2021). These
datasets are widely used in the classification field and are representative of practical
classification problem. The details of the datasets are summarized in Table 1.

Table 1. List of datasets.

ID Data Instances Attributes Area Outcome Qki
2SAT

F1 Pageblocks 5473 10 Computer Class
F2 Australian 690 14 Financial Class
F3 Zoo 101 17 Life Class
F4 Wisconsin 569 32 Life Class
F5 Speaker 329 12 Social Language
F6 Shuttle 58,000 9 Physical Class
F7 Facebook 500 19 Business Status
F8 Wine 178 13 Physical Class
F9 Computer 209 9 Computer ERP

F10 Energy Y1 768 8 Computer Heating Load
F11 Ionosphere 351 34 Physical Class
F12 Energy Y2 768 8 Computer Cooling Load

https://archive.ics.uci.edu/mL/datasets.php
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To avoid possible field bias, the area of interest in the dataset varies from science
to social datasets. The choice of datasets is based on two aspects. First, we only select
a dataset that contains more than 100 instances to preserve the statistical property of a
distribution. For example, we avoid choosing balloon datasets because the number of
instances is statistically too small to assess the capability learning phase of the proposed
model. Second, we only select a dataset that contains more than six attributes. The choice
of having more than six attributes is to check the effectiveness of the proposed model in
adapting the concept of an optimal attribute selection. In other words, this experiment is
unable to assess the effectiveness of the proposed model using association analysis and
permutation if the number of attributes is low. Note that the state of the data will be stored
in neuron by using bipolar representation Si ∈ {−1, 1} and each state can represent the
behaviour of the dataset with respect to Qbest. In terms of data normalization, k-mean
clustering [34] will be used to normalize the continuous datasets into 1 and −1. For a
dataset that contains categorical data, the proposed model and the existing model will
randomly select Q ki

2SAT . Since the number of missing values for all datasets is very small
and negligible, we replaced the missing value with a random neuron state. The experiment
employs a train-split method where 60% of the dataset will be trained and 40% of the
dataset will be tested [31]. Note that multi-fold validation was not implemented in this
paper because we wanted to ensure that Qbest learned by HNN has a similar starting point
for all logic mining models. A multi-fold validation method will eliminate the original
point of assessment during the training phase of logic mining. Hence, the comparison
among logic mining is not possible.

6.1.2. Performance Metrics

In terms of metric evaluation performance, several performance metrics were selected
to measure the robustness of the proposed method compared to the other existing work.
We divided performance metrics into a few parts. Error evaluations consist of a standard
error metric, such as a root mean square error (RMSE) and a mean absolute error (MAE).
The formulation for both errors are as follows:

RMSE =
n

∑
i=1

1
n

(
Qtest

i −QB
i

)2
(16)

MAE =
n

∑
i=1

1
n

∣∣∣Qtest
i −QB

i

∣∣∣ (17)

where Qtest
i is the state of the data Qtest

i ∈ {−1, 1}. In detail, the best logic mining model
will produce the QB

i with the lowest error evaluation. Next, standard classification metrics,
such as accuracy, F-score, precision, and sensitivity will be utilized in the experiment.
According to [35], the sensitivity metric Se analyses how well a case correctly produces a
positive result for an instance that has a specific condition. Note that, TP (true positive) is
the number of positive instances that correctly classified, FN (false negative) is the number
of positive instances that incorrectly classified, TN (true negative) is the number of negative
instances that correctly classified, and FP (false positive) is the number of incorrectly
classified positive instances.

Se =
TP

TP + FN
(18)

Meanwhile, precision is utilized to measure the algorithm’s predictive ability. Precision
refers to how precise the prediction is from those positively predicted with how many of
them are actually positive. The calculation for precision (Pr) is defined as follows:

Pr =
TP

TP + FP
(19)
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Accuracy (Acc) is generally the common metric for determining the performance of
the classification. This metric measures the percentage of instances categorized correctly:

Acc =
TP + TN

TP + TN + FP + FN
(20)

As stated by [36], F-score is a significant necessity that reflects the highest probability of
correct result, explicitly representing the ability of the algorithm. Additionally, F1-score is
described as the harmonic mean of precision and sensitivity. Next, the Matthews correlation
coefficient (MCC) will be used to examine the performance of the logic mining based on the
eight major derived ratios from the combination of all components of a confusion matrix.
MCC is regarded as a good metric that represents the global model quality and can be used
for classes of a different size [37].

F Score =
2TP

2TP + FP + FN
(21)

MCC =
TP TN − FP FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(22)

It is worth mentioning that this is our first encounter to approach logic mining with
various performance metrics. In [20,22], the only metric used is only accuracy and test-
ing error.

6.1.3. Baseline Methods

Since the main focus of this paper is to examine the performance of the induced logic
produced by S2SATRA, we limit our comparison to only method that produce induced
logic. Despite the fact that we respect the capability of the existing model in classifying
the dataset, we will not compare S2SATRA with the existing classification model, such as
random forest, decision tree, etc., because these models do not produce any logical rule
that classifies the dataset. For consistency purposes, all the experiments will employ the
same type of logical rule, i.e., Q2SAT . For comparison purposes, the proposed S2SATRA
will be compared with all the existing logic mining models, such as 2SATRA [20], the
energy-based 2-satisfiability reverse analysis method (E2SATRA) [22], the 2-satisfiability
reverse analysis method with permutation element (P2SATRA) [30], and the state-of-the-art
reverse analysis method (RA) [14]. This section will discuss the implementation of each
logic mining models.

(a) The conventional 2SATRA model proposed by [20] utilizes Q2SAT integrated with
the Wan Abdullah method. The determination of Qbest follows the Equation (13)
and the selected attributes are randomized. During the retrieval phase, HNN-2SAT
will retrieve the optimal SB

i that leads to optimal induced logic which then leads to
the potential generalization of the datasets. There is no layer of verification around
whether the final state SB

i produced is the global minimum energy.
(b) In E2SATRA [22], Lyapunov energy function in Equation (10) will be used to verify

the QB
i . The final state of the HNN will converge to the nearest minimum solution. In

this case, QB
i that achieve local minimum energy will be filtered out during retrieval

phase of HNN-2SAT. The dataset generalization of E2SATRA does not consider the
optimal attribute selection.

(c) In P2SATRA [30], the permutation operator will be used to permutate the attribute in

C(2)
i . The permutation operator will explore the possibility of search space related to

the chosen attributes. Note that redundant permutation will not be considered during
the attribute selection. The retrieval property of the P2SATRA will have the same
property as conventional 2SATRA.

(d) As for RA proposed by [14], we introduced RA that can only produce HornSAT prop-

erty [7] while still maintaining the two attributes per C(2)
i . To make the proposed RA
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comparable with our proposed method, calibration is required. The main calibration
from the previous RA is the number of QB

i produced by the datasets. Instead of as-
signing neuron for each instance, we assign each neuron with attributes. The neuron
redundancy is also introduced to avoid the net-zero effect of the synaptic weight.

