
����������
�������

Citation: Zhou, Y.; Zhao, D.; Ma, M.;

Xu, J. Total Coloring of Dumbbell

Maximal Planar Graphs. Mathematics

2022, 10, 912. https://doi.org/

10.3390/math10060912

Academic Editors: Janez Žerovnik

and Darja Rupnik Poklukar

Received: 25 February 2022

Accepted: 11 March 2022

Published: 13 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Total Coloring of Dumbbell Maximal Planar Graphs
Yangyang Zhou 1,2,*, Dongyang Zhao 1,2, Mingyuan Ma 1,2 and Jin Xu 1,2

1 School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China;
zdy_macs@pku.edu.cn (D.Z.); mamingyuan@pku.edu.cn (M.M.); jxu@pku.edu.cn (J.X.)

2 Key Laboratory of High Confidence Software Technologies, Peking University, Beijing 100871, China
* Correspondence: zyy_eecs@pku.edu.cn

Abstract: The Total Coloring Conjecture (TCC) states that every simple graph G is totally (∆ + 2)-
colorable, where ∆ denotes the maximum degree of G. In this paper, we prove that TCC holds
for dumbbell maximal planar graphs. Especially, we divide the dumbbell maximal planar graphs
into three categories according to the maximum degree: J9, I-dumbbell maximal planar graphs and
II-dumbbell maximal planar graphs. We give the necessary and sufficient condition for I-dumbbell
maximal planar graphs, and prove that any I-dumbbell maximal planar graph is totally 8-colorable.
Moreover, a linear time algorithm is proposed to compute a total (∆ + 2)-coloring for any I-dumbbell
maximal planar graph.

Keywords: total coloring; dumbbell maximal planar graphs; I-dumbbell maximal planar graphs;
dumbbell transformation; total coloring algorithm

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [1]
for the terminologies and notations not defined here. For any graph G, we denote by V(G),
E(G), ∆(G) and δ(G) (or simply V, E, ∆ and δ) the vertex set, the edge set, the maximum
degree and the minimum degree of G, respectively. If uv ∈ E(G), then u is said to be a
neighbor of v. We use N(v) to denote the set of neighbors of v. The degree of v, denoted by
d(v), is the number of neighbors of v, i.e., d(v) = |N(v)|. A k-vertex is a vertex of degree k.
Given a set X ⊆ V, we denote by G[X] the subgraph of G induced by X. A k-cycle is a cycle
of length k, and a 3-cycle is usually called a triangle. We use Kn to denote the complete
graph of order n. For a disjoint union of G and H, the joining of G and H, denoted by
G ∨ H, is the graph obtained by joining every vertex of G to every vertex of H. The joined
Cn ∨ K1 of a cycle and a single vertex is a wheel with n spokes, denoted by Wn, where Cn
and K1 are called the cycle and center of Wn, respectively.

A total k-coloring of G is a mapping φ : V ∪ E→ {1, 2, · · · , k} such that φ(x) 6= φ(y)
is for any two adjacent or incident elements x, y ∈ V ∪ E. A graph G is totally k-colorable
if it admits a total k-coloring. The total chromatic number χ′′(G) is the smallest integer
k, such that G has a total k-coloring. Behzad [2] and Vizing [3] posed independently the
following famous conjecture, known as the Total Coloring Conjecture (TCC).

Conjecture 1. For any graph G, ∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2.

Obviously, the lower bound is trivial. The upper bound is still unproved. To date,
TCC has been confirmed for general graphs with ∆ ≤ 5 [4–7] and for planar graphs with
∆ ≥ 7 [8–11]. Therefore, for planar graphs, the only open case is ∆ = 6. Nevertheless,
scholars have studied the total coloring of planar graphs under some restricted condi-
tions [12–17]. Among these, Sun et al. [13] proved that TCC is true for planar graphs
without adjacent triangles. Here, adjacent triangles are two triangles that share a common
edge. Zhu and Xu [17] gave a stronger statement that TCC holds for planar graphs G with
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∆(G) = 6, if G does not contain any subgraph isomorphic to a 4-fan. Regardless of the
results in [13] or in [17], the graph G cannot contain adjacent triangles. This leads us to
study the total coloring and total chromatic number of maximal planar graphs, whose faces
are all triangles. In [18], we study the total coloring of recursive maximal planar graphs
and prove that TCC is true for recursive maximal planar graphs. Moreover, (2,2)-recursive
maximal planar graphs are totally (∆ + 1)-colorable.

