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Abstract: In this paper, we present a systematic study concerning the developments of the oscillation
results for the fractional difference equations. Essential preliminaries on discrete fractional calculus are
stated prior to giving the main results. Oscillation results are presented in a subsequent order and for
different types of equations. The investigation was carried out within the delta and nabla operators.
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1. Introduction

Over many years, the process of describing natural or real-life phenomena has been
carried out using the integer-order differential equations. However, the factors involved
in the phenomena are very complicated and of different natures, all of which cannot be
incorporated by the ordinary differential equations. This gap in the construction of the
models is covered up by arbitrary-order calculus. Fractional calculus has its origin during
the same period of time as that of the classical calculus in the 17th Century. The insufficient
geometrical and unsatisfactory physical interpretation of the arbitrary-order derivatives has
slowed down the progress of the field. It was in the 20th Century with the development of
high-speed computers and computational techniques that researchers began to understand
the importance and the meaningful representation to construct and apply a certain type of
nonlocal operator to real-life problems. Now, fractional calculus has turned out to be a hot
topic in the fields of science and engineering. The rapid growth and inspiration of fractional
calculus have been greatly due to anticipation of the memory and hereditary features that
are incorporated in many phenomena by the so-called fractional differential operators [1–3].
As a result of this, the subject of fractional calculus and its widespread applications have
become of great interest for the relevant audience [4]. For the same justifications that led to
the investigation of the discrete analogue of integer-order differential operators, the discrete
analogue of fractional differential operators, which is called fractional difference operators,
has gained considerable attention, and thus, they have been significantly adopted due
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to their extensive applications in computations and simulations. The study of fractional
difference equations was led by the pioneering works of Agarwal, Atici, Eloe, Anastassiou,
Holm, Goodrich, and Peterson, who introduced a complete counterpart theory that adopts
all the essential preliminaries needed to set forth similar results relevant to the qualitative
theory of solutions for several types of fractional difference equations [5–11].

Every phenomenon in the world in one way or other is nonlinear in nature. Thus, the
better understanding of these phenomena can be obtained from models constructed via
nonlinear equations. The analytical solution of nonlinear equations is not always possible
to obtain as in the case of linear equations. However, approximate solutions can be obtained
for the nonlinear equations, which provide a better understanding of the behavior of the
equations. In the case of nonlinear equations, without actually solving the equations, one
can very well answer questions such as the existence of solutions, whether the system is
stable, whether it can be controlled, whether the system is chaotic, or whether it exhibits
periodicity. Thus, this direct method of analyzing the system behavior can be useful and
help engineers in their research. Scientists and researchers are very much interested in the
qualitative properties such as the oscillation, stability, controllability, bifurcation, chaos,
and so on.

Oscillation is one of the important branches in applied mathematics and can be
induced or destroyed by the introduction of nonlinearity, delay, or a stochastic term. The
oscillation of differential and difference equations contributes to many realistic applications,
such as torsional oscillations, the oscillation of heart beats, sinusoidal oscillation, voltage-
controlled neuron models, and harmonic oscillation with damping. Not only in physical
applications, oscillation theory is vital biologically in describing the synchrony in animal
and plant populations due to predation and competition. Such applications have attracted
the interest of many researchers who have developed systematic studies concerning the
oscillation and non-oscillation of solutions of integer-order differential and difference
equations; we refer the reader to the remarkable monographs [12,13]. With the explosion in
the theory of fractional calculus, the oscillation of fractional-order differential equations
has been under investigation in the last two decades. Grace et al. initiated this subject by
studying the oscillation of fractional differential equations in [14]. Progress in this regard
has continued, and several important results have been established; see for instance [15–18]
and the references cited therein. In alignment with this, fractional difference equations
have been the object of interested researchers in terms of the oscillation of their solutions.
Several results have been reported by many researchers about the oscillation of solutions
for different types of fractional difference equations.

The main aim of this work was to consolidate the recent developments in the field of
the oscillation theory of discrete fractional equations and provide an insight for researchers
about the future requisites in the field of the oscillations of discrete fractional calculus. The
investigation in this work focused on the results for both delta- and nabla-type fractional
difference equations.

2. Preliminaries

In this section, we review some notations, definitions, and well-known results of
discrete fractional calculus that are widely treated throughout the remaining part of this
paper. The terms and notations were adopted from different resources.

The empty sums and products were taken to be zero and one, respectively. Denote by
N the set of all natural numbers, R the set of all real numbers, and R+ the set of all positive
real numbers. Define by Na = {a, a + 1, a + 2, . . .} and Nb

a = {a, a + 1, a + 2, . . . , b} for any
a, b ∈ R such that b− a ∈ N1.

Definition 1 ([19,20]). The Euler gamma function is defined by:

Γ(z) =
∫ ∞

0
tz−1e−tdt, <(z) > 0.
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Using its reduction formula, the Euler gamma function can also be extended to the half-plane
<(z) ≤ 0 except for z ∈ {. . . ,−2,−1, 0}.

Definition 2 ([21]). The generalized falling function is defined by:

tr =
Γ(t + 1)

Γ(t− r + 1)
,

for those values of t and r such that the right-hand side of this equation makes sense. If t− r + 1 is a
nonpositive integer and t + 1 is not a nonpositive integer, then we use the convention that tr = 0.
The generalized rising function is defined by:

tr =
Γ(t + r)

Γ(t)
,

for those values of t and r so that the right-hand side of this equation is sensible. If t is a nonpositive
integer, but t + r is not a nonpositive integer, then we use the convention that tr = 0.

Definition 3 ([22]). Let u : Nb
a → R and N ∈ N1. The first-order forward (delta) and backward

(nabla) differences of u are defined by:(
∆u
)
(t) = u(t + 1)− u(t), t ∈ Nb−1

a ,(
∇u
)
(t) = u(t)− u(t− 1), t ∈ Nb

a+1,

respectively. The Nth-order delta and nabla differences of u are defined recursively by(
∆Nu

)
(t) =

(
∆
(
∆N−1u

))
(t), t ∈ Nb−N

a ,

and: (
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), t ∈ Nb

a+N ,

respectively.

Definition 4 ([21]). Let u : Na → R and ν > 0. Then, the νth-order delta fractional sum of u
based at a is defined by:

(
∆−ν

a u
)
(t) =

1
Γ(ν)

t−ν

∑
s=a

(t− s− 1)ν−1u(s), t ∈ Na+ν.

Definition 5 ([21]). Let u : Na+1 → R and ν > 0. Then, the νth-order nabla fractional sum of u
based at a is defined by:

(
∇−ν

a u
)
(t) =

1
Γ(ν)

t

∑
s=a+1

(t− s + 1)ν−1u(s), t ∈ Na.

Definition 6 ([21]). Let u : Na → R, ν > 0, and choose N ∈ N1 such that N − 1 < ν ≤ N. The
νth-order Riemann–Liouville delta fractional difference of u is defined by:(

∆ν
au
)
(t) =

(
∆N(∆−(N−ν)

a u
))

(t), t ∈ Na+N−ν.

Definition 7 ([21]). Let u : Na+1 → R, ν > 0, and choose N ∈ N1 such that N − 1 < ν ≤ N.
Then, the νth-order Riemann–Liouville nabla fractional difference of u is defined by:(

∇ν
au
)
(t) =

(
∇N(∇−(N−ν)

a u
))

(t), t ∈ Na+N .
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Definition 8 ([23]). Let u : Na → R, ν > 0, and ν /∈ N. Then, the νth-order Caputo delta
fractional difference of u is defined by:(

∆ν
a∗u
)
(t) =

(
∆−(N−ν)

a
(
∆Nu

))
(t), t ∈ Na+N−ν,

where N = [ν] + 1. If ν = N ∈ N, then:(
∆ν

a∗u
)
(t) =

(
∆Nu

)
(t), t ∈ Na.

Definition 9 ([24]). Let u : Na−N+1 → R and ν > 0. Then, the νth-order Caputo nabla fractional
difference of u is defined by:(

∇ν
a∗u
)
(t) =

(
∇−(N−ν)

a
(
∇Nu

))
(t), t ∈ Na+1,

where N = dνe.

