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Abstract: In the article, we present an ad hoc (AH) detector for two differentially encoded BPSK
sources in the Hierarchical MAC (H-MAC), i.e., for the case when the receiver sees the superposition
of non-orthogonal signals from individual sources. (Prefix “H-” means Hierarchical, it emphasizes
that the entity is related to the many-to-one principle.) The AH detector decodes the XOR H-map of
the two BPSK streams—in other words, it decides whether the transmitted symbols from the two
sources are the same or opposite. The BER of the detection in H-MAC is denoted as H-BER. The
H-BER is compared with the other two differential detectors, with the coherent (Coh) detector, and
with an approximate coherent (ApC) detector. The exact analytical H-BER formula is derived for the
ad hoc and coherent detectors. The proposed ad hoc detector is very simple for evaluation, does not
require the estimation of subchannel phases, does not depend on noise variance, and it is uniformly
only roughly 3.5 dB worse than the coherent one.

Keywords: differential; BPSK; XOR; H-map; H-MAC; PHY; network coding
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1. Introduction

The two-way relay channel (TWRC) with one relay and two BPSK/PSK sources is a
well-studied network. In the standard four-phase communication protocol, the first source
transmits to the relay, then the relay resends the data to the second source. The same
occurs in the opposite direction—the second source sends its data to the relay, and the relay
again retransmits its data to the first source. The four-phase protocol can be reduced to
the three-phase protocol by the application of network coding [1]—the relay collects data
from both sources, computes a network function, and broadcasts the output back to the
sources. Each source can then compute the data of the other source. In the most simple
case, the relay computes the XOR of the source messages. Wireless networks allow further
reduction of the number of phases—a two-phase protocol can be established. Both sources
can transmit simultaneously to the relay. There are two main relay strategies: (1) Amplify
and Forward (AF)—the relay simply retransmits the signal it receives without decoding
anything; (2) Hierarchical Decode and Forward (HDF)—the relay decodes the XOR of
the source symbols directly from the non-orthogonal superposition of source signals, and
forwards this “XOR frame”. HDF is also called Denoise and Forward by some authors.
Network coding applied in wireless networks, specifically on their physical layer, is often
called Physical Layer Network Coding (PLNC) or Wireless Physical Layer Network Coding
(WPNC). Details on WPNC can be found in the book [2]. The key idea is to let sources
transmit at the same frequency and time, and so save communication resources. Even
though the relay cannot separate the interfering signals (by linear methods), it can decode
the network function—the XOR of source symbols. The critical phase, when sources
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transmit at the same frequency and time to the relay, is called Hierarchical MAC (H-MAC).
Our work focuses on the transmission and detection in H-MAC. The performance of
coherent PLNC schemes is critically dependent on precise channel estimation. We use the
differential modulation to compensate for the need to know subchannel phases, i.e., to
know complete channel state information (CSI) at the relay node. We consider the detector
at the relay to be “differential” to emphasize the fact that the sources are differentially
encoded, i.e., that it uses two subsequent channel observations.

2. Related Works

The AF relay strategy is mainly analyzed in other works. In [3], Song et al. analyze
differential BPSK in TWRC with the AF relay strategy in Rayleigh fading channels. The
differential method is only 3 dB worse than the coherent method. The same scenario, but
with multiple relays, is analyzed by Song et al. in [4]—again, the differential method is 3 dB
worse than the coherent case. In [5], Xu et al. investigate both AF and HDF with differential
modulation for TWRC with multiple relays and MIMO systems. Kanthimatchi and Amutha
in [6] introduce generalized differential amplitude-phase modulation for TWRC, and the
AF relay strategy is assumed.

In [7], Ju and Kim derived tight upper and lower bounds for H-BER, Huang and Yuan
in [8] studied the TWRC with multiple antennas, both papers studied coherent detection
with the HDF relay strategy. The HDF relay strategy with differential BPSK/PSK is studied
in [9] by Guan and Liu. They derived the covariance matrix of the two-point observation
where the mean is over subchannel phases and noise. Subsequently, they approximated
the joint distribution of the two-point observation by the joint complex normal (JCN)
distribution with this covariance matrix. The detector is used with energy harvesting
schemes in [10]. The work of Guan and Liu is extended by Fan et al. in [11] to 4 and 8PSK
alphabets, a bitwise-XOR H-map, but the error performance is poor. Another approach
is used in [12], where the authors used the product of subsequent observations, as an
analogy with one-to-one transmission and reception. In [13], Hron and Sykora derived a
closed-form detector that does not need the knowledge of subchannel phases. The joint pdf
of observation is marginalized by the maximum over subchannel phases (joint maximum
likelihood, JML). The performance is only approximately 3 dB worse than the coherent case.