During the learning phase, learning optimization is implemented to ensure that the
synaptic weight obtained is purely due to the HNN. Note that the effective synaptic weight
management will change the final state of HNN, leading to different QB

i . Since the HNN
has a recurrent learning property [33], the neuron will change states until Qlearn

i = 1 and
until the learning threshold NH is reached. According to [14], if the learning of Q2SAT
exceeds the proposed NH, the HNN will use the current optimal synaptic weight for
the retrieval phase. During the retrieval phase of HNN, the neuron state will be initially
randomized to reduce the possible bias. Noise function is not added, such as in [22,31],
because the main objective of this experiment is to investigate the type of attributes that
retrieve the most optimal final QB

i . To obtain consistent results throughout all 2SATRA
models, the only squashing function employed by the neurons in 2SATRA models is the
hyperbolic activation function in [38]. By considering only one fixed learning rule, we can
examine the effect of supervised learning towards the 2SATRA model. Tables 1–5 illustrate
the list of parameters involved in the experiment.

Table 2. List of parameters in S2SATRA.

Parameter Parameter Value

Neuron Combination 100
Number of Trial 100

Number of Learning (Ω) 100
P-Value (P) 0.05
Logical Rule Q2SAT

Tolerance Value (∂) 0.001
No_Neuron String 100

Maximum Permutation (Per) 100

Table 3. List of parameters in E2SATRA [22].

Parameter Parameter Value

Neuron Combination 100
Attribute Selection Random

Number of Learning (Ω) 100
Logical Rule Q2SAT

Tolerance Value (∂) 0.001
No_Neuron String 100

Selection_Rate 0.1
Neuron Combination 100

Table 4. List of parameters in 2SATRA [20].

Parameter Parameter Value

Neuron Combination 100
Attribute Selection Random

Number of Learning (Ω) 100
Logical Rule Q2SAT

No_Neuron String 100
Selection_Rate 0.1
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Table 5. List of parameters in P2SATRA [30].

Parameter Parameter Value

Neuron Combination 100
Attribute Selection Random

Number of Learning (Ω) 100
Logical Rule Q2SAT

No_Neuron String 100
Selection_Rate 0.1

Maximum Permutation 100

6.1.4. Experimental Design

The simulations were all implemented using Dev C++ Version 5.11 (manufactured by
Bloodshed Company from USA) for Windows 10 (Microsoft from USA) in 2 GB RAM with
Intel Core I3 (Intel from USA) as a workstation. As for association analysis, Qbest will be
obtained by using IBM SPSS Statistics Version 27 (manufactured by IBM from New York,
NY, USA). All the experiments were implemented in the same device to avoid a possibly
bad sector during the simulation. Each 2SATRA model will undergo 10 independent runs
to reduce the impact of bias caused by the random initialization of a neuron state.

7. Results and Discussion
7.1. Synaptic Weight Analysis

Figure 1 demonstrates that the optimal 2SATRA model requires pre-processing struc-
ture for neurons before the Qbest can be learned by HNN. The currently available 2SATRA
model specifically optimizes the logic extraction from the dataset without considering the
optimal Qbest. Hence, the mechanism that optimizes the optimal neuron relationship before
the learning can occur remains unclear. Identifying a specific pair of neurons for Q2SAT
will facilitate the logic mining to obtain the optimal induced logic.

Figures 2–13 demonstrate the synaptic weight for all logic mining models in extracting
logical information for F1–F12. Note that W(1)

i and W(2)
ij represent the first- and second-

order connection in the C(2)
i clause. In this section, we will check the optimality of the

synaptic weight with respect to the obtained accuracy value. Several interesting points can
be made from Figures 2–13.

(a) Despite different attribute selection for S2SATRA compared to the other logic mining
model, the induced logic for S2SATRA shows more logical variation compared to
other existing work. For instance, the synaptic weight for S2SATRA has a bias towards
a positive literal for only four datasets while maintaining high accuracy.

(b) RA demonstrates logical rigidness because the synaptic weight must produce a final
state with at least one positive literal. According to Figures 2–13, the induced logic
tends to overfit with the datasets. The structure of the induced logic obtained in RA
might exhibit some diversity compared to S2SATRA but remains suboptimal, leading
to a lower accuracy value. Hence, great diversity with wrong attribute selection
reduces the effectiveness of logic mining model.

(c) In terms of energy optimization strategy, the energy filter in S2SATRA is able to re-
trieve global induced logic that contains more negated neurons compared to E2SATRA.
This shows that the choice of attribute will definitely influence the choice of synap-
tic weight learning. For example, E2SATRA managed to achieve 10 similar global
induced logic as an optimal logic for F1, F2, F3, F4, F5, F6, F7, F9, F10, and F12
compared to S2SATRA which can only retrieve 4 similar induced logic for F3, F4, F8,
and F9. Despite having similar global induced logic, S2SATRA can still obtain a high
accuracy level.

(d) Another interesting insight is that permutation operators improve P2SATRA in learn-
ing optimal synaptic weight, but the improvement seems more obvious in S2SATRA.
For instance, with the same synaptic weight for neuron A and D but a different
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attribute representation, S2SATRA is able to achieve higher accuracy. A similar obser-
vation is made for other neurons from A to E. This implies the need of the optimal
attribute selection before learning of HNN can take place.

7.2. Correlation Analysis for S2SATRA

Tables 6 and 7 demonstrate the correlation value between the attribute Ai for F1 until
F12 with respect to Q ki

2SAT . For a clear illustration, H0 signifies that there is no correlation

between the attribute Ai with Q ki
2SAT . Hence, if the correlation exists between the attributes

and the outcome, we will “reject” the decision of H0 and the connotation of “Accept”
means the otherwise [39]. In other words, the aim of this analysis is to verify which Ai will
be chosen to represent the Ci in Q ki

2SAT . Based on Table 8, most of the attributes selected

in S2SATRA have a high correlation with Q ki
2SAT . The non-correlated attributes will be

disregarded in the right way before it can be introduced in the learning phase of HNN.
The main concern in the conventional logic mining model is the possible choice of Ai that
construct Ci purely based on the random selection. For example, in F12, the logic mining
model without a supervised layer might choose A6 and A8 to construct Ci and will have to
learn unnecessary attributes that lead to Q ki

2SAT = 1. In this context, HNN-2SAT will learn

non-optimal Q ki
2SAT that corresponds to the datasets which has no correlation with the final

outcome. Hence, the effectiveness of knowledge extraction for logic mining will be reduced
dramatically because one of the Ci is not correlated to the desired outcome. Based on the
result, the correlation layer is vital to avoid S2SATRA from choosing the wrong attributes.

Figure 2. Synaptic weight analysis for F1: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .
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Figure 3. Synaptic weight analysis for F2: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 4. Synaptic weight analysis for F3: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .
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Figure 5. Synaptic weight analysis for F4: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 6. Synaptic weight analysis for F5: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .
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Figure 7. Synaptic weight analysis for F6: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 8. Synaptic weight analysis for F7: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .
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Figure 9. Synaptic weight analysis for F8: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 10. Synaptic weight analysis for F9: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .
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Figure 11. Synaptic weight analysis for F10: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 12. Synaptic weight analysis for F11: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .
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Figure 13. Synaptic weight analysis for F13: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

(a) According to Tables 7 and 8, the worst performing correlation values which account
for most of the weakly correlated values are F1, F5, F7, and F11. The weak correlation
is determined after considering the absolute value of the correlation. Despite the low
correlation value, S2SATRA is still able to avoid attributes with no correlation at all.