3. Oscillation Results

The main results are given in this section. We carried out the presentation within delta
and nabla notations.

3.1. Oscillatory Behavior of Delta Fractional Difference Equations

Consider the following higher-order nonlinear delta fractional difference equations
involving the Riemann–Liouville and the Caputo operators of arbitrary order:

(
∆νu

)
(t) + f1(t, u(t + ν)) = r1(t) + f2(t, u(t + ν)), t ∈ Na,(

∆−(k−ν)u
)
(t)
∣∣∣
t=a

= uk ∈ R, k = 1, 2, · · · , N,
(1)

and: 
(
∆ν
∗u
)
(t) + f1(t, u(t + ν)) = r1(t) + f2(t, u(t + ν)), t > a ≥ 0,(

∆ku
)
(t)
∣∣∣
t=a

= ūk ∈ R, k = 0, 1, 2, · · · , N − 1.
(2)

Here, ν > 0, and choose N ∈ N1 such that N − 1 < ν ≤ N; f1, f2 : [a, ∞)×R → R and
r1 : [a, ∞)→ R are continuous. A solution u of (1) (or (2)) is said to be oscillatory if for every
natural number M, there exists t ≥ M such that u(t)u(t + 1) ≤ 0; otherwise, it is called
non-oscillatory. An equation is said to be oscillatory if all of its solutions are oscillatory.

Let p1, p2 : [a, ∞)→ R+ be continuous and β, γ be positive real numbers. We make
the following assumptions:

(A1) The functions fi satisfy the sign condition u fi(t, u) > 0, i = 1, 2, u 6= 0, t ≥ a;
(A2) | f1(t, u)| ≥ p1(t)|u|β and | f2(t, u)| ≤ p2(t)|u|γ, u 6= 0, t ≥ a;
(A3) | f1(t, u)| ≤ p1(t)|u|β and | f2(t, u)| ≥ p2(t)|u|γ, u 6= 0, t ≥ a.

In [25], Senem et al. established some oscillation theorems given in the sequel.

Theorem 1 ([25]). Let (A1)–(A2) be satisfied with β > γ. If:

lim inf
t→∞

t(1−ν)
t−ν

∑
s=T

(t− s− 1)(ν−1)[r1(s) + G(s)] = −∞,

and:

lim sup
t→∞

t(1−ν)
t−ν

∑
s=T

(t− s− 1)(ν−1)[r1(s)− G(s)] = ∞,
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for every sufficiently large T, where:

G(s) =
(

β

γ
− 1
)[

γp2(s)
β

] β
β−γ

p
γ

γ−β

1 (s),

then Equation (1) is oscillatory.

Theorem 2 ([25]). Let ν ≥ 1 and (A1)–(A3) be satisfied with β < γ. If

lim inf
t→∞

t(1−ν)
t−ν

∑
s=T

(t− s− 1)(ν−1)[r1(s)− G(s)] = −∞,

and:

lim sup
t→∞

t(1−ν)
t−ν

∑
s=T

(t− s− 1)(ν−1)[r1(s) + G(s)] = ∞,

for every sufficiently large T, where G is defined as in Theorem 1, then every bounded solution of
Equation (1) is oscillatory.

Theorem 3 ([25]). Let (A1) and (A2) be satisfied with β > γ. If:

lim inf
t→∞

t(1−N)
t−ν

∑
s=T

(t− s− 1)(ν−1)[r1(s) + G(s)] = −∞,

and:

lim sup
t→∞

t(1−N)
t−ν

∑
s=T

(t− s− 1)(ν−1)[r1(s)− G(s)] = ∞,

for every sufficiently large T, where G is defined as in Theorem 1, then Equation (2) is oscillatory.

Theorem 4 ([25]). Let ν ≥ 1 and (A1)–(A3) be satisfied with β < γ. If:

lim inf
t→∞

t(1−N)
t−ν

∑
s=T

(t− s− 1)(ν−1)[r1(s)− G(s)] = −∞,

and:

lim sup
t→∞

t(1−N)
t−ν

∑
s=T

(t− s− 1)(ν−1)[r1(s) + G(s)] = ∞,

for every sufficiently large T, where G is defined as in Theorem 1, then every bounded solution of
Equation (2) is oscillatory.

Following the work in [25], Li et al. [26] investigated the oscillation of forced delta
fractional difference equations with the damping term of the form:(1 + p3(t))

(
∆∆νu

)
(t) + p3(t)

(
∆νu

)
(t) + f3(t, u(t)) = g1(t), t ∈ N0,(

∆−(1−ν)u
)
(t)
∣∣∣
t=0

= u0 ∈ R,
(3)

where 0 < ν < 1; p3, g1 : N0 → R and f3 : N0 ×R→ R such that:

u f3(t, u) > 0, u 6= 0, t ∈ N0,

and p3(t) > −1 for t ∈ N0.
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Theorem 5 ([26]). For t0 ∈ N0, suppose that:

lim inf
t→∞

t−ν

∑
s=0

(t− s− 1)(ν−1)

V(s)

[
M +

s−1

∑
ξ=t0

g1(ξ)V(ξ)

]
< 0,

and:

lim sup
t→∞

t−ν

∑
s=0

(t− s− 1)(ν−1)

V(s)

[
M +

s−1

∑
ξ=t0

g1(ξ)V(ξ)

]
> 0,

where M is a constant and:

V(t) =
t−1

∏
s=t0

(1 + p3(s)).

Then, Equation (3) is oscillatory.

Theorem 6 ([26]). For t0 ∈ N0, suppose that:

lim inf
t→∞

t−1

∑
s=0

1
V(s)

[
M +

s−1

∑
ξ=t0

g1(ξ)V(ξ)

]
= −∞,

and:

lim sup
t→∞

t−1

∑
s=0

1
V(s)

[
M +

s−1

∑
ξ=t0

g1(ξ)V(ξ)

]
= ∞,

where M is a constant and V is defined as in Theorem 5. Then, Equation (3) is oscillatory.

In this line, Seçer et al. [27] investigated the oscillation of the following nonlinear delta
fractional difference equations:

∆
(

p4(t)
[
∆
(
q1(t)((∆νu)(t))γ1

)]γ2
)
+ q2(t) f4

(
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
= 0, (4)

for t ∈ Nt0+1−ν. Here, 0 < ν ≤ 1, γ1 and γ2 are the quotients of two odd positive numbers
such that γ1γ2 = 1, p4, q1 and q2 are positive sequences,

∞

∑
s=t0

(
1

p1/γ2
4 (s)

)
= ∞,

f4 : R→ R is continuous, and:

f4(u)
u
≥ k, k ∈ R+, u 6= 0.

Theorem 7 ([27]). If there exists a positive sequence φ such that:

lim sup
t→∞

t−1

∑
s=t2

[
kφ(s)q2(s)−

q1/γ1
1 (s)[(∆φ+)(s)]

2

4φ(s)Γ(1− ν)δ1/γ1
1 (s, t1)

]
= ∞,

then Equation (4) is oscillatory. Here:

δ1(t, ti) =
t−1

∑
s=ti

(
1

p1/γ2
4 (s)

)
, i = 0, 1, 2, 3,

and,
(∆φ+)(s) = max{(∆φ)(s), 0}.
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Theorem 8 ([27]). Let φ be a positive sequence. Furthermore, we assume that there exists a double
sequence such that:

H(t, t) = 0 for t ≥ 0, H(t, s) > 0 for t > s ≥ 0,

∆2H(t, s) = H(t, s + 1)− H(t, s) ≤ 0 for t > s ≥ 0.

If:

lim sup
t→∞

1
H(t, t0)

t−1

∑
s=t0

H(t, s)

[
kφ(s)q2(s)−

q1/γ1
1 (s)[(∆φ+)(s)]

2

4φ(s)Γ(1− ν)δ1/γ1
1 (s, t2)

]
= ∞.

Then, Equation (4) is oscillatory.

If we choose the double sequence:

H(t, s) = (t− s)λ, λ ≥ 1, t ≥ s ≥ 0,

we have the following corollary.