The paper is organized as follows. In Section 3, the system model for both coherent
detection and differential detection in H-MAC is given. The ad hoc detector is presented.
Moreover, the coherent detector and its high SNR approximation are given. In Section 4,
we present analytical formulae for H-BER of the AH detector and coherent detectors, and
we compare our differential AH detector with JML from [13] and JCN from [9]. Further, we
present other numerical results such as decision regions and H-BER figures. In Section 5,
we conclude the paper.

The key contribution of the paper is the proposition of the differential ad hoc (AH)
detector of the XOR of source symbols. Sources use differential BPSK (DBPSK) modulation.
The AH detector uses two subsequent observations together with the knowledge of the
magnitudes of subchannel attenuations, i.e., the minimum of them. The loss of the proposed
ad hoc (AH) detector in the error rate is 0.5 dB with regard to the JML and 3.5 dB with
regard to the coherent detector. AH is slightly worse than JCN for low SNRs, where H-
BER of both detectors is approximately 10−2, but AH substantially outperforms JCN for
higher SNRs.

3. Materials and Methods

The section starts with stating system models of reception in H-MAC. System models
for both uncoded BPSK sources and differentially modulated/encoded BPSK sources are
given. For H-MAC with uncoded BPSK sources, we recall the coherent detector (Coh)
of the XOR H-map. Additionally, a very good approximation of the Coh detector is
given—it is denoted as the approximate coherent (ApC) detector. Further, for H-MAC with
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differentially modulated BPSK sources, an ad hoc detector of the XOR H-map is derived. It
uses two subsequent observations. Finally, a general expression for H-BER is shown.

The system model with uncoded BPSK sources is given as

yn = η1ejϕ1 d(1)n + η2ejϕ2 d(2)n + wn. (1)

It is depicted in Figure 1.
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Figure 1. The system model for coherent detection.

In Equation (1), d(1)n , d(2)n are uncoded n-th BPSK symbols. η1, η2 and ϕ1, ϕ2 are mag-
nitudes and phases of subchannel attenuations, respectively. Index 1 and 2 indicate the
source. wn ∼ CN (0, σ2

w) is the complex Gaussian noise with mean 0 and variance σ2
w.

The H-MAC system model for the differentially encoded BPSK (DBPSK) sources is
given as

yn = η1ejϕ1 q(1)n + η2ejϕ2 q(2)n + wn. (2)

The communication system is illustrated in Figure 2.
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Figure 2. The system model for differential detection.

Differential BPSK modulation is given as

q(i)n = q(i)n−1d(i)n , q(i)0 = 1, i ∈ 1, 2. (3)

d(1)n , d(2)n are uncoded BPSK symbols; q(1)n , q(2)n are differentially encoded BPSK symbols.
Other variables in (2) are the same as in (1).

The ad hoc detector will use two subsequent observations of the H-MAC channel with
DBPSK sources. The two-point observation is

y0 = η1ejϕ1 q(1)0 + η2ejϕ2 q(2)0 + w0, (4)

y1 = η1ejϕ1 q(1)0 d(1)1 + η2ejϕ2 q(2)0 d(2)1 + w1. (5)

In the Equations (4) and (5), we will use the following substitutions:

uA = η1ejϕ1 q(1)0 = η1ejα1 , α1 = ϕ1 + arg(q(1)0 ). (6)

uB = η2ejϕ2 q(2)0 = η2ejα2 , α2 = ϕ2 + arg(q(2)0 ). (7)

However, for simplicity of notation, we will omit 1 index in d(1)1 , d(2)1 , and obtain

y0 = uA + uB + w0, (8)

y1 = uAd(1) + uBd(2) + w1.



Mathematics 2022, 10, 903 4 of 16

Now, we recall the coherent detector. It uses one observation from H-MAC with
uncoded BPSK (1). The channel likelihood function conditioned by the source BPSK
symbols and the one conditioned by the H-symbol b is given as

p(y|d(1), d(2)) = exp
(
−1
σ2

w
|y− u(d(1), d(2))|2

)
, (9)

p(y|b) = 1
2 ∑

[d(1),d(2) ]:b=xor(d(1),d(2))

p(y|d(1), d(2)), (10)

where (for notation simplicity, we have omitted lower time-index n) the useful signal u is

u(d(1), d(2)) = η1ejϕ1 d(1) + η2ejϕ2 d(2). (11)

We recall that the H-symbol b is the output of the H-map. In our case, b = xor(b(1), b(2)) ≡
xor(d(1), d(2)). The coherent detector of the XOR H-map is derived from the likelihood test

p(y|b = 0)
b̂=1
≶

b̂=0
p(y|b = 1), (12)

e
−1
σ2

w
|y−u(1,1)|2

+ e
−1
σ2

w
|y−u(−1,−1)|2 b̂=1

≶
b̂=0

e
−1
σ2

w
|y−u(−1,1)|2

+ e
−1
σ2

w
|y−u(1,−1)|2

. (13)