(b) The best performing correlation datasets are F4, F9, F10, and F12 where all the at-
tributes of interest are selected for learning. The optimal selection by S2SATRA has
a good agreement with high accuracy of the induced logic compared to the exist-
ing model.

(c) F6 and F8 are the only datasets that partially achieve the optimal number of attributes

with a high correlation with Q ki
2SAT . These datasets are reported to be highly correlated

and the results have slightly low accuracy in terms of induced logic.
(d) Overall, we can also conclude that S2SATRA does not require any randomized at-

tribute selection because all correlation values agree with the association thresh-
old value.

7.3. Error Analysis

Tables 9 and 10 demonstrate the error evaluation for all the logic mining models. The
S2SATRA model outperforms all logic mining models in terms of RMSE and MAE. Note
that the improvement ratio is considered by taking into account the differences between
the error value divided with the error produced by logic mining.
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Table 6. Correlation analysis (ρ) for 8 sampled attributes for F1–F6.

A1 A2 A3 A4 A5 A6 A7 A8

F1
Correlation 0.352 −0.004 0.335 0.097 0.211 −0.178 0.166 0.157

P 5.4 × 10−159 7.7 × 10−1 2.1 × 10−69 7.8 × 10−13 4.3 × 10−56 2.7 × 10−40 3.9 × 10−35 1.6 × 10−31

Decision H0 Reject Accept Reject Reject Reject Reject Reject Reject
F2

Correlation −0.014 0.374 0.247 0.720 0.458 0.406 0.032 0.115
P 7.2 × 10−1 2.7 × 10−24 5.1 × 10−11 1.9 × 10−111 3.9 × 10−37 7.9 × 10−29 4.1 × 10−1 2.0 × 10−3

Decision H0 Accept Reject Reject Reject Reject Reject Accept Reject
F3

Correlation 0.366 0.202 0.344 0.230 0.376 0.581 −0.338 0.432
P 2.0 × 10−3 1.0 × 10−1 4.0 × 10−3 6.2 × 10−2 2.0 × 10−3 2.4 × 10−7 5.0 × 10−3 3.0 × 10−4

Decision H0 Reject Accept Reject Accept Reject Reject Reject Reject
F4

Correlation 0.687 0.678 0.686 0.580 0.752 0.636 0.604 0.284
P 9.3 × 10−99 4.2 × 10−95 2.3 × 10−98 5.4 × 10−64 1 × 10−127 1.4 × 10−80 1.1 × 10−70 2.1 × 10−14

Decision H0 Reject Reject Reject Reject Reject Reject Reject Reject
F5

Correlation 0.081 −0.278 0.250 0.269 0.077 0.189 −0.271 0.214
P 1.4 × 10−1 2.8 × 10−7 4.4 × 10−6 7.5 × 10−7 1.6 × 10−1 5 × 10−4 5.8 × 10−7 0.0 × 10−1

Decision H0 Accept Reject Reject Reject Accept Reject Reject Reject
F6

Correlation 0.737 0.144 −0.010 −0.447 −0.016 −0.595 0.521 0.735
P 0.0 × 10−1 8.8 × 10−68 2.3 × 10−1 0.0 × 10−1 5.5 × 10−2 0.0 × 10−1 0.0 × 10−1 0.0 × 10−1

Decision H0 Reject Reject Accept Reject Accept Reject Reject Reject

Table 7. Correlation analysis (ρ) for 8 sampled attributes for F7–F12.

A1 A2 A3 A4 A5 A6 A7 A8

F7
Correlation −0.086 −0.0324 −0.397 0.393 −0.091 −0.180 −0.072 −0.133

P 4.1 × 10−13 7.9 × 10−172 2.0 × 10−264 4.3 × 10−259 2.7 × 10−14 1.4 × 10−52 1.8 × 10−9 5.4 × 10−29

Decision H0 Reject Reject Reject Reject Reject Reject Reject Reject
F8

Correlation 0.518 −0.847 0.489 −0.499 0.266 −0.617 −0.788 −0.634
P 1.3 × 10−13 2.7 × 10−50 4.3 × 10−12 1.3 × 10−12 3.0 × 10−4 4.4 × 10−20 5.9 × 10−39 2.2 × 10−21

Decision H0 Reject Reject Reject Reject Reject Reject Reject Reject
F9

Correlation 0.178 0.009 0.819 0.901 0.649 0.611 0.592 0.966
P 1.0 × 10−2 8.9 × 10−1 6.7 × 10−52 4.2 × 10−77 2.5 × 10−26 9.7 × 10−23 3.6 × 10−21 3.4 × 10−124

Decision H0 Reject Accept Reject Reject Reject Reject Reject Reject
F10

Correlation 0.671 −0.704 0.473 −0.914 0.933 0.995 0.156 −0.055
P 4.4 × 10−50 4.2 × 10−57 3.3 × 10−22 3.8 × 10−147 2.2 × 10−166 0.0 × 10−1 3.0 × 10−3 2.9 × 10−1

Decision H0 Reject Reject Reject Reject Reject Reject Reject Reject
F11

Correlation 0.011 0.072 0.310 0.315 0.345 0.581 0.336 0.306
P 8.4 × 10−1 1.8 × 10−1 3.0 × 10−9 1.6 × 10−9 3.1 × 10−11 5.0 × 10−33 9.9 × 10−11 4.9 × 10−9

Decision H0 Accept Accept Reject Reject Reject Reject Reject Reject
F12

Correlation 0.674 −0.710 0.435 −0.900 0.924 0.022 0.136 −0.051
P 8.4 × 10−51 2.1 × 10−58 1.2 × 10−18 3.7 × 10−136 6.2 × 10−157 6.8 × 10−1 9.0 × 10−3 3.3 × 10−1

Decision H0 Reject Reject Reject Reject Reject Accept Reject Accept

Table 8. Improved RA [14].

Parameter Parameter Value

Neuron Combination 100
Number of Learning (Ω) 100

Logical Rule Q2SAT
No_Neuron String 100

Selection_Rate 0.1
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Table 9. RMSE for all logic mining models. The bracket indicates the ratio of improvement and
* indicates division by zero. A negative ratio implies the method outperform the proposed method. P
is obtained from the paired Wilcoxon rank test and ** indicates the model with significant inferiority
compared to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 18.125 18.125 (0) 31.034 (0.416) 31.034 (0.416) 676.174 (0.973)
F2 5.417 15.289 (0.646) 17.215 (0.685) 15.891 (0.659) 76.601 (0.929)
F3 0.000 0.920 (1.000) 3.849 (1.000) 0.770 (1.000) 49.267 (1.000)
F4 0.569 3.695 (0.846) 1.563 (0.636) 0.569 (0.000) 1.563 (0.636)
F5 1.572 11.708 (0.866) 14.329 (0.890) 7.514 (0.791) 20.794 (0.9244)
F6 25.134 32.199 (0.219) 106.945 (0.765) 30.124 (0.166) 958.121 (0.974)
F7 18.839 34.874 (0.460) 46.760 (0.597) 20.745 (0.092) 98.791 (0.809)
F8 1.179 10.371 (0.886) 11.078 (0.894) 1.414 (0.166) 10.371 (0.886)
F9 0.655 2.619 (0.749) 8.510 (0.923) 0.655 (0.000) 12.001 (0.945)
F10 0.000 3.932 (1.000) 24.413 (1.000) 0.000 (*) 54.367 (1.000)
F11 2.556 5.112 (0.500) 19.369 (0.868) 2.695 (0.052) 59.337 (0.957)
F12 0.000 0.000 (*) 10.650 (1.000) 0.000 (*) 7.865(1.000)