Corollary 1 ([27]). Under the conditions of Theorem 8 and:

lim sup
t→∞

1
(t− t0)λ

t−1

∑
s=t0

(t− s)λ

[
kφ(s)q2(s)−

q1/γ1
1 (s)[(∆φ+)(s)]

2

4φ(s)Γ(1− ν)δ1/γ1
1 (s, t2)

]
= ∞,

then Equation (4) is oscillatory.

In [28], Chatzarakis et al. studied the oscillatory behavior of the delta fractional
difference equation of the form:

∆
((

∆νu
)
(t)
)γ3 + q3(t) f5(u(t)) = 0, t ∈ Nt0+1−ν, (5)

where 0 < ν ≤ 1; γ3 > 0 is a quotient of odd positive integers; q3 is a positive sequence,
and f5 : R→ R is a continuous function such that:

f5(u)
un ≥ l, u 6= 0, l > 0, n ∈ N,

[
b

q3(t)

] 1
γ3 ≤ −m, t ≥ t0, b < 0, m > 0.

We also assume:

(∆u)(t)(
∆νu

)
(t + 1)

≥ M1,
(∆u)(t)(
∆νu

)
(t)
≥ M2, t ≥ t0,

for some positive constants M1, M2 and for all
(
∆νu

)
(t) 6= 0 and

(
∆νu

)
(t + 1) 6= 0, and:

[(∆u)(t)]2

u(t)u(t + 1)
≥ J1,

(
∆2u

)
(t) ≥ J2,

for some positive constants J1 and J2.

Theorem 9 ([28]). Assume:
∞

∑
s=t0

q
1

γ3
3 (s) = ∞.
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Furthermore, assume that there exists a positive sequence r̃ such that:

lim sup
t→∞

t−1

∑
s=t1

H(t, s)

[
lr̃(s)q3(s)−

[(∆r̃+)(s)]
2

4r̃(s + 1)Mγ3
1

]
= ∞,

where:
(∆r̃+)(s) = max{(∆r̃)(s), 0}.

Then, Equation (5) is oscillatory.

Theorem 10 ([28]). Assume:
∞

∑
s=t0

q
1

γ3
3 (s) = ∞.

Furthermore, assume that there exists a positive sequence r̃ and a double positive sequence
H̃(t, s) such that:

H̃(t, t) = 0 for t ≥ t0, H̃(t, s) > 0 for t > s ≥ t0,

∆2H̃(t, s) = H̃(t, s + 1)− H̃(t, s) ≤ 0 for t > s ≥ t0.

If:

lim sup
t→∞

1
H̃(t, t0)

t−1

∑
s=t0

[
r̃(s)q3(s)H̃(t, s)− h̃2(t, s)r̃(s + 1)

4lH̃(t, s)Mγ3
1

]
= ∞,

where:

h̃(t, s) = ∆2H̃(t, s) +
H̃(t, s)

(
∆r̃+

)
(s)

r̃(s + 1)
,

then Equation (5) is oscillatory.

Theorem 11 ([28]). Assume that there exists a positive sequence r̃ such that:

lim sup
t→∞

t−1

∑
s=t1

H(t, s)
[

lq3(s) +
(

J1

M2

)γ3

− J2

M2
− (∆r̃+)(s)

]
= ∞.

Then, Equation (5) is oscillatory.

Motivated by the above works, Adiguzel [29,30] considered the oscillation behavior of
the solutions of the following delta fractional difference equations:

∆
(
r2(t)

(
∆νu

)
(t)
)
+ q4(t) f6

(
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
= 0, t ∈ Nt0+1−ν, (6)

and:

∆
(
c1(t)∆

(
c2(t)

(
r2(t)

(
∆νu

)
(t)
)))

+ q4(t)

(
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
= 0, t ∈ Nt0+1−ν, (7)

where 0 < ν ≤ 1, r2, q4, c1, and c2 are positive sequences and f6 : R→ R is a continuous
function satisfying u f6(u) > 0 for u 6= 0.

Theorem 12 ([29]). Suppose that:
∞

∑
s=t0

q4(s) = ∞,

and:
lim inf

t→∞
f6(t) > 0.
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Then, Equation (6) is oscillatory.

Theorem 13 ([29]). Assume that:

∞

∑
s=t0

R(s)q4(s) = ∞,

where:

R(t) =
t−1

∑
s=t0

1
r2(s)

such that lim
t→∞

R(t) = ∞.

Then, every bounded solution of Equation (6) is oscillatory.

Theorem 14 ([30]). Assume that:

∞

∑
s=t0

1
c1(s)

=
∞

∑
s=t0

1
c2(s)

=
∞

∑
s=t0

1
r2(s)

= ∞, (8)

and there exists a positive sequence γ such that, for all sufficiently large t,

lim sup
t→∞

t−1

∑
s=t3

[
Γ(1− ν)γ(s)q4(s)

θ(s)φ(s + 1)

s−1

∑
τ=t2

θ(τ)

r2(τ)

s−1

∑
τ=t2

φ(τ)

c2(τ)
−

c1(s)
[(

∆γ+
)
(s)
]2

4γ(s)

]
= ∞.

If there exist positive sequences β, λ such that, for all sufficiently large t,

λ(t)
r2(t)∑t−1

s=t1
1

r2(s)

−
(
∆λ
)
(t) ≤ 0, (9)

and:

lim sup
t→∞

t−1

∑
ξ=t2

[
β(ξ)λ(ξ)

λ(ξ + 1)c2(ξ)

∞

∑
s=ξ

(
1

c1(s)

∞

∑
τ=s

q4(τ)

)
−

r2(ξ)
[(

∆β+
)
(ξ)
]2

4Γ(1− ν)β(ξ)

]
= ∞, (10)

then, Equation (7) is oscillatory. Here:

φ(t) =
t−1

∑
s=t1

1
c1(s)

, θ(t) =
t−1

∑
s=t2

φ(s)
c2(s)

, δ(t) =
t−1

∑
s=t3

θ(s)
r2(s)

.

Further, we have:(
∆γ+

)
(s) = max{0,

(
∆γ
)
(s)},

(
∆β+

)
(s) = max{0,

(
∆β
)
(s)}.

Theorem 15 ([30]). Let (8) hold. Assume that there exists a positive sequence γ such that, for all
sufficiently large t,

lim sup
t→∞

t−1

∑
s=t3

Γ(1− ν)γ(s)q4(s)
θ(s + 1)

s−1

∑
τ=t2

θ(τ)

r2(τ)
−

c2(s)θ(s + 1)
[(

∆γ+
)
(s)
]2

4γ(s)θ(s)∑s−1
τ=t0

1
c1(τ)

 = ∞. (11)

If there exist positive sequences β, λ such that (9) and (10) hold, then Equation (7) is oscillatory.
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Theorem 16. [30] Let (8) hold. Assume that there exists a positive sequence γ such that, for all
sufficiently large t,

lim sup
t→∞

t−1

∑
s=t2

 δ(s)γ(s)q4(s)
δ(s + 1)

−
r2(s)φ(s)

[(
∆γ+

)
(s)
]2

4γ(s)∑s−1
τ=t1

φ(τ)
c2(τ)

∑s−1
τ=t0

1
c1(τ)

 = ∞. (12)

If there exist positive sequences β, λ such that (9) and (10) hold, then Equation (7) is oscillatory.

Motivated by the idea in [27], Bai et al. [31] was concerned with the oscillation of a
class of nonlinear fractional difference equations with the damping term of the form:

∆
(
c3(t)[∆(r3(t)(∆νu)(t))]γ4

)
+ q5(t)[∆(r3(t)(∆νu)(t))]γ4

+ q6(t) f7

(
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
= 0, (13)

for t ∈ Nt0 , 0 < ν ≤ 1, γ4 ≥ 1 is a quotient of two odd positive numbers, r3, q5, q6, and c3
are positive sequences such that c3(t) > q5(t), and f7 : R→ R is a monotone decreasing
function satisfying:

u f7(u) > 0,
f7(u)
uγ4

≥ L > 0, u 6= 0.

Theorem 17 ([31]). Define:

x(t) =
t−1

∏
s=t0

c3(s)
c3(s)− q5(s)

.