We obtain the coherent detector of the form

MCoh =

cosh
(

2
σ2

w
<{y∗(η1ejϕ1 + η2ejϕ2)}

)
cosh

(
2

σ2
w
<{y∗(η1ejϕ1 − η2ejϕ2)}

) , (14)

MCoh
b̂=1
≶

b̂=0
exp

(
4η1η2

σ2
w

cos(ϕ)

)
. (15)

In the Equation (15), ϕ = ϕ1 − ϕ2. In addition, b̂ is the estimated H-symbol.
For the derivation of the approximate coherent detector, we use the following

substitutions:

a = <{y∗(η1ejϕ1 + η2ejϕ2)}, (16)

b = <{y∗(η1ejϕ1 − η2ejϕ2)}. (17)

The derivation follows.

cosh
(

2
σ2

w
a
)

cosh
(

2
σ2

w
b
) =

e
2

σ2
w
|a|

+ e
−2
σ2

w
|a|

e
2

σ2
w
|b|

+ e
−2
σ2

w
|b|

= e
2

σ2
w
(|a|−|b|) 1 + e

−4
σ2

w
|a|

1 + e
−4
σ2

w
|b|︸ ︷︷ ︸

Q

b̂=1
≶

b̂=0
e

4
σ2

w
η1η2 cos(ϕ)

, (18)

|a| − |b|+ σ2
w
2

ln(Q)
b̂=1
≶

b̂=0
2η1η2 cos(ϕ). (19)

We obtain criterion (19) from (18) by applying σ2
w
2 ln(.) to both sides of (18). In the expres-

sions (18) and (19),

Q ∈
(

1
2

, 2
)

, (20)

ln(Q) ∈ (− ln(2), ln(2)) ≈ (−0.7, 0.7). (21)
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Finally, after resubstitution (16) and (17) to the (19), we obtain the approximate detector of
the form

MApC = |<{y∗(η1ejϕ1 + η2ejϕ2)}|
− |<{y∗(η1ejϕ1 − η2ejϕ2)}|, (22)

MApC
b̂=1
≶

b̂=0
2η1η2 cos(ϕ). (23)

The approximation is based on the omission of the expression σ2
w
2 ln(Q) from (19). It is

close to zero for higher SNR.
Now, we derive an ad hoc differential detector. Assume the H-MAC channel with

DBPSK sources, given by the channel model (2). In the derivation of the ad hoc detector,
we take the two-point observation (8), and assume a no-noise case. Thus, y0 = uA + uB,
y1 = uAd(1) + uBd(2). We define two auxiliary sets, B0 = {uA + uB,−uA − uB} and
B1 = {uA − uB,−uA + uB}. The sets are composed to correspond to H-symbols b = 0 and
b = 1, respectively. The detector has to decide whether y1 ∈ B0 or y1 ∈ B1. It will choose the
set (B0 or B1, i.e., the H-symbol b = 0 or b = 1) to which y1 is closer. We use the Euclidean
distance. The distance to the B0 can be computed directly, because B0 = {y0,−y0}, and y0
is known. Thus, the detector metric is

MAdH = min{|y1 − y0|, |y1 + y0|}. (24)

The decision threshold is selected to be the mid-value between the case y1 ∈ B0, i.e.,
MAdH = 0, and the case y1 ∈ B1, i.e., MAdH = 2 min{|uA|, |uB|} = 2 min{η1, η2}, as can be
seen from Table 1.

Table 1. Values of y0 + y1 and y0 − y1 for all tuples of [d(1), d(2)].

Event Name d(1) d(2) y0 + y1 y0 − y1 b

A1 1 1 2(uA + uB) 0 0

A2 1 −1 2uA 2uB 1

A3 −1 1 2uB 2uA 1

A4 −1 −1 0 2(uA + uB) 0

Thus,

MAdH
b̂=0
≶

b̂=1
min{η1, η2}. (25)

In the criterion (25), we will use the shortcut ηmin = min{η1, η2}.
To gain insight into what other differential detectors look like, we will proceed as

in [13]. The parts of two-point observation y0, y1 are independent complex Gaussian
distributed given η1, η2, ϕ1, ϕ2, d(1), d(2). We assign η = [η1, η2], ϕ = [ϕ1, ϕ2]. Single and
joint likelihood of observations is, respectively,

p(y0|η,ϕ) =
1

πσ2
w

exp
(
−1
σ2

w

∣∣∣∣y0 − (η1ejϕ1 + η1ejϕ2)

∣∣∣∣2), (26)

p(y1|d(1), d(2), η,ϕ) =
1

πσ2
w

exp
(
−1
σ2

w

∣∣∣∣y1 − (η1ejϕ1 d(1) + η1ejϕ2 d(2))
∣∣∣∣2), (27)

p(y0, y1|d(1), d(2), η,ϕ) = p(y0|η,ϕ)·p(y1|d(1), d(2), η,ϕ). (28)
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The joint pdf (Probability Density Function) of the two-point observation given H-symbol
(Hierarchical symbol) b is

p(y0, y1|b = 0, η,ϕ) =
1
2

[
p(y0, y1| − 1,−1, η,ϕ) + p(y0, y1|1, 1, η,ϕ)

