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Abstract: In this paper, we investigate infinite interval problems for the fractional evolution equations
with Hilfer fractional derivative. By using the generalized Ascoli–Arzelà theorem and some new
techniques, we prove the existence of mild solutions of Hilfer fractional evolution equations when
the semigroup is compact as well as noncompact. In addition, an example is provided to illustrate
the results.
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1. Introduction

Fractional differential equations have recently attracted a lot of attention due to their
applications in science and engineering; in particular, they can describe much more nonlocal
phenomena in physics, such as fluid mechanics, the diffusion phenomenon, and viscoelas-
ticity. In lots of processes or phenomena with long-range temporal cumulative memory
effects and/or long-range spatial interactions, theoretical and numerical results have also
shown that fractional differential equations display more prominent advantages than inte-
ger order ones. In the past two decades, the theory of fractional differential equations has
attracted the attention of researchers all over the world, as in the monographs [1–4] and the
recent references.

Consider the Cauchy problem of fractional evolution equations on an infinite interval
HDµ,λ

0+ y(t) = Ay(t) + g(t, y(t)), t ∈ (0, ∞),

I(1−λ)(1−µ)
0+ y(0) = y0,

(1)

where HDµ,λ
0+ is the Hilfer fractional derivative of order 0 < λ < 1 and type 0 ≤ µ ≤ 1,

I(1−λ)(1−µ)
0+ is Riemann–Liouville integral of order (1− λ)(1− µ), A is the infinitesimal gen-

erator of a strongly continuous semigroup of bounded linear operators (i.e., C0 semigroup)
{Q(t)}t≥0 in Banach space X, g : [0, ∞)× X → X is a function to be defined later.

The Hilfer fractional derivative is a natural generalization of Caputo derivative and
Riemann–Liouville derivative [1]. It is obvious that fractional differential equations with
Hilfer derivatives include fractional differential equations with a Riemann–Liouville deriva-
tive or Caputo derivative as special cases.

The well-posedness of fractional evolution equations is an important research topic
of evolution equations, as many types of fractional partial differential equations, such as
fractional diffusion equations, wave equations, Navier–Stokes equations, Rayleigh–Stokes
equations, Fokker–Planck equations, Schrödinger equations, etc., can be abstracted as
fractional evolution equations [5–7]. However, it seems that there are few works concerned
with fractional evolution equations on an infinite interval. Most of these results involve the
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existence of solutions for fractional evolution equations on a finite interval [0, T], where
T ∈ (0, ∞) (for example, see [8–11]). The Ascoli–Arzelà theorem and various fixed point
theorems are widely used to study the existence of solutions. It is well known that the
classical Ascoli–Arzelà theorem is powerful technique to give a necessary and sufficient
condition for judging the relative compactness of a family of abstract continuous functions,
while it is limited to finite closed interval.

In this paper, by using the generalized Ascoli–Arzelà theorem and some new tech-
niques, we prove the existence of mild solutions for the infinite interval problem (1) when
the semigroup is compact as well as noncompact. In particular, we do not need to assume
that the g(t, ·) satisfies the Lipschitz condition. The main methods of this paper are based
on the generalization of Ascoli–Arzelà theorem on infinite intervals, Schauder’s fixed point
theorem, and Kuratowski’s measure of noncompactness.

2. Preliminaries

We first introduce some notations and definitions about fractional calculus, Kura-
towski’s measure of noncompactness, and the definition of mild solutions. For more details,
we refer to [1,2,12,13].

Assume that X is a Banach space with the norm | · |. Let R = (−∞, ∞) and J be an
infinite interval of R. By C(J, X) we denote the space of all continuous functions from J to
X with the norm ‖u‖0 = supt∈J |u(t)| < ∞. We denote by L(X) the space of all bounded
linear operators from X to X with the usual operator norm ‖ · ‖L(X).

Definition 1 (see [2]). The fractional integral of order λ for a function u : [0, ∞)→ R is defined as

Iλ
0+u(t) =

1
Γ(λ)

∫ t

0
(t− s)λ−1u(s)ds, λ > 0, t > 0,

provided the right side is point-wise defined on [0, ∞), where Γ(·) is the gamma function.

Definition 2 (Hilfer fractional derivative, see [1]). Let 0 < λ < 1 and 0 ≤ µ ≤ 1. The Hilfer
fractional derivative of order λ and type µ for a function u : [0, ∞)→ R is defined as

HDµ,λ
0+ u(t) = Iµ(1−λ)

0+
d
dt

I(1−λ)(1−µ)
0+ u(t).

Remark 1. (i) In particular, when µ = 0, 0 < λ < 1, then

HD0,λ
0+u(t) =

d
dt

I1−λ
0+ u(t) =: LD

λ
0+u(t),

where LDλ
0+ is the Riemann–Liouville derivative.