Assume:
∞

∑
s=t0

1

(x(s)c3(s))
1

γ4

= ∞, (14)

∞

∑
s=t0

1
r3(s)

= ∞, (15)

and:
∞

∑
ξ=t0

1
r3(ξ)

∞

∑
τ=ξ

[
1

c3(τ)x(τ)

∞

∑
s=τ

x(s + 1)q6(s)

] 1
γ4

= ∞. (16)

If:

lim sup
t→∞

t−1

∑
s=T

[
Lx(s)q6(s)−

[(
∆x
)
(s)
]2

4x(s)x(s + 1)W(s)

]
= ∞,

where T is sufficiently large,

W(t) =
[

Γ(1− ν)δ2(t, t1)

r3(t)

]γ4

,

then Equation (13) is oscillatory or satisfies:

lim
t→∞

[
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

]
= 0.

Here:

δ2(t, t1) =
∞

∑
s=t1

1

(x(s)c3(s))
1

γ4

.
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Theorem 18 ([31]). Define x, W, and δ as in Theorem 17. Assume that (14)–(16) hold and there
exists a positive sequence H̃(t, s) such that:

H̃(t, t) = 0 for t ≥ t0, H̃(t, s) > 0 for t > s ≥ t0,

∆2H̃(t, s) = H̃(t, s + 1)− H̃(t, s) ≤ 0 for t > s ≥ t0.

If:

lim sup
t→∞

1
H̃(t, t0)

t−1

∑
s=t0

[
Lx(s)q6(s)H̃(t, s)− h2(t, s)x(s + 1)

4H̃(t, s)x(s)W(s)

]
= ∞,

where:

h(t, s) = ∆2H̃(t, s) +
H̃(t, s)

(
∆x
)
(s)

x(s + 1)
,

then Equation (13) is oscillatory or satisfies:

lim
t→∞

[
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

]
= 0.

In [32], Chatzarakis et al. studied the oscillatory behavior of the solutions of the delta
fractional difference equation of the form:

∆
(
r4(t)g2

((
∆νu

)
(t)
))

+ p4(t) f8

(
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
= 0, t ∈ Nt0+1−ν, (17)

where 0 < ν ≤ 1, r4, p4, are positive sequences; g2, f8 : R → R are continuous functions
with:

f8(u)
u
≥ k1,

u
g2(u)

≥ k2,

for some constants k1, k2 and for all u 6= 0. Further, we also assume that ug2(u) > 0 for
u 6= 0 and there exists a positive constant µ such that g2(u1u2) ≤ µu1g2(u2) for u1u2 6= 0.

Theorem 19 ([32]). Assume:
∞

∑
s=t1

g2

(
1

r4(s)

)
= ∞.

Furthermore, assume that there exists a positive sequence ψ such that:

lim sup
t→∞

t−1

∑
s=t1

[
k1ψ(s)p4(s)−

1
k2

R1(s)
]
= ∞,

where:

R1(s) =

[(
∆ψ+

)
(s)
]2r4(s + 1)

4ψ(s + 1)Γ(1− ν)
, (∆ψ+)(s) = max{(∆ψ)(s), 0}.

Then, Equation (17) is oscillatory.

Theorem 20 ([32]). Assume:
∞

∑
s=t1

g2

(
1

r4(s)

)
= ∞.

Furthermore, assume that there exists a positive sequence ψ and a double positive sequence
H̃(t, s) such that:

H̃(t, t) = 0 for t ≥ t0, H̃(t, s) > 0 for t > s ≥ t0,

∆2H̃(t, s) = H̃(t, s + 1)− H̃(t, s) ≤ 0 for t > s ≥ t0.
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If:

lim sup
t→∞

t−1

∑
s=t1

[
ψ(s)p4(s)H̃(t, s)− h̄2(t, s)ψ(s + 1)r4(s + 1)

4k1k2H̃(t, s)Γ(1− ν)

]
= ∞,

where:

h̄(t, s) = ∆2H̃(t, s) +
H̃(t, s)

(
∆ψ+

)
(s)

ψ(s + 1)
,

then Equation (17) is oscillatory.

Motivated by the above-mentioned works, Alzabut at al. [33] investigated the oscil-
latory behavior of the nonlinear fractional difference equation with the damping term of
the form:

∆
(
r5(t)

(
∆νu

)
(t)
)
+ p5(t)

(
∆νu

)
(t) + q7(t) f9

(
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
= 0, (18)

for t ∈ Nt0+1−ν. Here, 0 < ν ≤ 1, p5, q7 are nonnegative sequences such that 1− p5(t) > 0
for large t; f9 : R→ R is a continuous function, and there exists a constant k3 > 0 such that,

f9(u)
u
≥ k3,

for all u 6= 0. Further, we also assume that f9(u1)− f9(u2) = S(u1, u2)(u1 − u2) for all u1,
u2 6= 0, where S is a nonnegative function.

Theorem 21 ([33]). Let r5(t) ≡ 1 and:

∞

∑
t=t0

t−1

∏
s=t0

[1− p5(s)] = ∞.

If there exists a positive sequence φ1 such that:

lim sup
t→∞

t−1

∑
s=t1

[
k3q7(s)φ1(s)−

[(
∆φ1

)
(s)− p5(s)φ1(s)

]2
4Γ(1− ν)φ1(s)

]
= ∞,

then Equation (18) is oscillatory.

Theorem 22 ([33]). Assume that S(u1, u2) ≥ ξ > 0 for all u1, u2 6= 0. If there exists a positive
sequence φ2 such that:

∞

∑
s=t0

1
r5(s)φ2(s)

= ∞,
∞

∑
s=t0

q7(s)φ2(s + 1) = ∞, r5(t)
(
∆φ2

)
(t) ≥ p5(t)φ2(t + 1), t ≥ t0,

∞

∑
s=t0

φ2(s + 1)p2
5(s)

r5(s)
< ∞,

∞

∑
s=t0

r5(s)
[(

∆φ2
)
(s)
]2

φ2(s + 1)
< ∞,

then Equation (18) is oscillatory.

Theorem 23 ([33]). Let r5(t) ≡ 1 and:

∞

∑
t=t0

t−1

∏
s=t0

[1− p5(s)] = ∞.
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Furthermore, assume that there exists a positive sequence φ1 and a double positive sequence
H̃(t, s) such that:

H̃(t, t) = 0 for t ≥ t0, H̃(t, s) > 0 for t > s ≥ t0,

∆2H̃(t, s) = H̃(t, s + 1)− H̃(t, s) ≤ 0 for t > s ≥ t0.

If:

lim sup
t→∞

t−1

∑
s=t1

1
H̃(t, t0)

[
k3φ1(s)q7(s)H̃(t, s)−

ĥ2(t, s)φ2
1(s + 1)

4φ1(s)H̃(t, s)Γ(1− ν)

]
= ∞, (19)

where,

ĥ(t, s) = ∆2H̃(t, s) + H̃(t, s)

[(
∆φ1

)
(s)− p5(s)φ1(s)

]
φ1(s + 1)

,

then Equation (18) is oscillatory.

If we set φ1(t) = 1 for all t ≥ t0 and,

H(t, s) = (t− s)λ, λ ≥ 1, t ≥ s ≥ t0,

we have the following corollary.

Corollary 2 ([33]). If the condition (19) in Theorem 23 is replaced by:

lim sup
t→∞

t−1

∑
s=t1

1
(t− t0)λ

[
k3q7(s)(t− s)λ −

[
λ(t− s− 1)λ−1 + p5(s)(t− s)λ

]2
4(t− s)λΓ(1− ν)

]
= ∞,

then Equation (18) is oscillatory.