]
. (29)

p(y0, y1|b = 1, η,ϕ) =
1
2

[
p(y0, y1| − 1, 1, η,ϕ) + p(y0, y1|1,−1, η,ϕ)

]
. (30)

The detector decides according to the ML (maximum likelihood) criterion

p(y0, y1|b = 0, η,ϕ)
b̂=1
≶

b̂=0
p(y0, y1|b = 1, η,ϕ). (31)

The criterion (31) can be simplified to the form[
exp

(
2

σ2
w
<{(η1ejϕ1 + η2ejϕ2)y∗+}

)
+ exp

(
2

σ2
w
<{(η1ejϕ1 + η2ejϕ2)y∗−}

)]
·

·exp
(
−4
σ2

w
η1η2 cos(ϕ1 − ϕ2)

)
−
[

exp
(

2
σ2

w
<{η1ejϕ1 y∗+ + η2ejϕ2 y∗−}

)
+ exp

(
2

σ2
w
<{η1ejϕ1 y∗− + η2ejϕ2 y∗+}

)]
b̂=1
≶

b̂=0
0, (32)

where y+ = y0 + y1 and y− = y0 − y1. Upper index ∗ means a complex conjugate. We can
marginalize the (32) criterion by taking the maximum over [ϕ1, ϕ2] ∈ (0, 2π)2, as was done
in [13], or by integration. However, in all types of marginalization over phases [ϕ1, ϕ2],
the resulting detector should be a function of the sum and the difference of subsequent
observations. This is also true of our ad hoc case.

H-BER Formula Derivation

In this subsection, we derive a general expression for the H-BER of a detector of the
XOR H-map of two BPSK sources. The detector metric will be called M—it is a function
of observation(s). Denote by a the decision threshold. We assume the detector to be of
the form

M
b̂=1
≶

b̂=0
a. (33)

Next, the probability of the symbol error Pe = H-BER is derived.

Pe = Pr{b̂ 6= b} = Pr{b̂ = 0, b = 1}+ Pr{b̂ = 1, b = 0},

=
1
2
[Pr{b̂ = 0|b = 1}+ Pr{b̂ = 1|b = 0}],

=
1
4
[Pr{b̂ = 0|A2}+ Pr{b̂ = 0|A3}+ Pr{b̂ = 1|A1}+ Pr{b̂ = 1|A4}],

=
1
4

[
2 +

∫
x≤a

[pM(x|A1) + pM(x|A4)− (pM(x|A2) + pM(x|A3))]dx
]

, (34)

where pM(x|Ai) is the pdf (Probability Density Function) of M, given event Ai. The events
are defined in Table 1.

4. Results

In this section, we first show the derived H-BER formulae. The key is to derive the
pdf of the detector metric, which is then submitted to Equation (34). Channel observations
are taken as random variables (RVs) and detector metrics are functions of observations—
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functions of RVs. We use standard procedures from the book [14] to derive the pdf of the
transformed RVs. Subsequently, we show H-BER of detectors in figures. Details of the
derivation can be found in Appendix B. Gaussian RVs (random variables) are recalled in
Appendix A. Other supplementary operations with RVs are in Appendix C.

4.1. Analytical H-BER Formula for Ad Hoc (AH) Differential Detector

pMAdH can be derived to be

pMAdH(x|Ai) = p|Y0+Y1|(x|Ai)(1− F|Y0−Y1|(x|Ai))

+ p|Y0−Y1|(x|Ai)(1− F|Y0+Y1|(x|Ai)), (35)

where p|Y0±Y1| and F|Y0±Y1|(x|Ai) is the pdf and cdf (Cumulative Density Function) of Rice
distribution, respectively,

p|Y0±Y1|(x|Ai) ≡ p(x|ν, σ),

=
x

σ2 exp
(
−(x2 + ν2)

2σ2

)
I0

(
xν

σ2

)
. (36)

In the expression (36), ν = |uA(1± d(1)) + uB(1± d(2))|, σ = σw. Then,

Pe =
1
2
+

1
4

∫ ηmin

0
[pMAdH(x|A2) + pMAdH(x|A3)− pMAdH(x|A1)− pMAdH(x|A4)]dx, (37)

=
1
2
+

1
2

∫ ηmin

0

[
p(x|2η1, σw)Q1

(
2η2

σw
,

x
σw

)
+ p(x|2η2, σw)Q1

(
2η1

σw
,

x
σw

)
− [p(x|2|uA + uB|, σw)Q1

(
0,

x
σw

)
+ p(x|0, σw)Q1

(
2|uA + uB|

σw
,

x
σw

)
]

]
dx, (38)

where Q1 is the Marcum Q-function and

p(x|2|uA + uB|, σw) =
1
2

(
p(x
∣∣2|η1 + η2ejϕ |, σw) + p(x

∣∣|η1 − η2ejϕ |, σw)

)
. (39)

Q1

(
2|uA + uB|

σw
,

x
σw

)
=

1
2

(
Q1

(
2|η1 + η2ejϕ |

σw
,

x
σw

)
+ Q1

(
2|η1 − η2ejϕ |

σw
,

x
σw

))
. (40)

Again, we have used ϕ = ϕ2 − ϕ1.

