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Abstract: An important problem in the context of viral marketing in social networks is the Influence
Threshold (IT) problem, which aims at finding some users (referred to as a seed set) to begin the
process of disseminating their product’s information so that the benefit gained exceeds a predeter-
mined threshold. Even though, marketing strategies exhibit different in several realistic scenarios
due to market dependence or budget constraints. As a consequence, picking a seed set for a specific
threshold is not enough to come up with an effective solution. To address the disadvantages of
previous works with a new approach, we study the Multiple Benefit Thresholds (MBT), a generalized
version of the IT problem, as a result of this phenomenon. Given a social network that is subjected
to information distribution and a set of thresholds, T = {T1, T2, . . . , Tk}, Ti > 0, the issue aims to
seek the seed sets S1, S2, . . . , Sk with the lowest possible cost so that the benefit achieved from the
influence process is at the very least T1, T2, . . . , Tk, respectively. The main challenges of this problem
are a #NP-hard problem and the estimation of the objective function #P-Hard under traditional
information propagation models. In addition, adapting the exist algorithms many times to different
thresholds can lead to large computational costs. To address the abovementioned challenges, we
introduced Efficient Sampling for Selecting Multiple Seed Sets, an efficient technique with theoretical
guarantees (ESSM). At the core of our algorithm, we developed a novel algorithmic framework that
(1) can use the solution to a smaller threshold to find that of larger ones and (2) can leverage existing
samples with the current solution to find that of larger ones. The extensive experiments on several
real social networks were conducted in order to show the effectiveness and performance of our
algorithm compared with current ones. The results indicated that our algorithm outperformed other
state-of-the-art ones in terms of both the total cost and running time.

Keywords: social network; viral marketing; information diffusion; approximation algorithm

MSC: 68W25; 68R05; 90C27

1. Introduction

In recent years, there has been a rapid development of the global economy thanks to
the contribution of the Online Social Network (OSN), based on the provision of a powerful
platform for communication and information dissemination in the field of marketing,
media, and advertising, particularly in social networks with billions of users. The strong
underpinnings of problems of social influences in OSNs are information diffusion models.
Kempe et al. [1] first introduced two classic models, named Independent Cascade (IC)
and Linear Threshold (LT), and formulated the Influence Maximization (IM) problem,
which aims to select k nodes that may impact the largest number of users a social network.
This work has inspired many studies on social influence [2–10], misinformation/rumors
detection, and control [11–15].
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In the context of viral marketing for product promotion, hosts (companies) often
devise a marketing campaign including the distribution of product samples to selected
users and expect that they persuade their friends, friends of friends, etc. The number
of people who have been impacted reaches a certain level. Influence Threshold (IT) was
inspired by this phenomenon and a slew of research backed it up; it looks for a node set
with the smallest size possible so that the number of impacted nodes reaches or surpasses
a predetermined threshold γ [8,16,17]. The value of γ can determine the scale of of the
viral marketing. However, in some realistic scenarios, there is a distinct cost to persuade
a user who promotes a sample product [4,18]. Besides, each influenced user often offers
a different benefit when one is influenced after the marketing process. Customers with
significant financial resources, for example, will be able to purchase more things than others.
As a result, the existing algorithms for IT problem may offer an inaccurate solution of a
marketing purpose. Moreover, the marketing strategies are often adjusted since the market
can vary in a short time. Consequently, a particular solution for a benefit is insufficient to
be the overall effective solution. This can be overcome by finding solutions for multiple
thresholds and selecting the best one that suits their budget and current market.

For instance, assume that a company wants to come up with a strategy that can
influence customers on an online social network. Nonetheless, or due to budget fluctuations
or the instability of the market, they may consider strategies of spreading with the different
number of influenced customers such as 1000, 2000, 3000, 5000, etc. In this case, the company
wants to find solutions, where the benefit function of each is above the corresponding
threshold and then that company can select a solution with a reasonable cost so as to
execute its marketing plan well.

Our goal in this study is to develop an answer to a novel Multiple Benefit Thresholds
(MBT) problem, which is expressed as follows. For a social network G = (V, E) given a set
of k benefit thresholds T = {T1, T2, . . . , Tk}, each user u has a distinct cost price c(u) > 0.
The issue is to seek for the various seed sets {S1, S2, . . . , Sk}, in which each Si has the
cheapest total cost c(Si) by a result of each seed set’s earned benefit Si, characterized by
B(Si), and is at least Ti for i = 1 . . . , k. There are two main challenges for solving MBT
problem. First ones are to find MBT as #NP-Hard and to calculate the benefit function
#P-Hard. Secondly, finding numerous seed sets for multiple thresholds needs more time
and memory than other information propagation challenges, as well as the IT problem. It
is necessary to run the existing algorithms for a single threshold k times to prove it is costly
and, hence, not applicable to large networks. To overcome the challenges, in this paper,
we propose a highly efficient algorithm to solve the problem. This not only guarantees a
solution but also produces good results in practice. This work revised and extended the our
conference paper [19] by providing all the proofs more detail and experiment evaluation.

The following is a list of our contributions as a whole:

• The Multiple Benefit Thresholds (MBT) is first formulated with the Independent
Cascade (IC) information diffusion model.

• With a view to developing the solution, the Efficient Sampling for Multiple Seed
Set Selection (ESSM) is proposed, a theoretical approximation algorithm bounds
by developing a novel algorithmic framework that utilizes the sample technique to
estimate the benefit function, denoted as B(·), and leverages the seed set and the
samples with smaller benefit threshold with the purpose of finding the seed set of
the larger ones. Accordingly, our algorithm can find multiple seed sets in only one
run. For solution guarantee, our algorithm returns multiple seed sets Si satisfying
B(Si) ≥ 1−ε

1+ε Ti − ε and the total cost c(Si) ≤ (1 + ln (Ti−εTi)
ε )c(S∗i ) a strong possibility

(w.h.p), where ε > 0 is an input and S∗i is the best seed set in terms of threshold Ti for
all i = 1, 2, . . . , k.