(ii) When µ = 1, 0 < λ < 1, we have

HD1,λ
0+u(t) = I1−λ

0+
d
dt

u(t) =: CDλ
0+u(t),

where CDλ
0+ is Caputo derivative.

Let D be a nonempty subset of X. Kuratowski’s measure of noncompactness β is said
to be:

β(D) = inf

d > 0 : D ⊂
n⋃

j=1

Mj and diam(Mj) ≤ d

,

where the diameter of Mj is given by diam(Mj) = sup{|x− y| : x, y ∈ Mj}, j = 1, . . . , n.
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Lemma 1 ([14]). Let {un(t)}∞
n=1 : [0, ∞) → X be a continuous function family. If there exists

ρ ∈ L1[0, ∞) such that

|un(t)| ≤ ρ(t), t ∈ [0, ∞), n = 1, 2, . . . .

Then β({un(t)}∞
n=1) is integrable on [0, ∞), and

β
({ ∫ t

0
un(s)ds : n = 1, 2, . . .

})
≤ 2

∫ t

0
β({un(s) : n = 1, 2, . . .})ds.

Definition 3 ([15]). The Wright function Wλ(θ) is defined by

Wλ(θ) =
∞

∑
n=1

(−θ)n−1

(n− 1)!Γ(1− λn)
, 0 < λ < 1, θ ∈ C,

with the following property ∫ ∞

0
θδWλ(θ)dθ =

Γ(1 + δ)

Γ(1 + λδ)
, for δ ≥ 0.

Lemma 2 ([8]). The Cauchy problem (1) is equivalent to the integral equation

y(t) =
y0

Γ(µ(1− λ) + λ)
t(µ−1)(1−λ)

+
1

Γ(λ)

∫ t

0
(t− s)λ−1[Ay(s) + G(s, y(s))]ds, t ∈ (0, ∞).

(2)

Lemma 3 ([8]). Assume that y(t) satisfies integral Equation (2). Then

y(t) = Pµ,λ(t)y0 +
∫ t

0
Qλ(t− s)g(s, y(s))ds, t ∈ (0, ∞), (3)

where

Pµ,λ(t) = Iµ(1−λ)
0+ Qλ(t), Qλ(t) = tλ−1Sλ(t), and Sλ(t) =

∫ ∞

0
λθWλ(θ)Q(tλθ)dθ.

Due to Lemma 3, we give the following definition of the mild solution of (1).

Definition 4. By the mild solution of the Cauchy problem (1), we mean that the function y ∈
C((0, ∞), X) which satisfies

y(t) = Pµ,λ(t)y0 +
∫ t

0
Qλ(t− s)g(s, y(s))ds, t ∈ (0, ∞).

Suppose that A is the infinitesimal generator of a C0 semigroup {Q(t)}t≥0 of uniformly
bounded linear operators on Banach space X. This means that there exists L > 1 such that
supt∈[0,∞) ‖Q(t)‖L(X) ≤ L.

Lemma 4 ([4,8]). If {Q(t)}t>0 is a compact operator, then {Pµ,λ(t)}t>0 and {Sλ(t)}t>0 are also
compact operators.

Lemma 5. Assume that {Q(t)}t>0 is a compact operator. Then {Q(t)}t>0 is equicontinuous.

Lemma 6 ([8]). For any fixed t > 0, Sλ(t), Qλ(t) and Pµ,λ(t) are linear operators, i.e., for any
y ∈ X

|Sλ(t)y| ≤
L

Γ(λ)
|y|, |Qλ(t)y| ≤

L
Γ(λ)

tλ−1|y|,
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and
|Pµ,λ(t)y| ≤

L
Γ(µ(1− λ) + λ)

t−(1−λ)(1−µ)|y|.

Lemma 7 ([8]). If {Q(t)}t>0 is equicontinuous, then the operators {Sλ(t)}t>0, {Qλ(t)}t>0 and
{Pµ,λ(t)}t>0 are strongly continuous, which means that, for ∀ y ∈ X and t′′ > t′ > 0, we have

|Sλ(t′)y− Sλ(t′′)y| → 0, |Qλ(t′)y−Qλ(t′′)y| → 0,

|Pµ,λ(t′)y−Pµ,λ(t′′)y| → 0, as t′′ → t′.

Let

C1([0, ∞), X) = {u ∈ C([0, ∞), X) : lim
t→∞

|u(t)|
1 + t

= 0}.

Then, C1([0, ∞), X) is a Banach space with the norm ‖u‖ = supt∈[0,∞) |u(t)|/(1 + t) < ∞.
In the following, we state the generalized Ascoli–Arzelà theorem.

Lemma 8 ([16]). The set Λ ⊂ C1([0, ∞), X) is relatively compact if and only if the following
conditions hold:

(a) for any h > 0, the set V = {v : v(t) = x(t)/(1 + t), x ∈ Λ} is equicontinuous on [0, h];
(b) limt→∞ |x(t)|/(1 + t) = 0 uniformly for x ∈ Λ;
(c) for any t ∈ [0, ∞), V(t) = {v(t) : v(t) = x(t)/(1 + t), x ∈ Λ} is relatively compact in X.