4.2. Analytical H-BER Formula for Coherent Detector (Coh)

To express pMCoh (pdf of MCoh given in (14)) it is useful to define some auxiliary
variables. The detector’s decision-threshold is

aCoh = exp
(

4η1η2 cos(ϕ)

σ2
w

)
. (41)

Define (complex valued constant)

c =
η1ejϕ1 − η2ejϕ2

η1ejϕ1 + η2ejϕ2
, cre = <{c}, cim = ={c}. (42)

Let a joint probability pU,V(xre, yre), xre, yre ∈ R be

pU,V(xre, yre) =
1

πσ2
1 |cim|

exp
(
−1
σ2

1

(
(xre − µre)

2 +
( xrecre − yre

cim
− µim

)2
))

,

for cim 6= 0. (43)
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pU,V(xre, yre) =
1√
πσ2

1

exp
(
−1
σ2

1
(xre − µre)

2
)

δ(yre − xrecre), for cim = 0. (44)

In Equations (43) and (44),

σ2
1 =

4
σ2

w
|η1 + η2ejϕ |2, (45)

µ = (η1d(1) + η2e−jϕ d(2))
2

σ2
w
(η1 + η2ejϕ ), (46)

and δ is the Dirac-delta function. Let the joint probability pW,X(s, t), s, t ≥ 1 be

pW,X(s, t) =
1√

s2 − 1
√

t2 − 1

[
pU,V(+ ln(s +

√
s2 − 1),+ ln(t +

√
t2 − 1))+

+ pU,V(+ ln(s +
√

s2 − 1),− ln(t +
√

t2 − 1))

+ pU,V(− ln(s +
√

s2 − 1),+ ln(t +
√

t2 − 1))

+ pU,V(− ln(s +
√

s2 − 1),− ln(t +
√

t2 − 1))
]

. (47)

Finally,

pMCoh(z) =
∫ ∞

max{1/z,1}
q pW,X(zq, q)dq. (48)

Pe =
1
2
+

1
4

∫ aCoh

0
[pMCoh(z|A1) + pMCoh(z|A4)− pMCoh(z|A2)− pMCoh(z|A3)]dz. (49)

In (49), we can use the substitution (50). The 2D integral is then more numerically stable.

Θ
(

x
y

)
=

( cosh(x)
cosh(y)

cosh(y)

)
=

(
z
q

)
. (50)

4.3. Analytical H-BER Formula for Approximate Coherent (ApC) Detector

Again, it is practical to define a few auxiliary definitions. The detector’s decision
threshold is

aApC = 2η1η2 cos(ϕ). (51)

The constant c is defined in the same way as in (42). pU′ ,V′ is formally the same as pU,V in
(43) and (44), but

σ2
1 = |η1 + η2ejϕ |2σ2

w, (52)

µ = (η1d(1) + η2e−jϕ d(2))(η1 + η2ejϕ ). (53)

We define the joint pdf pW ′ ,X′ as

pW ′ ,X′(x, y) = pU′ ,V′(x, y) + pU′ ,V′(x,−y)

+ pU′ ,V′(−x, y) + pU′ ,V′(−x,−y), x, y ≥ 0. (54)

Finally, pMApC(z) and Pe are



Mathematics 2022, 10, 903 9 of 16

pMApC(z) =
∫ ∞

max{0,−z}
pW ′ ,X′(z + x, x)dx, (55)

Pe =
1
2
+

1
4

∫ aApC

−∞
[pMApC(y|A1) + pMApC(y|A4)− pMApC(y|A2)− pMApC(y|A3)]dy. (56)

4.4. Comparison of AH Differential Detector with Other Two Differential Detectors

In this subsection, we compare the H-BER performance of the ad hoc (AH) detector
with the joint complex normal (JCN) detector from [9] and with the joint maximum like-
lihood (JML) detector from [13]. In the referenced figures, we use η = η2/η1 = ηmin and
ϕ = ϕ2− ϕ1. In Figure 3, we see the H-BER of the AH and the JCN detector. The right-hand
figure zooms into the lower SNRs. It is clearly visible that for low SNRs, JCN is slightly
better than AH (the error rate is of order 10−2 for both detectors), but for high SNRs, AH
is remarkably better. In Figure 4, we compare H-BER of the AH and JML detector. Again,
the right-hand figure zooms into lower SNRs. Apparently, the loss of AH w.r.t. the JML is
about 0.5 dB in H-BER.