(+/=/−) - 11/1/0 12/0/0 8/4/0 12/0/0
Avg 6.170 11.814 24.643 9.284 168.761
Std 9.039 11.528 28.760 12.008 4.662
min 0.000 0.000 1.563 0.000 1.563
max 18.839 34.874 106.945 31.034 958.121
Avg
Rank 1.250 2.917 4.083 2.083 4.667

P 0.005 ** 0.002 ** 0.012 ** 0.002 **

Table 10. MAE for all logic mining models. The bracket indicates the ratio of improvement and
* indicates division by zero. A negative ratio implies the method outperform the proposed method. P
is obtained from the paired Wilcoxon rank test and ** indicates the model with significant inferiority
compared to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 0.387 0.387 (0.000) 0.663 (0.416) 0.663 (0.416) 12.452 (0.973)
F2 0.326 0.920 (0.646) 1.109 (0.706) 0.957 (0.659) 4.601 (0.929)
F3 0.000 0.741 (1.000) 0.741 (1.000) 0.148 (1.000) 9.481 (1.000)
F4 0.040 0.263 (0.848) 0.111 (0.640) 0.040 (0.000) 0.111 (0.640)
F5 0.137 1.023 (0.866) 1.252 (0.891) 0.656 (0.791) 1.817 (0.925)
F6 0.330 0.423 (0.220) 1.404 (0.765) 0.396 (0.167) 12.582 (0.974)
F7 0.352 0.652 (0.460) 0.874 (0.597) 0.388 (0.093) 1.846 (0.809)
F8 0.139 1.222 (0.886) 1.306 (0.894) 0.167 (0.168) 1.222 (0.886)
F9 0.071 0.286 (0.752) 0.929 (0.924) 0.071 (0.000) 1.310 (0.946)

F10 0.000 0.322 (1.000) 2.000 (1.000) 0.000 (*) 4.456 (1.000)
F11 0.233 0.467 (0.501) 1.631 (0.857) 0.227 (−0.026) 5.417 (0.957)
F12 0.000 0.000 (*) 0.872 (1.000) 0.000 (*) 0.644 (1.000)

(+/=/−) - 10/2/0 12/0/0 7/4/1 12/0/0
Avg 0.168 0.559 1.074 0.309 310.235
Std 0.151 0.359 0.493 0.309 4.505
min 0.000 0.000 0.111 0.000 0.111
max 0.387 1.222 2.000 0.957 12.582

Avg Rank 1.333 2.958 4.041 2.000 4.667
P 0.002 ** 0.002 ** 0.003 ** 0.003 **

A high value of RMSE demonstrates the high deviation of the error compared with
the Q ki

2SAT . S2SATRA ranks first on 12 datasets. The “+”, “−“, and “=” in the results
column indicate that S2SATRA is superior, inferior, and equal to the comparison algorithm,
respectively. The “Avg” indicates the corresponding algorithm’s average of the Friedman
test for 12 datasets. The rank represents the ranking of the “Avg Rank”. Although the
value S2SATRA is the lowest compared to other logic mining model, the RMSE value is
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high, which shows that the error is deviated from the mean of the error for the whole Q ki
2SAT.

According to Tables 9 and 10, there are several winning points for S2SATRA, which are
as follows.

(a) In terms of individual RMSE and MAE, S2SATRA outperforms all the existing logic
mining models which extract the logical rule from the datasets.

(b) There were several datasets that recorded zero error, such as in F3 and F10. In terms of
MAE, S2SATRA achieved less than 0.5 for all the datasets, resulting in a lower mean
MAE (0.168).

(c) Despite showing the best performance compared to all existing methods, the RMSE
value for S2SATRA is still high for several datasets, such as in F1, F6, and F7. Although
a high value of RMSE is recorded, the value is much lower compared to the other
existing work.

(d) The Friedman test rank is conducted for all the datasets with α = 0.05 and a degree
of freedom of d f = 4. The P for both RMSE and MAE are 1.27 × 10−7 (χ2 = 37.33

)
and 2.09 × 10−7 (χ2 = 36.68

)
, respectively. Hence, the null hypothesis of equal per-

formance for all the logic mining models is rejected. According to Tables 9 and 10
for all the datasets, S2SATRA has an average rank of 1.25 and 1.333 for RMSE, re-
spectively, which is highest compared to other existing methods. The closest method
that competes with S2SATRA is P2SATRA with an average rank of 2.083 and 2.000,
respectively.

(e) Overall, the average RMSE and MAE for S2SATRA shows an improvement by 83.9%
compared to the second best method which is P2SATRA. In this case, the optimal
attribute selection contributes towards a lower value of RMSE and MAE.

(f) In addition, the Wilcoxon rank test is conducted to statistically validate the superiority
of S2SATRA [40]. From the table, we observe that S2SATRA is the top-ranked logic
mining model in terms of error analysis followed by P2SATRA, E2SATRA, 2SATRA,
and RA.

P2SATRA is observed to achieve a competitive result where the 5 out of 12 datasets
have the same error during the retrieval phase. This indicates that the conventional 2SATRA
model can be further improved with a permutation operator. Despite the high permutation
value (up to 1000 permutation/run) implemented in each dataset, most of the attributes in
the P2SATRA are insignificant with respect to the final output. Hence, the accumulated
testing error will be higher than the proposed S2SATRA. It is also worth noting that
implementation of the permutation operator from P2SATRA benefits S2SATRA in terms
of search space. In another perspective, an energy-based approach, E2SATRA, is able to
obtain Q ki

2SAT which can achieve the global minima energy but tends to get trapped in
suboptimal solution. According to Tables 9 and 10, E2SATRA showed improvement in
terms of error compared to the conventional 2SATRA but the induced logic only explores a
limited search space. For example, the high accumulation error in F2–F8 were due to small
number of Q ki

2SAT produced by E2SATRA. The only advantage for E2SATRA compared to

RA is the stability of the Q ki
2SAT in finding the correction dataset generalisation. E2SATRA

is reported to be slightly worse compared to P2SATRA, except for F8 and F10 where the
error difference is 86.3% and 47.2%, respectively. Conventional 2SATRA and RA were
reported to produce Q ki

2SAT with the worst quality due to the wrong choice of attribute
selection. Another interesting insight is that the modified RA from [14] tends to overlearn,
which results in an accumulation of error. For instance, RA accumulates a large RMSE
value in F1, F6, and F7, due to the rigid structure of Q ki

2SAT during the learning phase

and the testing phase of RA. Additionally, the rigid structure for Q ki
2SAT in RA does not

contribute to effective attribute representation. Overall, it can be seen that, compared with
each comparison algorithm, S2SATRA has the greatest advantages on more than 10 datasets
in terms of RMSE and MAE.
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7.4. Accuracy, Precision, Sensitivity, F1-Score, and MCC

Figures 14 and 15 demonstrate the result for F-score and Acc for all the logic mining
models. There are several winning points for S2SATRA according to both figures, which
are as follows.