Selvam et al. [34,35] examined the new oscillation criteria for forced delta fractional
nonlinear difference equations of the form:

∆
(
r6(t)φ3(u(t))

(
∆νu

)
(t)
)
+ q8(t) f10

(
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
= g2(t), (20)

and:

∆
(
r6(t)

(
∆νu

)
(t)
)
+ p6(t)

(
∆νu

)
(t) + q8(t) f11

(
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
= 0, (21)

for t ≥ t0 > 0. Here, 0 < ν ≤ 1; p6, q8, g2 : [t0, ∞)→ R are continuous functions such that
p6(t) < 0, and q8(t) ≥ 0; r6 : [t0, ∞) → R+ is a continuously differentiable function such
that r6(t) ≤ λ1 for some λ1 > 0; 0 < φ3(u(t)) < m1 for some positive constant m1 and for
all u 6= 0:

f10

(
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
≥ 0 such that

f10

(
∑t−1+ν

s=t0
(t− s− 1)(−ν)u(s)

)
∑t−1+ν

s=t0
(t− s− 1)(−ν)u(s)

≥ k4,

for some positive constant k4 and,

t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s) 6= 0, t ≥ t0;
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f11 : R→ R is a continuous function with u f11(u) > 0 for u 6= 0, and there exists a constant
µ1 such that,

f11(u)
u
≥ µ1, u 6= 0.

Theorem 24 ([34]). Assume that for any L1 ≥ t0, there exists α1, β1, α2, β2 such that L1 ≤ α1 <
β1 ≤ α2 < β2 satisfying:

g2(t)

{
≤ 0, t ∈ [α1, β1],
≥ 0, t ∈ [α2, β2].

If there exists a positive function ρ ∈ Cν[[t0, ∞),R+] such that:

lim
t→∞

Γ(1− ν)

m1λ1

t−1

∑
s=t0

1
ρ(s)

= ∞,

and:

lim
t→∞

t−1

∑
s=t0

[
k4ρ(s)q8(s)−

(
∆2ρ

)
(s)m1λ1

4ρ(s)Γ(1− ν)

]
= ∞,

then Equation (20) is oscillatory.

Theorem 25 ([34]). Assume that for any L1 ≥ t0, there exists α1, β1, α2, β2 such that L1 ≤ α1 <
β1 ≤ α2 < β2 satisfying:

g2(t)

{
≤ 0, t ∈ [α1, β1],
≥ 0, t ∈ [α2, β2].

If there exists a positive function ρ ∈ Cν[[t0, ∞),R+] and a double positive sequence H̃(t, s)
such that:

H̃(t, t) = 0 for t ≥ t0, H̃(t, s) > 0 for t > s ≥ t0,

∆2H̃(t, s) = H̃(t, s + 1)− H̃(t, s) ≤ 0 for t > s ≥ t0.

If:

lim sup
t→∞

t−1

∑
s=t0

1
H̃(t, t0)

[
k4ρ(s)q8(s)H̃(t, s)−

h2
2(t, s)ρ(s)m1λ1

4H̃(t, s)Γ(1− ν)

]
= ∞,

where,

h2(t, s) = ∆2H̃(t, s) + H̃(t, s)

(
∆ρ
)
(s)

ρ(s)
,

then Equation (20) is oscillatory.

Theorem 26 ([35]). Assume there exists a positive function ρ1(t), t ≥ t0, such that:

lim
t→∞

(
Γ(1− ν)

λ1

) 1
2 t−1

∑
s=t0

1
ρ1(s)

= ∞,

and:

lim
t→∞

{( 1
16Γ(1− ν)λ1

) 1
2 t−1

∑
s=t0

[ p2
6(s)ρ1(s)

λ1
+

λ1
(
∆2ρ1

)
(s)

ρ1(s)

− 2p6(s)
(
∆ρ1

)
(s)− 4µ1Γ(1− ν)ρ1(s)q8(s)

]
+

(
1

4Γ(1− ν)

) 1
2 (

∆ρ1
)
(s)
}
= ∞.

Then, Equation (21) is oscillatory.
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Theorem 27 ([35]). Assume there exists a positive function ρ1(t), t ≥ t0, and a double positive
sequence H̃(t, s) such that:

H̃(t, t) = 0 for t ≥ t0, H̃(t, s) > 0 for t > s ≥ t0,

∆2H̃(t, s) = H̃(t, s + 1)− H̃(t, s) ≤ 0 for t > s ≥ t0.

If:

lim sup
t→∞

t−1

∑
s=t0

1
H̃(t, t0)

[
µ1ρ1(s)q8(s)H̃(t, s)−

h2
3(t, s)ρ1(s)λ1

4H̃(t, s)Γ(1− ν)

]
= ∞,

where,

h3(t, s) = ∆2H̃(t, s) + H̃(t, s)

[(
∆ρ1

)
(s)

ρ(s)
− p6(s)

λ1

]
,

then Equation (21) is oscillatory.

Chatzarakis et al. [36] examined the oscillatory behavior for a class of nonlinear delta
fractional difference equations with the damping term of the form:

∆
(
c4(t)[∆(r7(t)g3((∆νu)(t)))]γ5

)
+ q9(t)[∆(r7(t)g3((∆νu)(t)))]γ5

+ f12

(
t,

t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

)
= 0, t ∈ Nt0 , (22)

where 0 < ν ≤ 1; c4, r7, q9 : [t0, ∞) → R+ are continuous sequences with c4(t) >
q9(t); γ5 ≥ 1 is a quotient of two odd positive integers; for the continuous function
f12 : [t0, ∞)×R→ R, there exists a continuously differentiable function q10 : [t0, ∞)→ R+

such that,
f12

(
t, ∑t−1+ν

s=t0
(t− s− 1)(−ν)u(s)

)
[
∑t−1+ν

s=t0
(t− s− 1)(−ν)u(s)

]γ5
≥ q10(t),

for:
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s) 6= 0, u 6= 0, t ≥ t0.

Furthermore, g3 is an increasing function, for which there exists a constant l1 such
that,

u
g3(u)

≥ l1 > 0, ug3(u) 6= 0.

g−1
3 : R→ R is a continuous function with:

ug−1
3 (u) > 0, u 6= 0,

and for that function, there exists a positive constant l2 such that,

g−1(u1u2) ≤ l2u1g−1
3 (u2), u1u2 6= 0.

Theorem 28 ([36]). Define:

y(t) =
t−1

∏
s=t0

c4(s)
c4(s)− q9(s)

.

Assume that u is an eventually positive solution of Equation (22) and:

lim
t→∞

t−1

∑
s=t0

1

(y(s)c4(s))
1

γ5

= ∞, (23)
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lim
t→∞

t−1

∑
s=t0

g−1
3

(
1

r7(s)

)
= ∞, (24)

and:

lim
t→∞

t−1

∑
ξ=t0

g−1
3

 1
r7(ξ)

∞

∑
τ=ξ

[
1

c4(τ)y(τ)

∞

∑
s=τ

y(s + 1)q10(s)

] 1
γ5

 = ∞, (25)

then there exists a sufficiently large T ∈ Nt0 such that,

[∆(r7(t)g3((∆νu)(t)))] > 0, t ∈ [T, ∞),

and one of the following two conditions holds: (i) (∆νu)(t) > 0 on [T, ∞) or (ii) (∆νu)(t) < 0 on
[T, ∞) and,

lim
t→∞

[
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

]
= 0.

Theorem 29 ([36]). Assume that u is an eventually positive solution of Equation (22) such that,

[∆(r7(t)g3((∆νu)(t)))] > 0, (∆νu)(t) > 0, t ∈ [t1, ∞),

where t1 is sufficiently large and t1 ≥ t0. Then:

∆

[
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

]

≥ l1Γ(1− ν)(y(t)c4(t))
1

γ5 [∆(r7(t)g3((∆νu)(t)))]
r7(t)

t−1

∑
s=t1

1

(y(s)c4(s))
1

γ5

.

Theorem 30 ([36]). Assume that (23)–(25) hold. If:

lim sup
t→∞

t−1

∑
s=t2

[
q10(s)−

q2
9(s)

4c2
4(s)R2(s)y(s)

]
= ∞,

where t2 is sufficiently large,

R2(t) =

 l1Γ(1− ν)

r7(t)

t−1

∑
s=t1

1

(y(s)c4(s))
1

γ5

γ5

,

then Equation (22) is oscillatory or satisfies:

lim
t→∞

[
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

]
= 0.