5 10 15 20 25 30
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0

(a)

4 6 8 10 12 14
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-1

10
0

(b)

Figure 3. H-BER of ad hoc (AH) vs. JCN detector for different ranges of SNR. (a) Ad hoc (AH) vs.
JCN detector for SNR from 3 dB to 30 dB. (b) Ad hoc (AH) vs. JCN detector for SNR from 3 dB to
15 dB.

4 6 8 10 12 14 16 18 20 22 24
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Figure 4. H-BER of ad hoc (AH) vs. JML detector for different ranges of SNR. (a) Ad hoc (AH) vs. JML
detector for SNR from 3 dB to 24 dB. (b) Ad hoc (AH) vs. JML detector for SNR from 3 dB to 12 dB.
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4.5. Other Numerical Results

In this subsection, we present the following.

1. Decision regions for coherent and differential detectors.
2. Comparison of H-BER performance of coherent vs. approximate coherent detector

and coherent vs. ad hoc detector.
3. H-BER performance of the ad hoc differential detector vs. the approximate coherent

detector for the Rayleigh channel.

In all the figures, η1 = 1, η2 = η, ϕ = ϕ2 − ϕ1. SNR is given with regard to the first
source. Rayleigh fading channel is of the form

y = h1q(1) + ηh2q(2) + w, (57)

where h1, h2 ∼ CN (0, σ2). σ is chosen to be
√

2/2 so that E[|hi|2] = 1. Moreover, the
channel attenuation coefficients h1, h2 are assumed to be the same for two consecutive
observations. The channel parameter η is fixed for the whole frame and it is the only
parameter known to the AH detector in the channel model (57).

Observations follow. In Figure 5a, we see that the boundaries of decision regions of
the coherent and the approximate coherent detector for SNR = 0 dB are quite close to each
other. For higher SNR, boundaries are closer to each other. That results in practically the
same H-BER performance of the two detectors as can be seen in Figure 6a. We can notice
that the boundaries of decision regions for the approximate coherent detector consist of
4 line segments.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a)

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

(b)

Figure 5. Decision regions of the coherent (a) and differential detectors (b). (a) Decision regions for
coherent and approximate coherent detector. For SNR = 0 dB. η = 0.9, ϕ1 = 0.1 rad, ϕ2 = 0.5 rad.
(b) Decision regions for the differential ad hoc detector, JML detector (for two SNRs) and JML2
detector. Decision regions on y1 for given y0. For η = 0.9.

Decision regions for the ad hoc differential detector are 4-D subsets of R4. In Figure 5b,
we have depicted decision regions for y1, given fixed y0. Decision regions of the JML
detector are also shown. Here we have also shown the decision region for the detector that
we get by marginalization of the criterion (32) by integration over [ϕ1, ϕ2] ∈ (0, 2π)2. The
differential detector is denoted as JML2.

From Figure 6b, we conclude that the H-BER loss of the ad hoc detector w.r.t. the Coh
detector is about 3.5 dB.

H-BER does change with ϕ in Figures 3, 4 and 6a,b by just a fraction of dB.
In Figure 7, we compare the ApC and AH detector for the Rayleigh channel. The AH

detector knows only the channel parameter η, as given in the system model (57). We see
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that the knowledge of the magnitudes of subchannel attenuations for the AH detector is
crucial and its absence results in very poor error performance. The ApC detector uses full
knowledge of the channel parameters h1 and ηh2 .
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(b)

Figure 6. H-BER of the coherent (coh) vs. the approximate coherent (apCoh) detector (a) and the
coherent vs. ad hoc (adH) detector (b). (a) H-BER of coherent vs. the approximate coherent detector.
(b) H-BER of coherent vs. ad hoc differential detector.
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Figure 7. H-BER of AH differential detector vs. ApC detector in Rayleigh fading channel.

5. Discussion

In this article, we have presented an AH differential detector of the XOR H-map, for
two differentially encoded BPSK sources in the H-MAC. The proposed AH detector is
very simple for evaluation, does not require the estimation of subchannel phases in the
H-MAC channel, and the loss in its H-BER is only 3.5 dB with regard to the coherent
detector. Moreover, we have derived the ApC detector, which has practically the same
H-BER performance as the Coh detector. The analytical H-BER formula has been presented
for the AH and coherent detectors. The AH differential detector has been compared to the
other two differential detectors (JML and JCN). Additional results such as figures of H-BER
and decision regions of detectors have been presented.