3. Main Results

We introduce the following hypotheses:

(H0) {Q(t)}t>0 is equicontinuous, i.e., Q(t) is continuous in the uniform operator topology
for t > 0.

(H1) g(t, ·) is Lebesgue measurable with respect to t on [0, ∞). g(·, y) is continuous with
respect to y on X.

(H2) There exists a function m : (0, ∞)→ (0, ∞) such that

Iλ
0+m(t) ∈ C((0, ∞), (0, ∞)), |g(t, y)| ≤ m(t), for all y ∈ X, t ∈ (0, ∞),

and

lim
t→0+

t(1−λ)(1−µ) Iλ
0+m(t) = 0, lim

t→∞

t(1−λ)(1−µ)

1 + t
Iλ
0+m(t) = 0.

Let

Cλ((0, ∞), X) =
{

y ∈ C((0, ∞), X) : lim
t→0+

t(1−λ)(1−µ)|y(t)| exists and is finite,

lim
t→∞

t(1−λ)(1−µ)|y(t)|
1 + t

= 0
}

.

Then (Cλ((0, ∞), X), ‖ · ‖λ) is a Banach space with the norm

‖y‖λ = sup
t∈[0,∞)

t(1−λ)(1−µ)|y(t)|
1 + t

.

For any y ∈ Cλ((0, ∞), X), define an operator Ψ as follows

(Ψy)(t) = (Ψ1y)(t) + (Ψ2y)(t),

where

(Ψ1y)(t) = Pµ,λ(t)y0, (Ψ2y)(t) =
∫ t

0
Qλ(t− s)g(s, y(s))ds, for t ∈ (0, ∞).
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For any u ∈ C1([0, ∞), X), set

y(t) = t−(1−λ)(1−µ)u(t), for t ∈ (0, ∞).

Then, y ∈ Cλ((0, ∞), X). Define an operator Φ as follows

(Φu)(t) = (Φ1u)(t) + (Φ2u)(t),

where

(Φ1u)(t) =

t(1−λ)(1−µ)(Ψ1y)(t), for t ∈ (0, ∞),
y0

Γ(µ(1− λ) + λ)
, for t = 0,

(Φ2u)(t) =

{
t(1−λ)(1−µ)(Ψ2y)(t), for t ∈ (0, ∞),

0, for t = 0.

Obviously, y ∈ Cλ((0, ∞), X) is a mild solution of (1) if and only if the operator
equation y = Ψy has a solution y ∈ Cλ((0, ∞), X).

In view of (H2), we have

lim
t→0+

t(1−λ)(1−µ)

1 + t
Iλ
0+m(t) = 0, lim

t→∞

t(1−λ)(1−µ)

1 + t
Iλ
0+m(t) = 0.

Thus, there exists a constant r > 0 such that

sup
t∈[0,∞)

{
L|y0|

Γ(µ(1− λ) + λ)
+

Lt(1−λ)(1−µ)

1 + t
Iλ
0+m(t)

}
≤ r,

i.e.,

sup
t∈[0,∞)

{
L|y0|

Γ(µ(1− λ) + λ)
+

L
Γ(λ)

t(1−λ)(1−µ)

1 + t

∫ t

0
(t− s)λ−1m(s)ds

}
≤ r. (4)

Let

Ωr = {u ∈ C1([0, ∞), X) : ‖u‖ ≤ r}, Ω̃r = {y ∈ Cλ((0, ∞), X) : ‖y‖λ ≤ r}.

Clearly, Ωr is a nonempty, convex, and closed subset of C1([0, ∞), X), and Ω̃r is a
nonempty, convex, and closed subset of Cλ((0, ∞), X).

Let
V :=

{
v : v(t) = (Φu)(t)/(1 + t), u ∈ Ωr

}
.

Lemma 9. Assume that (H0), (H1) and (H2) hold. Then the set V is equicontinuous.

Proof. Step I. We first prove that
{

v : v(t) = (Φ1u)(t)/(1 + t), u ∈ Ωr
}

is equicontinuous.
As limt→0+ Sλ(t)y0 = y0/Γ(λ), we find

lim
t→0+

t(1−λ)(1−µ)Pµ,λ(t)y0 = lim
t→0+

t(1−λ)(1−µ)

Γ(µ(1− λ))

∫ t

0
(t− s)µ(1−λ)−1sλ−1Sλ(s)y0ds

= lim
t→0+

1
Γ(µ(1− λ))

∫ 1

0
(1− z)µ(1−λ)−1zλ−1Sλ(tz)y0dz

=
1

Γ(µ(1− λ))Γ(λ)

∫ 1

0
(1− z)µ(1−λ)−1zλ−1y0dz

=
y0

Γ(µ(1− λ) + λ)
.
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Hence, for t1 = 0, t2 ∈ (0, ∞), we obtain∣∣∣ (Φ1u)(t2)

1 + t2
− (Φ1u)(0)

∣∣∣
≤
∣∣∣ 1
1 + t2

t2
(1−λ)(1−µ)Pµ,λ(t2)y0 −

y0

Γ(µ(1− λ) + λ)

∣∣∣
→ 0, as t2 → 0.