(a) In terms of Acc, S2SATRA achieved the highest Acc value in 11 out of 12 datasets. The
closest model that competes with S2SATRA is P2SATRA. A similar observation in
F-score is that S2SATRA achieves the highest value in 8 out of 12 datasets, while the
closest model that competes with S2SATRA is P2SATRA.

(b) There were three datasets (F3, F10, and F12) that achieve Acc = 1, which means
that S2SATRA can correctly predict the Qtest = 1 for all values of TP and TN. For
the F-score value, there were three datasets that achieved F = 1 value, meaning that
S2SATRA can correctly produce TP during the retrieval phase of HNN. In this context,
F = 1 indicates the perfect precision and recall.

(c) There is no value for F-score for F5 for all the logic mining models because there is no
TP in the testing data.

(d) According to the Figures 14 and 15, no value for Acc < 0.8 is reported and only F11
reports the lowest value of F-score. No F-score value in F5 indicates that there is no
value of TP during the testing data. This justifies the superiority of the S2SATRA in
differentiating TP and TN cases which is very crucial in logic mining.

(e) S2SATRA shows an average improvement in the Acc value ranging from 27.1% to
97.9%. This shows that the clustering capability of S2SATRA significantly improved
while the error value remains low (refer Table 7 (A)). A similar observation is reported
in F-score. S2SATRA shows an average improvement ranging from 30.1% until 75.7%.
This also shows that the clustering capability of S2SATRA significantly improved
while the error value remains low.

(f) The Friedman test rank is conducted for all the datasets with α = 0.05 and a degree
of freedom of d f = 4. The P both for Acc and F-score are 4.26 × 10−7 (χ2 = 35.18

)
and 8.00 × 10−6 (χ2 = 29.03

)
, respectively. Hence, the null hypothesis of equal

performance for all the logic mining models is rejected. S2SATRA has an average rank
of 1.375 which is the highest compared to other existing method for Acc. The closest
method that competes with S2SATRA is P2SATRA with an average rank of 2.083. On
the other hand, S2SATRA has an average rank of 1.458 which is the highest compared
to other existing logic mining models for F-score. The closest method that competes
with S2SATRA is P2SATRA with an average rank of 2.333. Both results statistically
validate the superiority of S2SATRA compared to the existing work.

(g) In addition, the paired Wilcoxon rank test is conducted to statistically validate the su-
periority of the S2SATRA. From the table, we observed that S2SATRA is the top-ranked
logic mining model in terms of Acc and F-score followed by P2SATRA, E2SATRA,
2SATRA, and RA.

Tables 11 and 12 demonstrate the result for Pr and Se for all the 2SATRA models. Ac-
cording to Table 7 (A), there are several winning points for S2SATRA, which are as follows.

(a) In terms of Pr, S2SATRA outperforms other logic mining model in 6 out of 12 datasets.
The closest model that competes with S2SATRA is P2SATRA. For Se, S2SATRA out-
performs other 2SATRA models in 7 out of 12 datasets. Similar to the Pr value, the
closest model that competes with S2SATRA is P2SATRA.

(b) There were three datasets that achieve Pr = 1 value, which means that S2SATRA can
correctly predict the Qtest = 1 in comparison with all the positive outcomes. For the
Se value, four datasets achieved an Se = 1 value, which means that S2SATRA can
correctly produce a positive result during the retrieval phase of HNN.

(c) No value for both Pr and Se is reported for F5 because there is no positive outcome
for these datasets.

(d) The only datasets that achieved Pr < 0.8 were F8 and F11. This shows that 2SATRA
has good capability in differentiating a positive result with a negative result. A similar
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observation is reported in Se where the only datasets that achieved Se < 0.8 were F8
and F11. Hence, S2SATRA has a competitive capability to produce a positive result
Qtest = 1 compared to other existing 2SATRA model.

(e) S2SATRA shows an average improvement in the Pr value, ranging from 12.3% to
61.2%. This shows that the clustering capability of S2SATRA significantly improved
while the error value remained low (refer Table 11). A similar observation is reported
in the Se result. S2SATRA shows an average improvement ranging from 1.8% to 63.9%.
This also shows that the clustering capability of S2SATRA significantly improved
while the error value remained low.

(f) According to the Friedman test rank for all the datasets, S2SATRA has an average rank
of 1.458 which is the highest compared to other existing methods for Pr. The closest
method that competes with S2SATRA is P2SATRA, with an average rank of 2.333. On
the other hand, S2SATRA has an average rank of 1.375 which is the highest compared
to other existing method for Se. The closest method that competes with S2SATRA
is P2SATRA, with an average rank of 2.083. Both results statistically validate the
superiority of S2SATRA compared to the other logic mining.

(g) In addition, the paired Wilcoxon rank test is conducted to statistically validate the
superiority of S2SATRA. From the table, we observed that S2SATRA is the top-ranked
logic mining model in terms of Pr and Se, as compared to most of the existing work.

Figure 14. F-score for all logic mining models.
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Figure 15. Accuracy for all the logic mining models.

Table 11. Precision (Pr) for all models. The bracket indicates the ratio of improvement and * indicates
division by zero. A negative ratio implies the method outperform the proposed method. P is obtained
from the paired Wilcoxon rank test and ** indicates the model with significant inferiority compared
to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 0.826 0.826 (0) 0.685 (0.205) 0.685 (0.206) 0.826 (0)
F2 0.934 0.984 (−0.051) 0.443 (1.108) 0.385 (1.426) 0.902 (0.035)
F3 1.000 0.600 (0.667) 0.6 (0.667) 1.000 (0) 0.960 (0.042)
F4 0.942 0.519 (0.815) 0.923 (0.021) 0.942 (0) 0.923 (0.021)
F5 - - - - -

F6 0.854 0.737 (0.159) 0.330 (1.588) 0.922
(−0.074)

0.875
(−0.024)

F7 0.992 0.980 (0.012) 0.850 (0.167) 0.979 (0.013) 0.880 (0.127)
F8 0.792 0.875 (−0.095) 0.500 (0.584) 0.750 (0.056) 0.875 (0.095)
F9 0.966 0.983 (−0.017) 0.500 (0.932) 0.966 (0) 0.948 (0.019)

F10 1.000 1.000 (0) 0.000 (*) 1.000 (0) 0.000 (*)
F11 0.696 0.000 (-) 0.909 (−0.2343) 0.273 (1.549) 0.261 (1.667)
F12 1.000 1.000 (0) 0.468 (1.137) 1.000 (0) 1.000 (0)

(+/=/−) - 6/5/2 10/1/1 5/6/1 7/4/1
Avg 0.909 0.773 (0.175) 0.564 (0.612) 0.809 (0.123) 0.765 (0.188)
Std 0.103 0.307 0.274 0.261 0.324
Min 0.696 0.000 0.000 0.273 0.000
Max 1.000 1.000 0.923 1.000 1.000