Mathematics 2022, 10, 903 12 of 16

Author Contributions: Conceptualization, J.L. and J.S.; methodology, J.L.; software, J.L.; validation,
J.L. and J.S.; formal analysis, J.S.; investigation, J.S.; resources, J.L.; data curation, J.L.; writing—
original draft preparation, J.L.; writing—review and editing, J.S.; visualization, J.L.; supervision,
J.S.; project administration, J.S.; funding acquisition, J.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Czech Technical University in Prague, grant number
SGS21/062/OHK3/1T/13.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Matlab functions for computation of H-BER of detectors can be accessed
at https://doi.org/10.17632/dn8cgnkfny.1 (accessed on 13 January 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

TWRC Two-Way Relay Channel
BPSK Binary Phase Shift Keying
HDF Hierarchical Decode and Forward
AF Amplify and Forward
PLNC/WPNC (Wireless) Physical Layer Network Coding
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JCN Joint Complex-Normal differential detector from [9]
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Coh Coherent Detector
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Appendix A. Complex Normal and Normal Distributions

Let

A ∼ CN (µA, σ2
A), µA ∈ C, (A1)

B ∼ N (µB, σ2
B), µB ∈ R. (A2)

Then (p denotes pdf)

pA(x|µA, σ2
A) =

1
πσ2

A
exp

(
− 1

σ2
A
|x− µA|2

)
, x ∈ C, (A3)

pB(x|µB, σ2
B) =

1√
2πσ2

B

exp
(
− 1

2σ2
B
(x− µB)

2
)

, x ∈ R. (A4)

https://doi.org/10.17632/dn8cgnkfny.1
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Some operations with complex normal and normal random variables follow:

A∗ ∼ CN (µ∗A, σ2
A), (A5)

aA ∼ CN (aµA, |a|2σ2
A), (A6)

<{A} ∼ N
(
<{µA},

σ2
A
2

)
. (A7)

Appendix B. Derivation of pdf of Detector Metrics

Appendix B.1. AH Differential Detector

The derivation of pAdH follows

Y0 ∼ CN (uA + uB, σ2
w), (A8)

Y1 ∼ CN (uAd(1) + uBd(2), σ2
w), (A9)

Y0 ±Y1 ∼ CN (uA(1± d(1)) + uB(1± d(2)), 2σ2
w), (A10)

|Y0 ±Y1| ∼ Rice(|uA(1± d(1)) + uB(1± d(2))|,
√

2σ2
w

2
= σw). (A11)

In the above relations, A ∼ Rice(ν, σ) means

pA(x) =
x

σ2 exp
(
−(x2 + ν2)

2σ2

)
I0

(
xν

σ2

)
, x ≥ 0, (A12)

cdfA(x) ≡ FA(x) = 1−Q1

(
ν

σ
,

x
σ

)
, x ≥ 0. (A13)

Q1 is the Marcum Q-function. Further,

MAdH = min{|Y0 −Y1|, |Y0 + Y1|}. (A14)

We derive pAdH as given in (35) using Appendix C.4.

Appendix B.2. Coherent Detector

The derivation of pCoh follows. (d(1), d(2) are BPSK symbols, so d(i)
∗
= d(i)).

Y ∼ CN (η1ejϕ1 d(1) + η2ejϕ2 d(2), σ2
w), (A15)

Y∗ ∼ CN (η1e−jϕ1 d(1) + η2e−jϕ2 d(2), σ2
w), (A16)

X2,± = Y∗
2

σ2
w

(
η1ejϕ1 ± η2ejϕ2

)
∼ CN

((
η1e−jϕ1 d(1) + η2e−jϕ2 d(2)

)
·. . .

· 2
σ2

w

(
η1ejϕ1 ± η2ejϕ2

)
;

4
σ4

w
|η1ejϕ1 ± η2ejϕ2 |2σ2

w

)
, (A17)

U = <{X2,+}, V = <{X2,+}, (A18)

W = cosh(U), X = cosh(V), (A19)

MCoh =
W
X

. (A20)

RVs X2,+ and X2,− are dependent. X2,− = c·X2,+. Constant c is defined in (42). Thus, the
joint distribution of X2,+, X2,− is

pX2,+ ,X2,−(x, y) = pX2,+(x)δ(y− cx), x, y ∈ C. (A21)
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We obtain joint distributions of U and V by marginalization of (A21) over imaginary parts
of x, y. Here, we need to distinguish two cases: (1) cim 6= 0 and (2) cim = 0. Derived pU,V
is given in (43) and (44). We obtain the joint distribution of W, X and subsequently pMCoh
from pU,V by applying the derivation in Appendix C.1.

Appendix B.3. Approximate Coherent Detector

Derivation of pMApC follows.

X′2,± = Y∗(η1ejϕ1 ± η2ejϕ2)

∼ CN ((η1e−jϕ1 d(1) + η2e−jϕ2 d(2))·. . .