Theorem 31 ([36]). Assume that (23)–(25) hold. If:

lim sup
t→∞

t−1

∑
s=t2

[
q10(s)y(s)−

[
(
∆y
)
(s)]2

4R2(s)y(s)y(s + 1)

]
= ∞,

where t2 is sufficiently large, then Equation (22) is oscillatory or satisfies:

lim
t→∞

[
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

]
= 0.
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Theorem 32 ([36]). Assume that (23)–(25) hold. Furthermore, we assume that there exists a
double sequence such that:

H(t, t) = 0 for t ≥ 0, H(t, s) > 0 for t > s ≥ 0,

∆2H(t, s) = H(t, s + 1)− H(t, s) ≤ 0 for t > s ≥ 0.

If:

lim sup
t→∞

1
H(t, t0)

t−1

∑
s=t0

[
H(t, s)q10(s)−

h2
4(t, s)

4H(t, s)R2(s)y(s)

]
= ∞,

where,

h4(t, s) = ∆2H(t, s)− H(t, s)
q9(s)
c4(s)

,

then Equation (22) is oscillatory or satisfies:

lim
t→∞

[
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

]
= 0.

Theorem 33 ([36]). Assume that (23)–(25) hold. Furthermore, we assume that there exists a
double sequence such that:

H(t, t) = 0 for t ≥ 0, H(t, s) > 0 for t > s ≥ 0,

∆2H(t, s) = H(t, s + 1)− H(t, s) ≤ 0 for t > s ≥ 0.

If:

lim sup
t→∞

1
H(t, t0)

t−1

∑
s=t0

[
H(t, s)q10(s)y(s)−

h2
5(t, s)

4H(t, s)R2(s)

]
= ∞,

where,

h5(t, s) = ∆2H(t, s) + H(t, s)

(
∆y
)
(s)

y(s + 1)
,

then Equation (22) is oscillatory or satisfies:

lim
t→∞

[
t−1+ν

∑
s=t0

(t− s− 1)(−ν)u(s)

]
= 0.

Grace et al. [37] investigated the non-oscillatory solutions of the delta fractional
difference equations of the following form:{(

∆ν
∗v
)
(t) = e(t + ν) + f (t + ν, u(t + ν)), t ∈ N1−ν,

v(0) = c0,
(26)

where 0 < ν ≤ 1; f : N1 ×R→ R is continuous and satisfies u f (t, u) > 0 for u 6= 0, and e
is a positive sequence. Grace at al. carried out the investigation for the following particular
cases of (26):

v(t) = ∆
(

r(t)
∣∣(∆u

)
(t)
∣∣δ−1(∆u

)
(t)
)

, δ ≥ 1, (27)

v(t) =
(
∆u
)
(t), (28)

v(t) = u(t). (29)

where r is a positive sequence.
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Theorem 34 ([37]). Consider (26) with (27). Assume that the function f satisfies:

u f (t, u) ≤ t(γ−1)h(t)|u|β+1, u 6= 0,

for some function h : (t1, ∞) → R+ and real numbers γ > 0 and 0 < β < δ. For the sake of
simplification, define:

R(t) =
t−1

∑
s=1

r−1/δ(s),

and,

g1(t) =
t−ν

∑
s=t1−ν

(t− s− 1)(ν−1)(s + ν)(γ−1)mβ/(β−δ)(s + ν)hδ/(δ−β)(s + ν),

where t1 ∈ N1 and m is a positive sequence. Let q be a conjugate number of p > 1, p(ν− 1)+ 1 > 0,
and γ = 2− ν− 1

p . Suppose that for any positive integer t1, we have:

∞

∑
s=t1−ν

(s + ν)qRqδ(s + ν)mq(s + ν) < ∞, lim sup
t→∞

1
t

t−1

∑
s=t1

g1(s) < ∞,

lim inf
t→∞

1
t

t−1

∑
τ=t1

τ−ν

∑
s=1−ν

(τ − s− 1)(ν−1)e(s + ν) > −∞,

lim sup
t→∞

1
t

t−1

∑
τ=t1

τ−ν

∑
s=1−ν

(τ − s− 1)(ν−1)e(s + ν) < ∞.

Then, every non-oscillatory solution u satisfies:

|u(t)| = O
(

t1/δR(t)
)

, t→ ∞.

Theorem 35 ([37]). Consider (26) with (28). Assume that the function f satisfies:

u f (t, u) ≤ t(γ−1)h(t)|u|λ+1, u 6= 0,

for some function h : (t1, ∞) → R+ and real numbers γ > 0 and 0 < λ < 1. For the sake of
simplification, define:

g2(t) =
t−ν

∑
s=t1−ν

(t− s− 1)(ν−1)(s + ν)(γ−1)mλ/(λ−1)(s + ν)h1/(1−λ)(s + ν),

where t1 ∈ N1 and m is a positive sequence. Let q be a conjugate number of p > 1, p(ν− 1)+ 1 > 0,
and γ = 2− ν− 1

p . Suppose that for any positive integer t1, we have:

∞

∑
s=t1−ν

(s + ν)qmq(s + ν) < ∞, lim sup
t→∞

g2(t) < ∞,

lim inf
t→∞

t−ν

∑
s=1−ν

(t− s− 1)(ν−1)e(s + ν) > −∞, lim sup
t→∞

t−ν

∑
s=1−ν

(t− s− 1)(ν−1)e(s + ν) < ∞.

Then, every non-oscillatory solution u satisfies:

|u(t)| = O(t), t→ ∞.
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Theorem 36 ([37]). Consider (26) with (29). Let q be a conjugate number of p > 1, p(ν− 1)+ 1 >
0 and γ = 2− ν− 1

p . Suppose that for any positive integer t1, we have:

∞

∑
s=t1−ν

mq(s + ν) < ∞, lim sup
t→∞

g2(t) < ∞,

lim inf
t→∞

t−ν

∑
s=1−ν

(t− s− 1)(ν−1)e(s + ν) > −∞, lim sup
t→∞

t−ν

∑
s=1−ν

(t− s− 1)(ν−1)e(s + ν) < ∞.

Then, every non-oscillatory solution u is bounded.

3.2. Oscillatory Behavior of Nabla Fractional Difference Equations

Let ν > 0, and choose N ∈ N1 such that N − 1 < ν < N. Take p, qi, r : Na+N−1 → R,
i = 1, 2, · · · n; f1, f2 : Na+N−1 ×R→ R; f : R→ R; p1, p2 : Na+N−1 → R+; w, h : Na → R;
q, g : Na+1 → R; x, z : N1 → R; w2 : N1 → R+; y is a positive function defined on N1;
β, γ are positive real numbers; λi (1 ≤ i ≤ n) are the ratios of odd positive integers with
λ1 > · · · > λl > 1 > λl+1 > · · · > λn.

We make the following assumptions:

(H1). The functions fi satisfy the sign condition u fi(t, u) > 0, i = 1, 2, u 6= 0, t ∈ Na+N−1;

(H2). | f1(t, u(t)| ≥ p1(t)|u|β and | f2(t, u(t)| ≤ p2(t)|u|γ, u 6= 0, t ∈ Na+N−1;

(H3). | f1(t, u(t)| ≤ p1(t)|u|β and | f2(t, u(t)| ≥ p2(t)|u|γ, u 6= 0, t ∈ Na+N−1;

(H4). f (t)
t > 0 for all t 6= 0 and x(t) < 1 for all t ∈ N1;

(H5). u f (u) > 0 for u 6= 0 and q(t) ≥ 0 for all t ∈ Na+1;

(H6). u f (u) > 0 for u 6= 0 and w(t) ≥ 0 for all t ∈ Na.

Alzabut et al. [38] initiated the study of the oscillation of solutions of nabla fractional
difference equations. In [38], the authors established several oscillation criteria for the
following nonlinear nabla fractional difference equations involving the Riemann–Liouville
and Caputo operators of arbitrary order.

(
∇ν

a+N−2u
)
(t) + f1(t, u(t)) = r(t) + f2(t, u(t)), t ∈ Na+N−1,(

∇−(1−ν)
a+N−2u

)
(t)
∣∣∣
t=a+N−1

= u(a + N − 1) = c, c ∈ R,
(30)

and: {(
∇ν

a+N−1∗u
)
(t) + f1(t, u(t)) = r(t) + f2(t, u(t)), t ∈ Na+N−1,(

∇ku(a + N − 1) = bk, bk ∈ R, k = 0, 1, 2, · · · , N − 1.
(31)

A solution u of (30) (or (31)) is said to be oscillatory if for every natural number M,
there exists t ≥ M such that u(t)u(t + 1) ≤ 0; otherwise, it is called non-oscillatory. An
equation is said to be oscillatory if all of its solutions are oscillatory.