A maximal planar graph is a planar graph to which no edges can be added without
violating the planarity. Let G be a maximal planar graph and C be a cycle of G with |C| ≥ 4.
We call the subgraph of G induced by the vertices on C and the vertices located inside (or
outside) C a semi-maximal planar graph based on C, which is denoted by GC

in (or GC
out). In

fact, a semi-maximal planar graph is a triangulated disc.
According to the vertex coloring, maximal planar graphs can be partitioned into three

categories: purely tree-colorable, purely cycle-colorable and impure colorable, refer to [19].
In [20], Xu et al. proposed the purely tree-colorable graphs conjecture, which states that
a maximal planar graph is purely tree-colorable if and only if it is the icosahedron or a
dumbbell maximal planar graph. They further studied the structures and properties of
dumbbell maximal planar graphs in [19]. Then, what is the total coloring of dumbbell
maximal planar graphs? This problem has aroused our concern.

We aim to study the total coloring of dumbbell maximal planar graphs in this paper.
The remainder of this paper is organized as follows. In Section 2, we introduce the dumbbell
transformation and study the structures and properties of dumbbell maximal planar graphs.
In particular, we classify the dumbbell maximal planar graphs into three categories. In
Section 3, we prove that any dumbbell maximal planar graph is totally (∆ + 2)-colorable. In
Section 4, we propose an algorithm with linear time complexity to compute a total (∆ + 2)-
coloring for any I-dumbbell maximal planar graph. In Section 5, we make a conclusion for
the paper.

2. Dumbbell Maximal Planar Graphs

We study the structures and properties of dumbbell maximal planar graphs in this
section. Before this, we need to introduce the dumbbell transformation given by Xu [19].

2.1. Dumbbell Transformation

In order to give the dumbbell transformation, we introduce the extending 3-wheel
and 4-wheel operations first.

The extending 3-wheel operation. The extending 3-wheel operation acts on a triangle
of a maximal planar graph, specifically, adding a new vertex in the face and joining it to
every vertex of the triangular face, as shown in Figure 1.

1v

2v3v

v

1v

2v
3v

Figure 1. The extending 3-wheel operation.

The extending 4-wheel operation. The object of the extending 4-wheel operation is
a path of length 2. Specifically, an extending 4-wheel operation based on path v1v2v3
means: split the vertex v2 into v2 and v′2, and split the edges v1v2 and v2v3 into v1v2, v1v′2
and v2v3, v′2v3, respectively. Hence, the vertices v1, v′2, v3 and v2 form a cycle of length 4.
Then, add a new vertex x in this cycle and make x adjacent to vertices v1, v′2, v3 and v2,
respectively. The process is shown in Figure 2.
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Figure 2. The extending 4-wheel operation.

A dumbbell is a graph consisting of two triangles4v1v2u and4uv3v4 with exactly
one common vertex u, and it is denoted by X = 4v1v2u ∪4uv3v4, as shown in the left
of Figure 3. Obviously, a 4-wheel contains exactly two dumbbells, as shown in the right
of Figure 3, where X1 = 4v1v2u ∪ 4uv3v4 and X2 = 4v1v3u ∪ 4uv2v4. In this paper,
dumbbells considered are ones contained in a 4-wheel without special assertion.

1v 2v

3v 4v

u

1v 2v

3v 4v

u

Figure 3. The dumbbell and a 4-wheel.

The dumbbell transformation. For a given dumbbell X = 4v1v2u ∪4uv3v4. First,
add two 3-vertices x1 and x2 on the two triangular faces of X, respectively. Then, implement
the extending 4-wheel operation on path x1ux2, the newly added 4-vertex is denoted by v,
as shown in Figure 4.

1x

1v 2v

3v 4v

u

1v 2v

3v 4v

u

1v 2v

3v 4v

u u

2x

1x

2x

v

Figure 4. The dumbbell transformation.

Xu et al. [20] gave the following theorem:

Theorem 1. Let G be a maximal planar graph with a 4-wheel W4. Then the graphs obtained from
G by implementing the dumbbell transformations on two dumbbells of W4 are isomorphic.

2.2. Structure and Property of Dumbbell Maximal Planar Graphs

The first maximal planar graph with order 9, denoted by J9, is shown in Figure 5 and is
called a dumbbell maximal planar graph, which is the dumbbell maximal planar graph with
the minimum order. A graph is a dumbbell maximal planar graph if one of the following
conditions is satisfied: (1) it is isomorphic to J9; (2) it can be obtained from another dumbbell
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maximal planar graph by the dumbbell transformation. In general, if J4k+1(k ≥ 2) is a
dumbbell maximal planar graph, we call the maximal planar graph obtained from J4k+1 by
implementing a dumbbell transformation a dumbbell maximal planar graph. Implement
the dumbbell transformation on each unidentical 4-wheel in J4k+1, then we can obtain
dumbbell maximal planar graphs with order 4k + 5. As shown in Figure 5, we give the
dumbbell maximal planar graphs with orders 9, 13, 17 and 21, respectively.