Avg Rank 1.458 3.417 4.417 2.333 3.375
P 0.003 ** 0.003 ** 0.003 ** 0.003 **
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Table 12. Sensitivity (Se) for all logic mining models. The bracket indicates the ratio of improvement
and * indicates division by zero. A negative ratio implies the method that outperforms the proposed
method. ** due to no positive outcome in the dataset. P is obtained from the paired Wilcoxon rank
test and ** indicates a model with significant inferiority compared to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 0.971 0.971 (0) 0.966 (0.0052) 0.966 (0.005) 0.971 (0)

F2 0.755 0.490 (0.541) 0.388 (0.946) 0.452 (0.670) 0.449
(−0.682)

F3 1.000 1.000 (0) 1.000 (0) 0.926 (0.080) 0.923 (0.083)
F4 0.980 0.964 (0.017) 0.8723 (0.123) 0.980 (0) 0.873 (0.123)
F5 0.000 ** 0.000 (**) 0.000 (**) 0.000 (**) 0.000 (**)
F6 0.934 0.997 (−0.063) 0.611 (0.528) 0.844 (0.107) 0.867 (0.078)
F7 0.755 0.624 (0.210) 0.560 (0.348) 0.741 (0.019) 0.592 (0.275)
F8 1.000 0.339 (1.950) 0.255 (2.922) 1.000 (0) 0.339 (1.950)
F9 0.982 0.838 (0.171) 0.744 (0.320) 0.982 (0) 0.679 (0.446)

F10 1.000 0.762 (0.312) 0.000 (*) 1.000 (0) 0.000 (*)
F11 0.696 0.000 (*) 0.150 (3.64) 1.000 (−0.304) 0.073 (8.534)
F12 1.000 1.000 (0) 0.600 (0.667) 1.000 (0) 0.616 (0.6234)

(+/=/−) 7/4/1 10/2/0 5/6/1 10/2/0
Avg 0.839 0.666 0.512 0.824 0.532
Std 0.287 0.379 0.355 0.306 0.360
Min 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
Max 1.000 1.000 1.000 1.000 0.923

Avg Rank 1.375 3.167 4.708 2.083 3.667
P 0.612 0.086 0.003 ** 0.084

Table 13 demonstrates MCC analysis for all logic mining models. According to Table 13,
several winning points for S2SATRA are as follows.

(a) In terms of MCC, S2SATRA achieved the most optimal MCC value for 7 out of 12
datasets. The closest model that competes with S2SATRA is P2SATRA. On average,
the logic mining model is reported to obtain the worst result where the MCC value
approaches zero.

(b) There were three datasets (F3, F10, and F12) that achieve an MCC = 1 value which
means that S2SATRA which produced Qtest represents perfect prediction.

(c) No value for MCC is reported for F5 because there is no positive outcome for
this dataset.

(d) The only dataset that approaches zero MCC is F1. This shows that S2SATRA has good
capability in differentiating all domain of the confusion matrix (TP, FP, TN, and FN).

(e) By taking into account the absolute value of MCC, S2SATRA shows an average
improvement in the MCC value ranging from 35.9% until 3839%. This shows that
the clustering capability of S2SATRA significantly improved while the error value
remained low (refer Table 13).

(f) The Friedman test rank is conducted for all the datasets with α = 0.05 and a degree
of freedom of d f = 4. The P for MCC is 1.09 × 10−11(χ2 = 57.26

)
. Hence, the

null hypothesis of equal performance for all the logic mining models was rejected.
S2SATRA has an average rank of 1.363 which is the highest compared to other existing
logic mining for MCC. The closest method that competes with S2SATRA is P2SATRA
with an average rank of 2.955. This result statistically validates the superiority of
S2SATRA compared to the existing work.

(g) In addition, the paired Wilcoxon rank test is conducted to statistically validate the
superiority of S2SATRA. From the table, we observed that S2SATRA is the top-ranked
logic mining model in terms of MCC compared to most existing work.
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Table 13. MCC for all logic mining models. P is obtained from the paired Wilcoxon rank test and **
indicates the models with significant inferiority compared to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 −0.070 −0.071 −0.104 −0.104 −0.071
F2 0.693 0.270 −0.109 0.015 0.039
F3 1.000 0.316 0.316 - −0.055
F4 0.948 0.647 0.860 0.948 0.859
F5 - - - - -
F6 0.556 0.595 −0.406 0.301 0.489
F7 0.679 0.411 0.106 0.642 0.226
F8 0.847 0.028 0.365 0.816 0.028
F9 0.918 0.659 0.107 0.918 −0.129
F10 1.000 0.713 −1.000 1.000 −0.453
F11 0.623 −0.101 −0.064 0.490 −0.442
F12 1.000 1.000 0.137 1.000 0.453

Avg Rank 1.363 3.045 3.818 2.955 3.818
Mean 0.745 0.406 0.019 0.548 0.086

Std 0.316 0.355 0.469 0.412 0.397
(+/=/−) 9/2/1 10/1/1 6/5/1 10/1/1

P 0.011 ** 0.003 ** 0.018 ** 0.005 **

7.5. McNemar’s Statistical Test

To evaluate whether there is any significant difference between the performance of
the two logic mining models, McNemar’s test is performed. According to [38], McNemar
is the only test that has acceptable Type 1 error and can validate the performance of the
2SATRA model. The normal test statistics are as follows:

Zij =
fij − f ji√

fij + f ji

(23)

where Zij is a measure of significance of the accuracy obtained by model i and j, while fij is
the number of cases where logic mining is correctly classified by model i but incorrectly
classified by model j. A similar description is given for the notation fij. In this experiment,
a 5% level of significance is used. The null hypothesis dictates a pair from the logic mining
model with no difference in disagreement. The performance of classification accuracy is
said to differ significantly if

∣∣Zij
∣∣ > 1.96. Note that, a positive value of Zij means the model

i performs better than model j. Tables 14 and 15 presents the result of the McNemar’s test
for all the logic mining models. Several winning points for S2SATRA are discussed below.

(a) S2SATRA is reported to be statistically significant (in bold) in more than half of the
datasets. The only dataset that has no statistical significance is F4 where S2SATRA
only significantly differs with E2SATRA.

(b) In terms of statistical performance, S2SATRA is shown to be significantly better
compared to other logic mining model. For instance, there is no negative test regarding
the statistics found for S2SATRA (refer row) in comparison to the other 2SATRA model.
The lowest test statistics value for S2SATRA is zero.

(c) The best statistical performance for S2SATRA is in F2, F5, and F6 where all the existing
methods are significantly different and worse (indicated in the positive value). The
second best statistical performances are F7 and F8 where at least one logic mining
model is statistically insignificant but with a statistically better result.

(d) In addition, results from the McNemar test indicates the superiority of S2SATRA in
distinguishing both correct and incorrect outcomes compared to the existing method.
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Table 14. McNemar’s statistical test for F1–F5.