Theorem 37 ([38]). Let f2 = 0 and Condition (H1) hold. If:

lim inf
t→∞

t1−ν
t

∑
s=a+N−1

(t− s + 1)ν−1r(s) = −∞,
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and:

lim sup
t→∞

t1−ν
t

∑
s=a+N−1

(t− s + 1)ν−1r(s) = ∞,

then Equation (30) is oscillatory.

Theorem 38 ([38]). Let Conditions (H1) and (H2) hold with β > 1 and γ = 1. If:

lim inf
t→∞

t1−ν
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hβ(s)
]
= −∞,

and:

lim sup
t→∞

t1−ν
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hβ(s)
]
= ∞,

where,

Hβ(s) = (β− 1)β
β

1−β p
1

1−β

1 (s)p
β

β−1
2 (s),

then Equation (30) is oscillatory.

Theorem 39 ([38]). Let Conditions (H1) and (H2) hold with β = 1 and γ < 1. If:

lim inf
t→∞

t1−ν
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hγ(s)] = −∞,

and:

lim sup
t→∞

t1−ν
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hγ(s)] = ∞,

where,

Hγ(s) = (1− γ)γ
γ

1−γ p
γ

γ−1
1 (s)p

1
1−γ

2 (s),

then Equation (30) is oscillatory.

Theorem 40 ([38]). Let Conditions (H1) and (H2) hold with β > 1 and γ < 1. If:

lim inf
t→∞

t1−ν
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hβ,γ(s)
]
= −∞,

and:

lim sup
t→∞

t1−ν
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hβ,γ(s)
]
= ∞,

where,

Hβ,γ(s) = (β− 1)β
β

1−β p
1

1−β

1 (s)ξ
β

β−1 (s) + (1− γ)γ
γ

1−γ ξ
γ

γ−1 (s)p
1

1−γ

2 (s),

with ξ : Na+N−1 → R+, then Equation (30) is oscillatory.

Theorem 41 ([38]). Let f2 = 0 and Condition (H1) hold. If:

lim inf
t→∞

t1−N
t

∑
s=a+N−1

(t− s + 1)ν−1r(s) = −∞,

and:

lim sup
t→∞

t1−N
t

∑
s=a+N−1

(t− s + 1)ν−1r(s) = ∞,
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then Equation (31) is oscillatory.

Theorem 42 ([38]). Let Conditions (H1) and (H2) hold with β > 1 and γ = 1. If:

lim inf
t→∞

t1−N
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hβ(s)
]
= −∞,

and:

lim sup
t→∞

t1−N
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hβ(s)
]
= ∞,

where,

Hβ(s) = (β− 1)β
β

1−β p
1

1−β

1 (s)p
β

β−1
2 (s),

then Equation (31) is oscillatory.

Theorem 43 ([38]). Let Conditions (H1) and (H2) hold with β = 1 and γ < 1. If:

lim inf
t→∞

t1−N
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hγ(s)] = −∞,

and:

lim sup
t→∞

t1−N
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hγ(s)] = ∞,

where,

Hγ(s) = (1− γ)γ
γ

1−γ p
γ

γ−1
1 (s)p

1
1−γ

2 (s),

then Equation (31) is oscillatory.

Theorem 44 ([38]). Let Conditions (H1) and (H2) hold with β > 1 and γ < 1. If:

lim inf
t→∞

t1−N
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hβ,γ(s)
]
= −∞,

and:

lim sup
t→∞

t1−N
t

∑
s=a+N−1

(t− s + 1)ν−1[r(s) + Hβ,γ(s)
]
= ∞,

where,

Hβ,γ(s) = (β− 1)β
β

1−β p
1

1−β

1 (s)ξ
β

β−1 (s) + (1− γ)γ
γ

1−γ ξ
γ

γ−1 (s)p
1

1−γ

2 (s),

with ξ : Na+N−1 → R+, then Equation (31) is oscillatory.

Following the work in [38], Abdalla et al. [39] established new oscillation criteria
for (30) and (31) using the fractional Volterra sum equations and Young’s inequalities. The
authors in [39] observed that the cases β > γ > 1 and γ > β > 1 were not considered
for (30) in [38]. The purpose of the paper [39] was to cover this gap and establish new
oscillation criteria that improve the results in [38].

Theorem 45 ([39]). Let Condition (H2) hold with β > γ > 0. If:

lim inf
t→∞

t1−ν
t

∑
s=T+1

(t− s + 1)ν−1[r(s) + H(s)] = −∞,
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and:

lim sup
t→∞

t1−ν
t

∑
s=T+1

(t− s + 1)ν−1[r(s)− H(s)] = ∞,

for sufficiently large T, where,

H(s) =
(

β

γ
− 1
)[

γp2(s)
β

] β
β−γ

p
γ

γ−β

1 (s),

then Equation (30) is oscillatory.

Theorem 46 ([39]). Let ν ≥ 1 and Condition (H3) hold with γ > β > 0. If:

lim inf
t→∞

t1−ν
t

∑
s=T+1

(t− s + 1)ν−1[r(s)− H(s)] = −∞,

and:

lim sup
t→∞

t1−ν
t

∑
s=T+1

(t− s + 1)ν−1[r(s) + H(s)] = ∞,

for sufficiently large T, where H is defined in Theorem 45, then every bounded solution of Equa-
tion (30) is oscillatory.

Theorem 47 ([39]). Let Condition (H2) hold with β > γ > 0. If:

lim inf
t→∞

t1−N
t

∑
s=T+1

(t− s + 1)ν−1[r(s) + H(s)] = −∞,

and:

lim sup
t→∞

t1−N
t

∑
s=T+1

(t− s + 1)ν−1[r(s)− H(s)] = ∞,

for sufficiently large T, where H is defined in Theorem 45, then Equation (31) is oscillatory.

Theorem 48 ([39]). Let ν ≥ 1 and Condition (H3) hold with γ > β > 0. If:

lim inf
t→∞

t1−N
t

∑
s=T+1

(t− s + 1)ν−1[r(s)− H(s)] = −∞,

and:

lim sup
t→∞

t1−N
t

∑
s=T+1

(t− s + 1)ν−1[r(s) + H(s)] = ∞,

for sufficiently large T, where H is defined in Theorem 45, then every bounded solution of Equa-
tion (31) is oscillatory.

In alignment with the above works, Abdalla et al. [40] investigated the oscillation of
solutions for nabla fractional difference equations with mixed nonlinearities of the forms:


(
∇ν

a+N−2u
)
(t)− p(t)u(t) + ∑n

i=1 qi(t)|u(t)|λi−1 = r(t), t ∈ Na+N ,(
∇−(N−ν)

a+N−2 u
)
(t)
∣∣∣
t=a+N−1

= u(a + N − 1) = c, c ∈ R,
(32)

and:
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{(
∇ν

a+N−1∗u
)
(t)− p(t)u(t) + ∑n

i=1 qi(t)|u(t)|λi−1 = r(t), t ∈ Na+N−1,(
∇ku(a + N − 1) = bk, bk ∈ R, k = 0, 1, 2, · · · , N − 1.

(33)

Theorem 49 ([40]). Let:

p(t) > 0 and qi(t)

{
≥ 0, 1 ≤ i ≤ l;
≤ 0, l + 1 ≤ i ≤ n.

(34)

If for some constant K > 0, we have:

lim inf
t→∞

t1−ν
t

∑
s=a+N

(t− s + 1)ν−1

[
r(s) + K

n

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

]
= −∞, (35)

and:

lim sup
t→∞

t1−ν
t

∑
s=a+N

(t− s + 1)ν−1

[
r(s) + K

n

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

]
= ∞, (36)

then Equation (32) is oscillatory.

Corollary 3 ([40]). Let l = n in (32), then λ1 > λ2 > · · · λn > 1. Suppose p(t) > 0, qi(t) ≥ 0,
i = 1, 2, · · · n. If (35) and (36) hold for some constant K1 > 0, then Equation (32) is oscillatory.