For any t1, t2 ∈ (0, ∞) and t1 < t2, we have∣∣∣ (Φ1u)(t2)

1 + t2
− (Φ1u)(t1)

1 + t1

∣∣∣
=
∣∣∣ t2

(1−λ)(1−µ)Pµ,λ(t2)y0

1 + t2
−

t1
(1−λ)(1−µ)Pµ,λ(t1)y0

1 + t1

∣∣∣
≤
∣∣∣ t2

(1−λ)(1−µ)Pµ,λ(t2)y0

1 + t2
−

t2
(1−λ)(1−µ)Pµ,λ(t2)y0

1 + t1

∣∣∣
+
∣∣∣ t2

(1−λ)(1−µ)Pµ,λ(t2)y0

1 + t1
−

t1
(1−λ)(1−µ)Pµ,λ(t1)y0

1 + t1

∣∣∣
≤|t2

(1−λ)(1−µ)Pµ,λ(t2)y0|
|t2 − t1|

(1 + t2)(1 + t1)

+ |t2
(1−λ)(1−µ)Pµ,λ(t2)y0 − t1

(1−λ)(1−µ)Pµ,λ(t1)y0|
1

1 + t1

≤|t2
(1−λ)(1−µ)Pµ,λ(t2)y0|

|t2 − t1|
(1 + t2)(1 + t1)

+ |t2
(1−λ)(1−µ)||Pµ,λ(t2)y0 −Pµ,λ(t1)y0|

1
1 + t1

+ |t2
(1−λ)(1−µ) − t1

(1−λ)(1−µ)||Pµ,λ(t1)y0|
1

1 + t1

→ 0, as t2 → t1.

Hence,
{

v : v(t) = (Φ1u)(t)/(1 + t), u ∈ Ωr
}

is equicontinuous.
Step II. We prove that

{
v : v(t) = (Φ2u)(t)/(1 + t), u ∈ Ωr

}
is equicontinuous.

Let y(t) = t−(1−λ)(1−µ)u(t), for any u ∈ Ωr, t ∈ (0, ∞). Then y ∈ Ω̃r.
For ε > 0, in view of (H2), there exists T > 0 such that

L
Γ(λ)

t(1−λ)(1−µ)

1 + t

∫ t

0
(t− s)λ−1m(s)ds <

ε

2
, for t > T. (5)

For t1, t2 > T, in virtue of (H2) and (5), we find∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(t1)

1 + t1

∣∣∣ ≤∣∣∣ t2
(1−λ)(1−µ)

1 + t2

∫ t2

0
Qλ(t2 − s)g(s, y(s))ds

∣∣∣
+
∣∣∣ t1

(1−λ)(1−µ)

1 + t1

∫ t1

0
Qλ(t1 − s)g(s, y(s))ds

∣∣∣
≤ L

Γ(λ)
t2
(1−λ)(1−µ)

1 + t2

∫ t2

0
(t2 − s)λ−1m(s)ds

+
L

Γ(λ)
t1
(1−λ)(1−µ)

1 + t1

∫ t1

0
(t1 − s)λ−1m(s)ds

<ε.
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When t1 = 0, 0 < t2 < T, we have∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(0)

∣∣∣ =∣∣∣ t2
(1−λ)(1−µ)

1 + t2

∫ t2

0
Qλ(t2 − s)g(s, y(s))ds

∣∣∣
≤ L

Γ(λ)
t2
(1−λ)(1−µ)

1 + t2

∫ t2

0
(t2 − s)λ−1m(s)ds

→ 0 as t2 → 0.

For 0 < t1 < t2 ≤ T, we find∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(t1)

1 + t1

∣∣∣
≤
∣∣∣ t1

(1−λ)(1−µ)

1 + t1

∫ t2

t1

(t2 − s)λ−1Sλ(t2 − s)g(s, y(s))ds
∣∣∣

+
∣∣∣ t1

(1−λ)(1−µ)

1 + t1

∫ t1

0

(
(t2 − s)λ−1 − (t1 − s)λ−1)Sλ(t2 − s)g(s, y(s))ds

∣∣∣
+
∣∣∣ t1

(1−λ)(1−µ)

1 + t1

∫ t1

0
(t1 − s)λ−1(Sλ(t2 − s)− Sλ(t1 − s)

)
g(s, y(s))ds

∣∣∣
+
∣∣∣ t2

(1−λ)(1−µ)

1 + t2
− t1

(1−λ)(1−µ)