·(η1ejϕ1 ± η2ejϕ2), |η1ejϕ1 ± η2ejϕ2 |2σ2
w), (A22)

U′ = <{X′2,+}, V′ = <{X′2,−}, (A23)

W ′ = |U′|, X′ = |V′|, (A24)

MApC = W ′ − X′. (A25)

Similarly as in the coherent case, X2,+ and X2,− are dependent. We define c as in (42). Then,
the joint distribution of X′2,+ and X′2,− is

pX′2,+ ,X′2,−
(x, y) = pX′2,+

(x)δ(y− cx), x, y ∈ C. (A26)

The joint distribution of U′, V′ is computed by the marginalization of pX2,+ ,X2,− over the
imaginary parts of variables x, y. pW ′ ,X′ is computed according to Appendix C.2. Finally,
we find pMApC according to Appendix C.3.

Appendix C. Operations with Random Variables

Appendix C.1. Joint Distribution of cosh(U), cosh(V) and Their Ratio Distribution

For two RVs S, T, the ratio distribution Z = S/T is given as

pZ(z) =
∫ ∞

−∞
|q|pS,T(qz, q)dq. (A27)

For given pU,V and the transformation s = f (u, v) = cosh(u), t = g(u, v) = cosh(v), we
want pS,T . The Jacobian of the transformation is

J(u, v) =
∣∣∣∣ sinh(u) 0

0 sinh(v)

∣∣∣∣, (A28)

= sinh(u) sinh(v). (A29)

For given s, t, the solutions of s = cosh(u), t = cosh(v) are u1,2 = ± ln(s +
√

s2 − 1) and
v1,2 = ± ln(t +

√
t2 − 1). For all pairs of solutions, the absolute value of the Jacobian is

equal to
√

s2 − 1
√

t2 − 1. Thus,

pS,T(s, t) =
1√

s2 − 1
√

t2 − 1

[
pU,V(+ ln(s +

√
s2 − 1),+ ln(t +

√
t2 − 1))+

+ pU,V(+ ln(s +
√

s2 − 1),− ln(t +
√

t2 − 1))

+ pU,V(− ln(s +
√

s2 − 1),+ ln(t +
√

t2 − 1))

+ pU,V(− ln(s +
√

s2 − 1),− ln(t +
√

t2 − 1))
]

.

s, t ≥ 1. (A30)
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For the ratio Z = S/T, we need to place a condition on the integration variable,

q ∈ 〈1, ∞ ), qz ∈ 〈1, ∞ ),

z ∈ (0, ∞), q ∈
〈

1
z

, ∞
)

(A31)

Thus,

pZ(z) =
∫ ∞

max{1/z,1}
q pS,T(zq, q)dx, (A32)

=
∫ ∞

max{1/z,1}
q

1√
z2q2 − 1

1√
q2 − 1

[
. . .

pU,V(+ ln(zq +
√
(zq)2 − 1),+ ln(q +

√
q2 − 1))+

+ pU,V(+ ln(zq +
√
(zq)2 − 1),− ln(q +

√
q2 − 1))

+ pU,V(− ln(zq +
√
(zq)2 − 1),+ ln(q +

√
q2 − 1))

+ pU,V(− ln(zq +
√
(zq)2 − 1),− ln(q +

√
q2 − 1))

]
dx. (A33)

Appendix C.2. Joint Distribution of Absolute Values of U, V

Let

X = |U| = f (U, V), (A34)

Y = |V| = g(U, V). (A35)

The Jacobian of the transformation is

J(u, v) =
∣∣∣∣ sign(u) 0

0 sign(v)

∣∣∣∣,
= sign(u)sign(v). (A36)

For the given x, y, solutions of x = |u|, y = |v| are u1,2 = ±x, v1,2 = ±y. The absolute value
of the Jacobian for all pairs of solutions is 1. Thus,

pX,Y(x, y) =
1
1

[
pU,V(x, y) + pU,V(x,−y) + pU,V(−x, y) + pU,V(−x,−y)

]
,

for x, y ≥ 0. (A37)

Appendix C.3. Difference of Two Nonnegative RVs

Let

Y = X1 − X2. (A38)

Then

pY(y) =
∫ ∞

−∞
pX1,X2(y + x2, x2)dx2. (A39)

For nonnegative X1, X2, we restrict x2 to

x2 ≥ 0, (A40)

y + x2 ≥ 0, x2 ≥ −y. (A41)
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pY(y) =
∫ ∞

x2=max{0,−y}
pX1,X2(y + x2, x2)dx2. (A42)

Appendix C.4. Minimum of Two Independent RVs

Let X, Y be two independent random variables. Define U = min(X, Y). Then

FU(u) = FX(u) + FY(u)− FX(u)FY(u), (A43)

fU(u) = FU(u)′ = fX(u)(1− FY(u)) + fY(u)(1− FX(u)). (A44)
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