S2SATRA E2SATRA 2SATRA P2SATRA RA

F1

S2SATRA - 0.000 9.128 9.128 0.000
ES2SATRA - 9.128 9.128 0.000

2SATRA - 0.000 −9.128
P2SATRA - −9.128

RA -

F2

S2SATRA - 6.980 9.194 7.406 −23.263
ES2SATRA - 2.213 0.426 −26.567

2SATRA - −15.449 78.536
P2SATRA - 1.277

RA -

F3

S2SATRA - 3.051 2.722 0.544 0.816
ES2SATRA - −0.278 −2.496 −2.219

2SATRA - −2.177 −1.905
P2SATRA - 0.272

RA -

F4

S2SATRA - 2.211 0.704 0.000 0.704
ES2SATRA - −1.508 −2.211 −1.508

2SATRA - −0.704 0.000
P2SATRA - 0.704

RA -

F5

S2SATRA - 7.264 9.020 4.201 13.592
ES2SATRA - 1.723 −3.077 6.278

2SATRA - −4.819 4.572
P2SATRA - 9.391

RA -

Table 15. McNemar’s statistical test for F6–F11.

S2SATRA E2SATRA 2SATRA P2SATRA RA

F6

S2SATRA - 4.996 57.849 3.529 4.457
ES2SATRA - 52.853 −1.467 −0.539

2SATRA - −54.321 −53.392
P2SATRA - 0.929

RA -

F7

S2SATRA - 11.339 19.744 1.348 16.070
ES2SATRA - 8.405 −9.991 4.731

2SATRA - −18.396 −3.674
P2SATRA - 14.722

RA -

F8

S2SATRA - 6.500 7.000 0.167 6.500
ES2SATRA - −0.500 −6.333 0.000

2SATRA - −6.833 −4.157
P2SATRA - 6.333

RA -

F9

S2SATRA - 1.389 5.555 0.000 4.012
ES2SATRA - 4.166 −1.389 2.623

2SATRA - −5.555 −1.543
P2SATRA - 4.012

RA -

F10

S2SATRA - 2.781 17.263 0.000 11.702
ES2SATRA - 14.482 −2.781 8.921

2SATRA - −17.263 −5.561
P2SATRA - 11.702

RA -

F11

S2SATRA - 1.807 11.204 −1.052 10.199
ES2SATRA - 9.470 −2.785 8.391

2SATRA - −11.791 −1.424
P2SATRA - 10.832

RA -

F12

S2SATRA - 0.000 7.531 0.000 5.561
ES2SATRA - 7.531 0.000 5.561

2SATRA - −7.531 −1.970
P2SATRA - 5.561

RA -
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8. Discussion

The optimal logic mining model requires pre-processing structures for neurons before
the Qbest can be learned by HNN. Currently, the logic mining model specifically optimizes
the logic extraction from the dataset without considering the optimal Qbest. The mechanism
that optimizes the optimal neuron relationship before the learning can occur is remain
unclear. In this sense, identifying a specific pair of neurons for Qbest will facilitate the
dataset generalization and reduce computational burden.

As mentioned in the theory section, S2SATRA is not merely a modification of a conven-
tional logic mining model, but rather it is a generalization that absorbs all the conventional
models. Thus, S2SATRA not only inherits many properties from a conventional logic min-
ing model but it adds supervised property that reduces the search space of the optimal QB

i .
The question that we should ponder is: what is the optimal Qbest for the logic mining model?
Therefore, it is important to discuss the properties of S2SATRA against the conventional
logic mining model in extracting optimal logical rule from the dataset. According to the
previous logic mining model, such as [20,21,31], the quality of attributes is not well assessed
since the attributes were randomly assigned. For instance, [21] achieved high accuracy for
specific combination of attributes but the quality of different combination of the attributes
will result in low accuracy due to a high local minima solution. A similar neuron structure
can be observed in E2SATRA, as proposed by [24], because the choice of neurons is similar
during the learning phase. Practically speaking, this learning mechanism [20–22,31] is
natural in real life because the neuron assignment is based on trial and error. However, the
2SATRA model needs to sacrifice the accuracy if there is no optimum neuron assignment.
By adding permutation property, as carried out in Kasihmuddin et al. [30], P2SATRA is able
to increase the search space of the model in the expense of higher computational complexity.
To put things into perspective, 10 neurons require learning 18,900 of Qbest learning for each
neuron combination before the model can arrive to the optimal result. Unlike our proposed
model, S2SATRA can narrow down the search space by checking the degree of association
among the neurons before permutation property can take place. Supervised features of
S2SATRA recognized the pattern produced by the neurons and align it with the Qbest clause.
Thus, the mutual interaction between association and permutation will optimally select the
best neuron combination.

As reported in Tables 7 and 8, the number of associations for analysis required for n
attributes to create optimal Qbest was reduced by 1

n
nC6. In other words, the probability of

P2SATRA to extract optimal Qbest is lower compared to the S2SATRA. As the Qbest supplied
to the network has changed, the retrieval property of the S2SATRA model will improve.
The best logic mining model demonstrates a high value of TP and TP with a minimized
value of FP and FN. P2SATRA is observed to outperform the conventional logic mining in
terms of performance metrics because P2SATRA can utilize the permutation attributes. In
this case, the higher the number of permutations, the higher probability for the P2SATRA
to achieve correct TP and TN. Despite a robust permutation feature, P2SATRA failed
to disregard the non-significant attributes which leads to Qlearn

i = 1. Despite achieving
high accuracy, the retrieved final neuron state is not interpretable. E2SATRA is observed
to outperform 2SATRA in terms of accuracy because the induced logic in E2SATRA is
the only amount in the final state that reached global minimum energy. The dynamic of
the induced logic in E2SATRA follows the convergence of the final state proposed in [22]
where the final state will converge to the nearest minima. Although all the final state in
E2SATRA is guaranteed to achieve global minimum energy, the choice of attribute that
is embedded to the logic mining model is not well structured. Similar to 2SATRA and
P2SATRA, the interpretation of the final attribute will be difficult to design. In another
development, 2SATRA is observed to outperform the RA proposed by [14] in terms of all
performance metric. Although the structure of RA is not similar to 2SATRA in creating the
Qlearn

i , the induced logic QB
i has a general property of QHORNSAT . In this case, QHORNSAT

is observed to create a rigid induced logic (at most 1 positive literal) and can reduce the
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possible solution space of the RA. In this case, we only consider the dataset that satisfies
the QHORNSAT that will lead to Qtest = 1.

In contrast, S2SATRA employs a flexible Q2SAT logic which accounts for both positive
and negative literal. This structure is the main advantage over the traditional RA proposed
by [14]. S2ATRA is observed to outperform the rest of the logic mining model due the
optimal choice of attributes. In terms of feature, S2SATRA can capitalize the energy feature
of E2SATRA and the permutation feature of P2SATRA. Hence, the induced logic obtained
will always achieve global minimum energy and only relevant attribute ρ < α will be
chosen to be learned in HNN. Another way to explain the effectiveness of logic mining is
the ability to consistently find the correct logical rule to be learned by HNN. Initially, all
logic mining models begin with HNN which has too many ineffective synaptic weights
due to suboptimal features. In this case, S2SATRA can reduce the inconsistent logical rule
that leads to suboptimal synaptic weight.