1 + t1

∣∣∣∣∣∣ ∫ t2

0
(t2 − s)λ−1Sλ(t2 − s)g(s, y(s))ds

∣∣∣
≤I1 + I2 + I3 + I4,

where

I1 =
L

Γ(λ)
t1
(1−λ)(1−µ)

1 + t1

∣∣∣ ∫ t2

0
(t2 − s)λ−1m(s)ds−

∫ t1

0
(t1 − s)λ−1m(s)ds

∣∣∣,
I2 =

2L
Γ(λ)

t1
(1−λ)(1−µ)

1 + t1

∫ t1

0

(
(t1 − s)λ−1 − (t2 − s)λ−1)m(s)ds,

I3 =
t1
(1−λ)(1−µ)

1 + t1

∣∣∣ ∫ t1

0
(t1 − s)λ−1(Sλ(t2 − s)− Sλ(t1 − s)

)
g(s, y(s))ds

∣∣∣,
I4 =

∣∣∣ t2
(1−λ)(1−µ)

1 + t2
− t1

(1−λ)(1−µ)

1 + t1

∣∣∣ L
Γ(λ)

∫ t2

0
(t2 − s)λ−1m(s)ds.

One can deduce that limt2→t1 I1 = 0, as (Iλ
0+m)(t) ∈ C((0, ∞), (0, ∞)). Noting that

((t1 − s)λ−1 − (t2 − s)λ−1)m(s) ≤ (t1 − s)λ−1m(s), for s ∈ [0, t1),

then by Lebesgue dominated convergence theorem, we find∫ t1

0

(
(t1 − s)λ−1 − (t2 − s)λ−1)m(s)ds→ 0, as t2 → t1,

so, I2 → 0 as t2 → t1.
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For ε > 0 be enough small, we have

I3 ≤
t1
(1−λ)(1−µ)

1 + t1

∫ t1−ε

0
(t1 − s)λ−1∥∥Sλ(t2 − s)− Sλ(t1 − s)

∥∥
L(X)
|g(s, y(s))|ds

+
t1
(1−λ)(1−µ)

1 + t1

∫ t1

t1−ε
(t1 − s)λ−1∥∥Sλ(t2 − s)− Sλ(t1 − s)

∥∥
L(X)
|g(s, y(s))|ds

≤ t1
(1−λ)(1−µ)

1 + t1

∫ t1−ε

0
(t1 − s)λ−1m(s)ds sup

s∈[0,t1−ε]

‖Sλ(t2 − s)− Sλ(t1 − s)
∥∥
L(X)

+
2L

Γ(λ)
t1
(1−λ)(1−µ)

1 + t1

∫ t1

t1−ε
(t1 − s)λ−1m(s)ds

≤I31 + I32 + I33,

where

I31 =
t1
(1−λ)(1−µ)

1 + t1

∫ t1−ε

0
(t1 − s)λ−1m(s)ds sup

s∈[0,t1−ε]

∥∥Sλ(t2 − s)− Sλ(t1 − s)
∥∥
L(X)

,

I32 =
2L

Γ(λ)
t1
(1−λ)(1−µ)

1 + t1

∣∣∣ ∫ t1

0
(t1 − s)λ−1m(s)ds−

∫ t1−ε

0
(t1 − ε− s)λ−1m(s)ds

∣∣∣,
I33 =

2L
Γ(λ)

t1
(1−λ)(1−µ)

1 + t1

∫ t1−ε

0
((t1 − ε− s)λ−1 − (t1 − s)λ−1)m(s)ds.

By (H0) and Lemma 7, it is easy to see that I31 → 0 as t2 → t1. Similar to the proof
that I1, I2 tend to zero, we obtain I32 → 0 and I33 → 0 as ε → 0. Thus, I3 tends to zero as
t2 → t1. Clearly, I4 → 0 as t2 → t1.

For 0 < t1 < T < t2, if t2 → t1, then t2 → T and t1 → T. Thus, for u ∈ Ωr∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(t1)

1 + t1

∣∣∣
≤
∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(T)

1 + T

∣∣∣+ ∣∣∣ (Φ2u)(T)
1 + T

− (Φ2u)(t1)

1 + t1

∣∣∣→ 0, as t2 → t1.

Consequently, ∣∣∣ (Φ2u)(t2)

1 + t2
− (Φ2u)(t1)

1 + t1

∣∣∣→ 0, as t2 → t1.

Therefore,
{

v : v(t) = (Φ2u)(t)/(1 + t), u ∈ Ωr
}

is equicontinuous. Furthermore, V
is equicontinuous.

Lemma 10. Assume that (H1) and (H2) hold. Then, limt→∞ |(Φu)(t)|/(1 + t) = 0 uniformly
for u ∈ Ωr.