9J 13J

17J 17J

21J 21J
21J

Figure 5. The dumbbell maximal planar graphs with orders 9, 13, 17 and 21.

J9 contains exactly three vertices of degree 4. By the definition of dumbbell maximal
planar graphs, Xu et al. [20] obtained the following observation.

Observation 1. (1) Any dumbbell maximal planar graph has order 4k + 1, where k ≥ 2; (2) Any
dumbbell maximal planar graph contains exactly three vertices of degree 4.

We give the following theorem on the maximum degrees of dumbbell maximal pla-
nar graphs.

Theorem 2. Except for J9, the maximum degree of a dumbbell maximal planar graph J4k+1(k ≥ 3)
is 6 or 7.

Proof. Obviously, the maximum degree of J9 is 5. As shown in Figure 4, for each dumbbell
transformation, the degree of each vertex on the cycle of the original 4-wheel is increased
by 1, and that of the new 4-wheel is 5. As shown in Figure 5, the maximum degree of J13
is 6; the two non-isomorphic dumbbell maximal planar graphs J17, which are obtained
from J13 by implementing the dumbbell transformation on the two unidentical 4-wheels,
have the maximum degrees 6 and 7, respectively; the three dumbbell planar graphs J21
obtained from J17 have the maximum degree 6, 7 and 7, respectively. It is observed that the
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degrees of vertices on the wheels of all 4-wheels in these three dumbbell maximal planar
graphs with order 21 are 5 and 6, and the maximum degree of each dumbbell maximal
planar graph obtained by implementing the dumbbell transformation does not exceed 7.
By analogy, the maximum degree of a dumbbell maximal planar graph with higher order
is always 6 or 7.

For the dumbbell maximal planar graph with maximum degree 6, we have

Theorem 3. The maximum degree of a dumbbell maximal planar graph G is 6 if and only if G
is obtained from J9 by continuously implementing the dumbbell transformation, and each trans-
formation is implemented on the new 4-wheel generated by the previous transformation (The first
dumbbell transformation is implemented on an arbitrary 4-wheel in J9).

The proof of Theorem 3 is obvious and therefore omitted.
We call the dumbbell maximal planar graphs with maximum degree 6 described in

Theorem 3 I-dumbbell maximal planar graphs (The I-dumbbell maximalplanar graphs
we define here are dumbbell maximal planar graphs of maximum degree 6, so of course
J9 is not included) and dumbbell maximal planar graphs with maximum degree 7 II-
dumbbell maximal planar graphs. For I-dumbbell maximal planar graphs, we obtain the
following observation.

Observation 2. For any I-dumbbell maximal planar graph, the degrees of vertices on the cycle of
the newly generated 4-wheel are all 5. Furthermore, the other two 4-wheels do not have this property.

Figure 6 shows the generation process of I-dumbbell maximal planar graphs.

9J 13J

17J
21J

Figure 6. The schematic diagram of the generation process of I-dumbbell maximal planar graphs.

3. Total Coloring of Dumbbell Maximal Planar Graphs

In Section 2, the dumbbell transformation and dumbbell maximal planar graphs were
introduced. In this section, we study the total coloring of dumbbell maximal planar graphs
based on structural characteristics.

From the previous section, we know that any dumbbell maximal planar graph has
exactly 3 vertices of degree 4, and the maximum degree of a dumbbell maximal planar
graph is 6 or 7, except for J9. Furthermore, we draw an important conclusion about the
structure of the dumbbell maximal planar graphs.

According to the maximum degree, dumbbell maximal planar graphs can be divided
into the following three categories: J9, I-dumbbell maximal planar graphs and II-dumbbell
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maximal planar graphs. In Figure 7, we give a total 7-coloring of J9. Sanders and Zhao [11]
proved that planar graphs with ∆ = 7 are totally 9-colorable. Therefore, we only need to
consider dumbbell maximal planar graphs with maximum degree 6, that is, I-dumbbell
maximal planar graphs.

1

3 2

3

4

4 4

2 1

3

4

5

1

2

3

6

1

2

7

6

5

4
6

6

21

3

5

74

Figure 7. A total 7-coloring of J9.

Theorem 4. Any I-dumbbell maximal planar graph is totally 8-colorable.

Proof. J13 is the I-dumbbell maximal planar graph with the minimum order, and J13 is
totally 8-colorable, as shown in Figure 8.