S2SATRA is reported to outperform almost all the existing logic mining models
in terms of all performance metrics. S2SATRA has the capability to differentiate be-
tween TP

(
QB

i = 1
)

and TP
(
QB

i = −1
)
, which leads to high Acc and F-score values. Since

S2SATRA is able to obtain more TP
(
QB

i = 1
)
, the Pr and Sen will increase compared to

the other existing methods. In terms of Pr and Sen, S2SATRA is reported to succesfully
predict QB

i = 1 during the retrieval phase. In other words, the existing 2SATRA model is
less sensitive to the positive outcome which leads to a lower value of Pr and Se. It is worth
mentioning that the overfitting nature of the retrieval phase will lead to QB

i which can
only produce more positive neuron states. This phenomenon was obvious in the existing
method where the HNN tends to converge to only a few final states. This result has a
good agreement with the McNemar’s test where the performance of S2SATRA is signif-
icantly different from the existing method. The optimal arrangement of the QB

i signifies
the importance of the association among the attributes towards the retrieval capability of
the S2SATRA. Without proper arrangement, the obtained QB

i tends to overfit which leads
to a high classification error. S2SATRA can only utilize correlation analysis during the
pre-processing stage because correlation analysis provides preliminary connection between
the attribute and Qlearn

i .
It is worth noting that although there are many developments of the supervised

learning method, such as a decision tree, a support vector machine, etc., none of these
methods can provide the best approximation to the logical rule. Most of the mentioned
methods are numerically compatible as an individual classification task, but not as a
classification via a logical rule. For instance, a decision tree is effective in classifying the
outcome of the dataset but S2SATRA is more effective in generalizing the datasets in the
form of induced logics. The obtained induced logic can be utilized for a similar classification
task. In term of parameter settings, S2SATRA is not dependent on any free parameter.
The only parameter that can improve S2SATRA is the number of Trial. Increasing the
number of trials will increase the number of the final state that corresponds to the QB

i . The
main problem with this modification is that increasing the number of trials will lead to an
unnecessary high computation time. Hence, in this experiment, the number of Trial still
follows the conventional settings in [38]. It is worth noting that S2SATRA achieved the
lowest accuracy for F1. This is due to imbalanced data, which leads to non-optimal induced
logic. Correlation analysis cannot discriminate the correct relationship between variables
and Qlearn

i . Generally, S2SATRA improved the pre-processing phase of the logic mining
which leads to an improved learning phase due to the correct combination of Qbest

i . The
correct combination of Qbest

i will lead to optimal QB
i which can generalize the dataset.

Finally, we would like to discuss the limitations of the study. The limitation of the
S2SATRA is the computation time due to the complexity of the learning phase. Since
all logic mining models utilized the same learning model to maximize the fitness of the
solution, computation time is not considered as a significant factor. As the number of
attribute or clausal noise increases, the learning error will exponentially increase. Hence,
metaheuristics and accelerating algorithms, such as in [41], are required to effectively
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minimize the cost function in Equation (5) within a shorter computational time. This
phenomenon can be shown when the number of neurons NN ≥ 20 in the logic mining
model is trapped in a trial-and-error state. In terms of satisfiability, all the proposed 2SATRA
models do not consider non-satisfiable logical structure or EQ2SAT 6= 0, such as maximum
satisfiability [42] and minimum satisfiability [43]. This is due to the nature of 2SATRA that
only consider data point that leads to positive outcome or Qlearn = 1. In terms of network,
HNN is chosen compared to other ANN structures, such as feedforward because feedback
to the input is compatible to the cost function EQ2SAT . Another problem that might arise for
feedforward ANN, such as within the radial basis function neural network (RBFNN), is the
training choice. For instance, the work of [9,44] can produce a single induced logic due to
the RBFNN structure. This will reduce the accuracy of the S2SATRA model. A convolution
neural network (CNN) is not favoured because propositional logic only deals with bipolar
representation and multiple layers only increase the computational cost for the S2SATRA. In
another perspective, weighted satisfiability that randomly assign the negation of the neuron
will reduce the generality of the induced logic. In this case, 2SATRA model must add one
additional layer during the retrieval phase to obtain which logical weight yields the best
accuracy. Unlike several learning environments in HNN-2SAT [45], learning iteration will
not be restricted and will be terminated when fi = fNC. A restricted value of the learning
iteration will lead to more induced logic trapped in local minimum energy. As a worst-case
scenario, a logic mining model, such as E2SATRA, will not produce any induced logic in
restricted learning environment. Hence, all the 2SATRA models exhibit the same learning
rule via the Wan Abdullah method [6]. In addition, all the logic mining models, except for

RA and conventional logic mining, follow the condition of
∣∣∣∣HP

Sinduced
i

− Hmin
P

Sinduced
i

∣∣∣∣ ≤ ∂. In

this case, only induced logic that can achieve global minimum energy will be considered
during the retrieval phase. This is supported by [33] where the final state of neuron that
represents the induced logic will always converge to the nearest minimum. By employing
the Wan Abdullah method and HTAF [4], the number of solutions that corresponds to the
local minimum solution will reduce dramatically. The neuron combination is limited to
only COMBAX = 100 because the higher the value of COMBAX, the higher the learning
error and HNN tends to be trapped in a trial-and-error state.

The experimental results presented above indicate that the S2SATRA improved the
classification performance more than other existing logic mining model and created more
solution variation. Another interesting phenomenon we discovered is that supervised learn-
ing features in S2SATRA reduce the permutation effort in finding the optimal Qlearn

i . As a
result, HNN can retrieve the logical rule to do with acquiring higher accuracy. Additionally,
we observed that when a number of clausal noise was added, S2SATRA shows a better
result compared to the existing model. It is expected that our work can give inspiration
to other logic mining models, such as [20,21], to extract the logical rule effectively. The
robust architecture of S2SATRA provides a good platform for the application of real-life
bioinformatics. For instance, the proposed S2SATRA can extract the best logical rule that
classifies single-nucleotide polymorphisms (SNPs) inside known genes associated with
Alzheimer’s disease. This can lead to large-scale S2SATRA design, which has the ability to
classify and predict.

9. Conclusions and Future Work

In this paper, we proposed a new perspective in obtaining the best induced logic from
real-life datasets. As in a standard logic mining model, the attribute selection was chosen
randomly which leads to non-essential attributes and reduces the capability of the HNN
to represent the dataset. To address the issue of randomness, a novel supervised learning
(S2SATRA) capitalized the correlation filter among variables in the logical rule with respect
to the logical outcome. In this case, the only attribute that has the best association value
will be chosen during the pre-processing stage of S2SATRA. After obtaining the optimal
Qbest, HNN can obtain the synaptic weight associated with the Qbest which minimizes the
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cost function of the network. During the retrieval phase, the best combination of QB
i will

be generated, thus creating the best QB
i that generalizes the logical rule of the datasets. The

effectiveness of the proposed S2SATRA is illustrated by extensive experimental analysis
that compares S2SATRA with several state-of-the-art logic mining methods. Experimental
results demonstrate that S2SATRA can effectively produce more optimal Qbest which leads
to the improved QB

i . In this case, S2SATRA was reported to outperform all the existing logic
mining models in most of the performance metrics. Given the simplicity and flexibility
of the S2SATRA, it is also worth implim3n5int other logical dimensions. For instance, it
will be interesting to investigate the implementation of random k satisfiability proposed
by [13,41] into the supervised learning-based reverse analysis method. By implementing
the flexible logical rules, the generalization of the dataset will improve dramatically.
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