Proof. In fact, for any u ∈ Ωr, by (H2) and Lemma 6, we find

|(Φu)(t)|
1 + t

≤
∣∣∣ t(1−λ)(1−µ)

1 + t
Pµ,λ(t)y0

∣∣∣+ ∣∣∣ t(1−λ)(1−µ)

1 + t

∫ t

0
Qλ(t− s)g(s, y(s))ds

∣∣∣
≤ L|y0|

Γ(µ(1− λ) + λ)(1 + t)
+

L
Γ(λ)

t(1−λ)(1−µ)

1 + t

∫ t

0
(t− s)λ−1m(s)ds, t > 0.

(6)

By (H2), we derive

|(Φu)(t)|
1 + t

→ 0, as t→ ∞,
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which implies that limt→∞ |(Φu)(t)|/(1 + t) = 0 uniformly for u ∈ Ωr. This completes the
proof.

Lemma 11. Assume that (H1) and (H2) hold. Then ΦΩr ⊂ Ωr.

Proof. From Lemmas 9 and 10, we know that ΦΩr ⊂ C1([0, ∞), X). For t > 0 and any
u ∈ Ωr, by (4) and (6), we have

|(Φu)(t)|
1 + t

≤ L|y0|
Γ(µ(1− λ) + λ)

+
L

Γ(λ)
t(1−λ)(1−µ)

1 + t

∫ t

0
(t− s)λ−1m(s)ds ≤ r.

For t = 0, we find

|(Φu)(0)| = y0

Γ(µ(1− λ) + λ)
≤ Ly0

Γ(µ(1− λ) + λ)
≤ r.

Therefore, ΦΩr ⊂ Ωr.

Lemma 12. Suppose that (H1) and (H2) hold. Then Φ is continuous.

Proof. Indeed, let {un}∞
n=1 be a sequence in Ωr which is convergent to u ∈ Ωr. Conse-

quently,

lim
n→∞

un(t) = u(t), and lim
n→∞

t−(1−λ)(1−µ)un(t) = t−(1−λ)(1−µ)u(t), for t ∈ (0, ∞).

Let y(t) = t−(1−λ)(1−µ)u(t), yn(t) = t−(1−λ)(1−µ)un(t), t ∈ (0, ∞). Then y, yn ∈ Ω̃r. In
view of (H1), we have

lim
n→∞

g(t, yn(t)) = lim
n→∞

g(t, t−(1−λ)(1−µ)un(t)) = g(t, t−(1−λ)(1−µ)u(t)) = g(t, y(t)).

On the one hand, using (H2), we get for each t ∈ (0, ∞),

(t− s)λ−1|g(s, yn(s))− g(s, y(s))| ≤ 2(t− s)λ−1m(s), a.e. in [0, t).

On the other hand, the function s → 2(t − s)λ−1m(s) is integrable for s ∈ [0, t),
t ∈ [0, ∞). By Lebesgue dominated convergence theorem, we obtain∫ t

0
(t− s)λ−1|g(s, yn(s))− g(s, y(s))|ds→ 0, as n→ ∞.

Thus, for t ∈ [0, ∞),∣∣∣ (Φun)(t)
1 + t

− (Φu)(t)
1 + t

∣∣∣
≤ t(1−λ)(1−µ)

1 + t

∫ t

0
|Qλ(t− s)(g(s, yn(s))− g(s, y(s)))|ds

≤ L
Γ(λ)

t(1−λ)(1−µ)

1 + t

∫ t

0
(t− s)λ−1|g(s, yn(s))− g(s, y(s))|ds→ 0, as n→ ∞.

Therefore, ‖Φun−Φu‖ → 0 as n→ ∞. Hence, Φ is continuous. The proof is completed.

Theorem 1. Assume that Q(t)(t > 0) is compact. Furthermore suppose that (H1) and (H2) hold.
Then the Cauchy problem (1) has at least one mild solution.

Proof. Clearly, the problem (1) exists a mild solution y ∈ Ω̃r if and only if the operator Φ
has a fixed point u ∈ Ωr, where u(t) = t(1−λ)(1−µ)y(t). Hence, we only need to prove that
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the operator Φ has a fixed point in Ωr. From Lemmas 11 and 12, we know that ΦΩr ⊂ Ωr
and Φ is continuous. In order to prove that Φ is a completely continuous operator, we
need to prove that ΦΩr is a relatively compact set. In view of Lemmas 9 and 10, the set
V =

{
v : v(t) = (Φu)(t)/(1 + t), u ∈ Ωr

}
is equicontinuous on [0, h] for any h > 0,

and limt→∞ |(Φu)(t)|/(1 + t) = 0 uniformly for u ∈ Ωr. According to Lemma 8, we only
need to prove V(t) =

{
v(t) : v(t) = (Φu)(t)/(1 + t), u ∈ Ωr

}
is relatively compact in X

for t ∈ [0, ∞). Obviously, V(0) is relatively compact in X. We only consider the case t > 0.
For ∀ ε ∈ (0, t) and δ > 0, define Φε,δ on Ωr as follows:

(Φε,δu)(t) := t(1−λ)(1−µ)(Ψε,δy)(t)

=t(1−λ)(1−µ)

(
Pµ,λ(t)y0 +

∫ t−ε

0

∫ ∞

δ
λθ(t− s)λ−1Wλ(θ)Q((t− s)λθ)g(s, y(s))dθds

)
.