1

4 3

3

8

5 4

1 2

1
3

7

6

7

4

6

5

2

5

8

5

6

8

1

76

2
5

87

5

7

3 4

1

4
2 1

61
2

3

6

587

1v 2v

4v
3v

Figure 8. A total 8-coloring of J13.

Since the I-dumbbell maximal planar graphs are obtained from J9 by continuously
implementing the dumbbell transformation at a unique 4-wheel only, without loss of
generality, we assume that all I-dumbbell maximal planar graphs are obtained by imple-
menting the dumbbell transformation at the 4-wheel located at the bottom of J9, as shown
in Figure 6. For convenience, we denote the cycle of the 4-wheel located at the bottom of J9

by C4 = v1v2v3v4v1. Then, for any I-dumbbell maximal planar graph G, G = GC4
in

⋃
GC4

out,
where GC4

in and GC4
out are the two semi-maximal planar graphs based on C4. In the following,

we give a total coloring scheme of any I-dumbbell maximal planar graph G. We color
GC4

out the same way in J13 and color GC4
in according to the parity of the number of dumbbell

transformations, which is denoted by l.
When l is odd, the coloring scheme is:
The colors of vertices v1, v2, v3, v4 on the cycle of the initial 4-wheel are 1, 2, 3 and 4,

and the colors of the edges are 5, 6, 7 and 8, respectively;
After the first dumbbell transformation, starting from the vertex opposite the edge

colored with 5, color the vertices on the cycle of newly generated 4-wheel with 5, 6, 7 and 8,
and the corresponding edges with 1, 2, 3 and 4 in clockwise order;

The colors of edges between the newly generated 4-wheel and the initial 4-wheel are
3, 4, 7, 8, 1, 2, 5 and 6 in clockwise order;
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After the second dumbbell transformation, starting from the vertex opposite the edge
colored with 1, color the vertices on the cycle of newly generated 4-wheel with 1, 2, 3 and 4,
and the corresponding edges with 5, 6, 7 and 8, in clockwise order;

The colors of the edges between the newly generated 4-wheel and the previous 4-wheel
are 7, 8, 1, 4, 5, 6, 3 and 2 in clockwise order;

After the i-th (3 ≤ i ≤ l) dumbbell transformation, the colors of vertices and edges on
the cycle of the newly generated 4-wheel, and the colors of edges between the newly gener-
ated 4-wheel and the previous 4-wheel, are the same as the first dumbbell transformation
when i is odd; the colors of vertices and edges on the cycle of the newly generated 4-wheel,
and the colors of edges between the newly generated 4-wheel and the previous 4-wheel,
are the same as the second dumbbell transformation when i is even;

After the last dumbbell transformation, we specify the color of the wheel center as
1, and the colors of the spokes as 6, 5, 8 and 7 from whose end point is colored with 5 in
clockwise order. Of course, the readers can also use other appropriate colors;

When l is even, the coloring scheme is similar to that when l is odd, except that the
color of the wheel center is 5, and the colors of the spokes are 3, 4, 2 and 1 from whose end
point is colored with 1 in clockwise order;

So, we obtain a total 8-coloring scheme of any I-dumbbell maximal planar graph, and
the proof is completed.

As shown in Figure 9, we give the coloring scheme for l = 3 (on the left) and l = 4 (on
the right), respectively.

1 2
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4 3
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8 6
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7
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3

4

2
1

Figure 9. The coloring diagram for l = 3 and l = 4.

Therefore, we obtain the following theorem.

Theorem 5. The TCC holds for dumbbell maximal planar graphs.

4. Total Coloring Algorithm for I-Dumbbell Maximal Planar Graphs

In this section an algorithm with linear time complexity is proposed, which computes
a total (∆ + 2)-coloring for any I-dumbbell maximal planar graph. It is known that an
arbitrary I-dumbbell maximal planar graph can be obtained from J13 by continuously
implementing the dumbbell transformation on the newly generated 4-wheel. We introduce
the concept of dumbbell-recursive generation sequence to formalize the generation process.

Definition 1 (Dumbbell-Recursive Generation Sequence). Let J4l+13(l ≥ 0) be an I-dumbbell
maximal planar graph with W l

4 , J4l+13[{vl
1, vl

2, vl
3, vl

4, vl}] as the newly generated 4-wheel, where
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vl
1, vl

2, vl
3, and vl

4 denote vertices on the cycle and vl denotes the wheel center, respectively. Starting
from J13, each time we implement the dumbbell transformation, an I-dumbbell maximal planar
graph J4i+13 is obtained, where i = 1, 2, · · · , l. Then, the dumbbell-recursive generation sequence
of J4l+13 is defined as Φ(J4l+13) = {J13; W0

4 , W1
4 , · · · , W l

4}.