Corollary 4 ([40]). Let l = 0 in (32), then 1 > λ1 > λ2 > · · · λn. Suppose p(t) < 0, qi(t) ≤ 0,
i = 1, 2, · · · n. If (35) and (36) hold for some constant K2 > 0, then Equation (32) is oscillatory.

Corollary 5 ([40]). Let:

p(t) ≡ 0 and qi(t)

{
≥ 0, 1 ≤ i ≤ l;
≤ 0, l + 1 ≤ i ≤ n.

(37)

If there exists a positive function v on Na+N−1 such that for some constant K3 > 0, we have:

lim inf
t→∞

t1−ν
t

∑
s=a+N

(t− s + 1)ν−1

[
r(s) + K

n

∑
i=1

v
λi

λi−1 (s)|qi(s)|
1

1−λi

]
= −∞,

and:

lim sup
t→∞

t1−ν
t

∑
s=a+N

(t− s + 1)ν−1

[
r(s) + K

n

∑
i=1

v
λi

λi−1 (s)|qi(s)|
1

1−λi

]
= ∞,

then Equation (32) is oscillatory.

Theorem 50 ([40]). Assume that Condition (34) holds. If:

lim inf
t→∞

t1−N
t

∑
s=a+N

(t− s + 1)ν−1

[
r(s) + K

n

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

]
= −∞, (38)

and:

lim sup
t→∞

t1−N
t

∑
s=a+N

(t− s + 1)ν−1

[
r(s) + K

n

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

]
= ∞, (39)

for some constant K > 0, then Equation (33) is oscillatory.

Corollary 6 ([40]). Suppose p(t) > 0, qi(t) ≥ 0, i = 1, 2, · · · n. If (38) and (39) hold for some
constant K1 > 0, then Equation (33) is oscillatory.
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Corollary 7 ([40]). Suppose p(t) < 0, qi(t) ≤ 0, i = 1, 2, · · · n. If (38) and (39) hold for some
constant K2 > 0, then Equation (33) is oscillatory.

Corollary 8 ([40]). Let (37) hold. If there exists a positive function v on Na+N−1 such that for
some constant K3 > 0, we have:

lim inf
t→∞

t1−N
t

∑
s=a+N

(t− s + 1)ν−1

[
r(s) + K

n

∑
i=1

v
λi

λi−1 (s)|qi(s)|
1

1−λi

]
= −∞,

and:

lim sup
t→∞

t1−N
t

∑
s=a+N

(t− s + 1)ν−1

[
r(s) + K

n

∑
i=1

v
λi

λi−1 (s)|qi(s)|
1

1−λi

]
= ∞,

then Equation (32) is oscillatory.

Following the above trend, in [41], Alzabut et al. considered the following forced and
damped nabla fractional difference equation:(1− x(t))

(
∇∇ν

0u
)
(t) + x(t)

(
∇ν

0u
)
(t) + w2(t) f (u(t)) = z(t), t ∈ N1,(

∇−(1−ν)
0 u

)
(t)
∣∣∣
t=1

= u(1) = c, c ∈ R,
(40)

where 0 < ν < 1, and established sufficient conditions for the oscillation of the solutions of
Equation (40).

Theorem 51 ([41]). Let Assumption (H5) and the following conditions hold:

lim inf
t→∞

t

∑
s=1

(t− s + 1)ν−1

P(s)

[
A +

s

∑
τ=t0+1

z(τ)P(τ)

]
< 0,

and:

lim sup
t→∞

t

∑
s=1

(t− s + 1)ν−1

P(s)

[
A +

s

∑
τ=t0+1

z(τ)P(τ)

]
> 0,

where A is a constant and,

P(t) =
t

∏
s=t0

(
1

1− x(s)

)
, t0 ∈ N1.

Then, Equation (40) is oscillatory.

Theorem 52 ([41]). Let Assumption (H5) and the following conditions hold:

lim inf
t→∞

t

∑
s=1

1
P(s)

[
A +

s

∑
τ=t0+1

z(τ)P(τ)

]
= −∞,

and:

lim sup
t→∞

t

∑
s=1

(t− s + 1)ν−1

P(s)

[
A +

s

∑
τ=t0+1

z(τ)P(τ)

]
= ∞,

where A is a constant and,

P(t) =
t

∏
s=t0

(
1

1− x(s)

)
, t0 ∈ N1.

Then, Equation (40) is oscillatory.
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Motivated by the paper [38], the authors [42] investigated the oscillation of a nonlinear
fractional nabla difference system of the form:

(
∇ν

au
)
(t) + q(t) f (u(t)) = g(t), t ∈ Na+1,(

∇−(1−ν)
a u

)
(t)
∣∣∣
t=a

= u(a) = c, c ∈ R,
(41)

where 0 < ν < 1, and obtained some sufficient conditions for oscillation.

Theorem 53 ([42]). Let Condition (H5) hold. If:

lim inf
t→∞

(t− a)1−ν
t

∑
s=a+1

(t− s + 1)ν−1g(s) = −∞,

and:

lim sup
t→∞

(t− a)1−ν
t

∑
s=a+1

(t− s + 1)ν−1g(s) = ∞,

then Equation (41) is oscillatory.

Theorem 54 ([42]). Let Condition (H5) hold. Assume that there exists t0 ∈ Na+1 such that:

lim inf
t→∞

t

∑
s=t0+1

g(s) = −∞,

and:

lim sup
t→∞

t

∑
s=t0+1

g(s) = ∞,

then Equation (41) is oscillatory.

In [43], the authors investigated the oscillation of fractional nabla difference equations
of the form: 

(
∇∇ν

au
)
(t) + w(t) f (u(t)) = h(t), t ∈ Na,(

∇−(1−ν)
a u

)
(t)
∣∣∣
t=a

= u(a) = c, c ∈ R,
(42)

where 0 < ν < 1.

Theorem 55 ([43]). Let Condition (H6) hold. If the inequality:(
∇∇ν

au
)
(t) ≤ h(t), t ∈ Na,

has no eventually positive solutions and the inequality:(
∇∇ν

au
)
(t) ≥ h(t), t ∈ Na,

has no eventually negative solutions, then every solution u of Equation (42) is oscillatory.

Theorem 56 ([43]). Let condition (H6) be hold. Assume that u is a solution of (42) and there

exists t0 ∈ Na such that
(
∇ν

au
)
(t)
∣∣∣
t=t0

= C exists. If:

lim inf
t→∞

(t− a)1−ν
t

∑
s=a+1

(t− s + 1)ν−1

[
C +

s

∑
τ=t0+1

h(τ)

]
= −∞,
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and:

lim sup
t→∞

(t− a)1−ν
t

∑
s=a+1

(t− s + 1)ν−1

[
C +

s

∑
τ=t0+1

h(τ)

]
= ∞,

then, Equation (42) is oscillatory.

Theorem 57 ([42]). Let condition (H6) be hold. Assume that u is a solution of (42) and there

exists t0 ∈ Na such that
(
∇ν

au
)
(t)
∣∣∣
t=t0

= C exists. If:

lim inf
t→∞

t

∑
s=t0+1

(
1− s− 1

t

)
h(s) = −∞,

and:

lim sup
t→∞

t

∑
s=t0+1

(
1− s− 1

t

)
h(s) = ∞,

then, Equation (42) is oscillatory.

4. Conclusions

The oscillation of difference equations has been a considerable topic due to its widespread
applications in science and engineering. For this purpose, many researchers have con-
tributed to this topic by studying several types of equations. With the rise of fractional
calculus, the oscillation of fractional difference equations has become the object of an exten-
sive investigation, and consequently, distinguishable results have been elaborated during
the recent years.

In this paper, we presented a scientific platform that provided a comprehensive survey
on the recent developments for the oscillation results of fractional difference equations.
Different types of equations were investigated and presented by using both the nabla
and delta operators. We believe that the results presented in this paper will provide a
cornerstone literature for the relevant audience that is interested in the investigation of
oscillation theory. The theoretical presentation in this paper is promising in the sense that it
can be used to develop results for the oscillation of solutions for other types of equations
such as the functional dynamic equations and fuzzy dynamic equations.
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