Thus,

(Φε,δu)(t)
1 + t

=
t(1−λ)(1−µ)

1 + t

(
Pµ,λ(t)y0

+ Q(ελδ)
∫ t−ε

0

∫ ∞

δ
λθ(t− s)λ−1Wλ(θ)Q((t− s)λθ − ελδ)g(s, y(s))dθds

)
.

By Lemma 4, we know that Pµ,λ(t) is compact because Q(t) is compact for t > 0.

Further, Q(ελδ) is compact, then the set { (Φε,δu)(t)
1+t , u ∈ Ωr} is relatively compact in X for

any ε ∈ (0, t) and for any δ > 0. Moreover, for every u ∈ Ωr, we find∣∣∣∣∣ (Φu)(t)
1 + t

− (Φε,δu)(t)
1 + t

∣∣∣∣∣
≤ t(1−λ)(1−µ)

1 + t

∣∣∣ ∫ t

0

∫ δ

0
λθ(t− s)λ−1Wλ(θ)Q((t− s)λθ)g(s, y(s))dθds

∣∣∣
+

t(1−λ)(1−µ)

1 + t

∣∣∣ ∫ t

t−ε

∫ ∞

δ
λθ(t− s)λ−1Wλ(θ)Q((t− s)λθ)g(s, y(s))dθds

∣∣∣
≤λLt(1−λ)(1−µ)

1 + t

∫ t

0
(t− s)λ−1m(s)ds

∫ δ

0
θWλ(θ)dθ

+
λLt(1−λ)(1−µ)

1 + t

∫ t

t−ε
(t− s)λ−1m(s)ds

∫ ∞

0
θWλ(θ)dθ

→ 0, as ε→ 0, δ→ 0.

Thus, V(t) is also a relatively compact set in X for t ∈ [0, ∞). Therefore, Schauder’s
fixed point theorem implies that Φ has at least a fixed point u∗ ∈ Ωr. Let y∗(t) =
t−(1−λ)(1−µ)u∗(t). Thus,

y∗(t) = Pµ,λ(t)y0 +
∫ t

0
Qλ(t− s)g(s, y∗(s))ds, t ∈ (0, ∞),

which implies that y∗ ∈ Ω̃r is a mild solution of (1). The proof is completed.

In the case that Q(t) is noncompact for t > 0, we need the following hypothesis:

(H3) there exists a constant K > 0 such that for any bounded set D ⊆ X,

β(g(t, D)) ≤ Kt(1−λ)(1−µ)β(D), for a.e. t ∈ [0, ∞),

where β is the Kuratowski’s measure of noncompactness.
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Theorem 2. Assume that (H0), (H1), (H2) and (H3) hold. Then the Cauchy problem (1) has at
least one mild solution.

Proof. Let u0(t) = t(1−λ)(1−µ)Pµ,λ(t)y0 for all t ∈ [0, ∞) and un+1 = Φun, n = 0, 1, 2, · · · .
By Lemma 11, Φun ∈ Ωr, for un ∈ Ωr, n = 0, 1, 2, · · · . Consider set V =

{
vn : vn(t) =

(Φun)(t)/(1 + t), un ∈ Ωr}∞
n=0, and we will prove set V is relatively compact.

In view of Lemmas 9 and 10, the set V is equicontinuous and limt→∞ |(Φun)(t)|/(1 +
t) = 0 uniformly for un ∈ Ωr. According to Lemma 8, we only need to prove V(t) ={

vn(t) : vn(t) = (Φun)(t)/(1 + t), un ∈ Ωr}∞
n=0 is relatively compact in X for t ∈ [0, ∞).

Let yn(t) = t−(1−λ)(1−µ)un(t), t ∈ (0, ∞), n = 0, 1, 2, · · · . By the condition (H3) and
Lemma 1, we have

β(V(t)) =β
({ (Φun)(t)

1 + t

}∞

n=0

)
=β
({ t(1−λ)(1−µ)

1 + t
Pµ,λ(t)y0 +

t(1−λ)(1−µ)

1 + t

∫ t

0
Qλ(t− s)g(s, yn(s))ds

}∞

n=0

)
=β
({ t(1−λ)(1−µ)

1 + t

∫ t

0
Qλ(t− s)g(s, yn(s))ds

}∞

n=0

)
≤ 2L

Γ(λ)
t(1−λ)(1−µ)

1 + t

∫ t

0
(t− s)λ−1β

(
g(s, {s−(1−λ)(1−µ)un(s)}∞

n=0)
)

ds

≤ 2LK
Γ(λ)

t(1−λ)(1−µ)

1 + t

∫ t

0
(t− s)λ−1s(1−λ)(1−µ)β

(
{s−(1−λ)(1−µ)un(s)}∞

n=0

)
ds

≤ 2LK
Γ(λ)

t(1−λ)(1−µ)

1 + t

∫ t

0
(t− s)λ−1(1 + s)β

({un(s)
1 + s

}∞

n=0

)
ds.