Now, we give a total coloring algorithm for I-dumbbell maximal planar graphs, as
shown in the following Algorithm 1, which consists of two stages.

Algorithm 1 Total Coloring Algorithm for I-dumbbell Maximal Planar Graph

1: Input: An I-dumbbell maximal planar graph J4l+13.
2: Output: The total coloring dictionary U.
3: Stage 1. Dumbbell-recursive generation sequence generation.
4: Φ← empty list, i← l.
5: while i is not 0 do
6: Choose the newly generated 4-wheel Wi

4 according to Observation 2.
7: Implement the inverse process of dumbbell transformation and obtain J4(i−1)+13.
8: Store Wi

4 to Φ.
9: i← i− 1.

10: end while
11: Store W0

4 and J13 to Φ.
12: Φ← reverse(Φ).
13: Stage 2. Total coloring based on Φ.
14: Take out J13 from Φ.
15: Color J13 as shown in Figure 8, and store the coloring information to U.
16: i← 0.
17: while Φ is not empty do
18: Take out the first element Wi

4 from Φ.
19: Implement dumbbell transformation on Wi

4 and obtain J4(i+1)+13, Wi+1
4 .

20: if (i + 1) is odd then
21: U[vi+1]← 1.
22: Color other vertices of Wi+1

4 and the associated edges according to Theorem 4.
23: Store the coloring information of Wi+1

4 to U.
24: else
25: U[vi+1]← 5.
26: Color other vertices of Wi+1

4 and the associated edges according to Theorem 4.
27: Store the coloring information of Wi+1

4 to U.
28: end if
29: i← i + 1.
30: end while
31: return U.

In the first stage, given an arbitrary I-dumbbell maximal planar graph J4l+13, we com-
pute the dumbbell-recursive generation sequence Φ(J4l+13). As mentioned in Observation 2,
we can easily find the newly generated 4-wheel according to the degrees of vertices on
the cycle. Then, the inverse process of dumbbell transformation is implemented to obtain
the previous dumbbell maximal planar graph. By repeating the procedure and storing the
structure information, we obtain the dumbbell-recursive generation sequence.

In the second stage, we give a total (∆ + 2)-coloring of J4l+13 based on the dumbbell-
recursive generation sequence Φ(J4l+13). More precisely, for J4l+13 with V(J4l+13) =
{v1, v2, · · · , vn} and E(J4l+13) = {e1, e2, · · · , em}, let C(J4l+13) = {1, 2, · · · , ∆(J4l+13) + 2}
be the color set.

The dictionary structure U = {v1 : φ(v1), · · · , vn : φ(vn), e1 : φ(e1), · · · , em : φ(em)}
is used to store the total coloring scheme, where φ(vi), φ(ej) ∈ C(J4l+13), i = 1, · · · , n,
j = 1, · · · , m. Firstly, take out the initial graph J13 and color its vertices and edges as shown
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in Figure 8, and store the corresponding coloring information in U. Then, take out the
generation operation information Wi

4 stored in Φ in turn. The dumbbell transformation
is implemented and the coloring information of the newly generated Wi+1

4 is stored to U
according to l’s parity. Finally, a total (∆ + 2)-coloring of any I-dumbbell maximal planar
graph can be obtained iteratively.

During the execution of Stage 1 and Stage 2, the order of J4i+13 varies by 4 at each step.
Furthermore, the number of sequence generation and coloring operations is constant at
each step. Therefore, the time complexity of this algorithm is linear.

5. Conclusions

Total coloring is an important and representative problem in the field of graph coloring.
Even for planar graphs, the total coloring conjecture is still open for the case ∆ = 6. In this
paper, we prove that the Total Coloring Conjecture holds for dumbbell maximal planar
graphs, which are generated by implementing the dumbbell transformation continuously.
According to the maximum degree, we divide the dumbbell maximal planar graphs into
three categories: J9, I-dumbbell maximal planar graphs and II-dumbbell maximal pla-
nar graphs. Furthermore, we give the necessary and sufficient condition for I-dumbbell
maximal planar graphs and prove that any I-dumbbell maximal planar graph is totally
8-colorable. Moreover, an algorithm with linear time complexity is presented to compute a
total (∆ + 2)-coloring of any I-dumbbell maximal planar graph. For future work, we will
further focus on the relationship between the structure and coloring of dumbbell maximal
planar graphs and discuss the condition in which the dumbbell maximal planar graphs are
totally (∆ + 1)-colorable.
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