On the other hand, by the properties of measure of noncompactness, for any t ∈ [0, ∞)
we have

β
({un(t)

1 + t

}∞

n=0

)
= β

({u0(t)
1 + t

}
∪
{un(t)

1 + t

}∞

n=1

)
= β

({un(t)
1 + t

}∞

n=1

)
= β(V(t)).

Thus

β(V(t)) ≤ 2LKM∗

Γ(λ)

∫ t

0
(t− s)λ−1(1 + s)β(V(s))ds, (7)

where M∗ = maxt∈[0,∞)

{ t(1−λ)(1−µ)

1+t
}

. From (7), we know that

β(V(t)) ≤ 4LKM∗

Γ(λ)

∫ t

0
(t− s)λ−1β(V(s))ds,

or

β(V(t)) ≤ 4LKM∗

Γ(λ)

∫ t

0
(t− s)λ−1sβ(V(s))ds,

holds. Therefore, by the inequality in ([17] p. 188), we obtain that β(V(t)) = 0, then
V(t) is relatively compact. Consequently, it follows from Lemma 8 that set V is relatively
compact, i.e., there exists a convergent subsequence of {un}∞

n=0. With no confusion, let
limn→∞ un = u∗, u∗ ∈ Ωr.

Thus, by continuity of the operator Φ, we have

u∗ = lim
n→∞

un = lim
n→∞

Φun−1 = Φ
(

lim
n→∞

un−1

)
= Φu∗.

Let y∗(t) = t−(1−λ)(1−µ)u∗(t). Thus, y∗ ∈ Ω̃r is a mild solution of (1). The proof is
completed.

By Theorems 1 and 2, we have the following corollaries.
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Corollary 1. Assume that Q(t) is compact for t > 0 and (H1) holds. Furthermore suppose that

(H2)′ there exists a function m : (0, ∞)→ (0, ∞) and α ∈ (0, 1), M > 0 such that

Iλ
0+m(t) ∈ C((0, ∞), (0, ∞)), t(1−λ)(1−µ) Iλ

0+m(t) ≤ Mtα,

and
|g(t, y)| ≤ m(t), f or all y ∈ X, t ∈ (0, ∞).

Then the Cauchy problem (1) has at least one mild solution.

Corollary 2. Assume that (H0), (H1), (H2)′ and (H3) hold. Then the Cauchy problem (1) has at
least one mild solution.

Example 1. Let X = L2([0, π],R). Consider the following fractional partial differential equations
on infinite interval 

HDµ,λ
0+ y(t, z) = ∂2

zy(t, z) + t−η , z ∈ [0, π], t > 0,

y(t, 0) = y(t, π) = 0, t > 0

I(1−µ)(1−λ)
0+ y(0, z) = y0(z), z ∈ [0, π].

(8)

We define an operator A by Av = v′′ with the domain

D(A) = {v ∈ X : v, v′′ are absolutely continuous, v′′ ∈ X, v(0) = v(π) = 0}.

Then A generates a compact, analytic, self-adjoint semigroup {T(t)}t>0. Then problem (8)
can be rewritten as follows

HDµ,λ
0+ y(t) = Ay(t) + g1(t, y(t)), t > 0,

I(1−µ)(1−λ)
0+ y(0) = y0,

(9)

where g1(t, y) := t−η for η ∈ (λ, 1− µ + µλ) satisfies (H1), and |g1(t, y(t))| ≤ t−η , t ∈ (0, ∞).
Let m(t) = t−η , for t > 0. Then

Iλ
0+m(t) =

Γ(1− η)

Γ(1 + λ− η)
tλ−η , t(1−λ)(1−µ) Iλ

0+m(t) =
Γ(1− η)

Γ(1 + λ− η)
tα,

where α = 1− µ+λµ− η ∈ (0, 1). This means that the condition (H2)′ is satisfied. By Corollary 1,
the problem (8) has at least a mild solution.

4. Conclusions

In this paper, by using the generalized Ascoli–Arzelà theorem and some new tech-
niques, we investigated the existence of mild solutions for Hilfer fractional evolution
equations on infinite interval. We proved the existence theorems of mild solutions for both
the cases in which the semigroup is compact and noncompact. In particular, we do not
need to assume that the g(t, ·) satisfies the Lipschitz condition. The methods in this paper
can be applied to study infinite interval problems for non-autonomous evolution equations,
fractional evolution equations with instantaneous/non-instantaneous impulses, fractional
neutral functional evolution equations, and fractional stochastic evolution equations. We
recommend readers to refer to relevant papers [10,18,19].
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