• Extensive experiments on six real-world networks are performed, including Gnutella,
Email-Enron, Net-Hept, Net-Phy, Amazon, and DBLP for the comparison of the
efficiency between our algorithm and other state-of-the-art ones. The results of experi-
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ments indicated that our algorithm outperformed the state-of-the-art ones in respect
of both the cost and the running time.

Organization. The rest of the paper is structured as follows. In Section 2, we review
previous relevant works of influence maximization. Section 3 presents the model, problem
definition, and main algorithm. The experiment results are shown and explained in
Section 4. Finally, Section 5 brings the paper to the conclusion.

2. Related Works

In this section, we review previous studies related to our abovementioned problem,
including Information propagation models, Influence Maximization, and Influence Threshold.

Information propagation models and Influence Maximization. Social networks pro-
vide a convenient environment for business marketing through the word-of-mouth effect.
Influence Maximization (IM) [1], which seeks out k nodes (seed set) in a social network that
can influence the greatest number of nodes is one of the most important challenges in social
network influence. Kempe et al. originally investigated IM as an #NP-hard combinatorial
optimization under two famous information diffusion models: Linear Threshold (LT) and
Independent Cascade (IC). Furthermore, the challenge of solving IM also coming from
calculating the influence function under two above models is #P-hard models—that is, it
is impossible to calculate in polynomial time with input size [5,6]. However, due to the
enormous application of IM in commerce, several efficient algorithms were proposed for
solving the problem in large-scale networks, such as approximation algorithm [1–3,20,21]
and heuristics without theoretical guarantee [7,22,23]. Notably, Borg et al. [24] made
a theoretical breakthrough by proposing a (1 − 1/e − ε)-approximation algorithm in
O(ε−3kl2(m + n) log2 n) with a probability at least 1 − n−l . The main idea of Borg’ al-
gorithm is that they proposed a sample technique, namely, Reverse Reachable (RR) set,
to estimate the number of influenced nodes under stochastic information propagation
models and an algorithmic framework that finds the solution in generated samples with
theoretical bound. Tang et al. [2] proposed the TIM/TIM++ algorithms reducing the time
complexity to O(ε−2(k + l)(m + n) log n) while maintaining the performance guarantees
and demonstrated the high efficiency of their algorithm in billion-scale networks. Later
on, several algorithms have been devised in an attempt to reduce the sample complexity
and running time but they still maintained an approximate ratio by modifying the RIS
framework, including IMM [3], SSA/DSSA [21], OPIM [25], etc. Recently, Akram et al.
mentioned finding influential communities in a social network with fuzzy competition
hypergraphs notion [26,27].

In other directions, numerous studies were carried out on variations of IM for many
scenarios of viral marketing. The authors in [28–30] considered IM under topic queries
by introducing the information diffusion model that can enable many topics to spread.
Additionally, the advance in geoposition enabled devices and services makes OSNs able to
integrate a user’s location. The authors in [31] investigated the location-aware influence
maximization (LIM) problem in which some nodes were selected and the largest number of
nodes was influenced in a given distance; [32] considered the role of distance among users to
promote the influence process of viral marketing. Moreover, several other variations of IM
including competitive-aware [5,33] and time-aware [34] have been introduced and studied.

Recently, Nguyen et al. [35] has studied IM under the budget constraint where each
node has the limited cost to adopt a sample product and the total budget was required.
In the seminal paper, it showed that the greedy algorithm can achieve an approximation
ratio of 1− 1/

√
e and further proposed efficient heuristic algorithms without any perfor-

mance guarantees. Later, Nguyen et al. [4] studied the Cost-aware Targeted Viral Marketing
(CTVM) problem, a generalization of IM. In this problem, each node u has an arbitrary cost
c(u) and a benefit b(u). The goal of CTVM was to select a seed set within a given budget B
so that the total benefit was maximized. They proposed a benefit sampling technique and a
1− 1√

e − ε approximation algorithm with probability at least 1− δ in O(ε−2n log((n
k))/δ).

In this study, the sampling technique in [4] is adapted to estimate the benefit function.
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However, BCT could not adapt to solving our problem due to the difference between MBT
and CTVM.

Influence Threshold. Influence Threshold (IT), which seeks the smallest size seed
set S such that the influence spread, defined as σ(S), is at least a specified threshold γ,
is the problem that comes closest to ours. Goyal et al. [36] were the first to investigate
the IT problem using IC models. Using the influence function’s monotone submodular
characteristic, they proposed a greedy algorithm combining with Monte Carlo simulation
method [1] to estimate σ(S). The algorithm returns a seed set S satisfying σ(S) ≥ γ− ε and
|S| ≤ |S∗| · (1 + ln γ

ε ) in O(n2R) time complexity, where ε > 0 is an input, S∗ is the optimal
solution, and R is number of Monte Carlo simulations with setting R = 10.000. Due to its
high time complexity, it is difficult to apply this algorithm to large networks. By utilizing the
sampling technique method in [37], Kuhnle et al. [8] developed a (1− 2α, 1+ 4αγ+ log γ)—
bicriteria approximation algorithm for a special case of IT where cost of the vertices is the
same (We call an algorithm is an (α, β)-bicriteria approximation for IT problem if it returns
a solution S satisfying σ(S) ≥ α · T and |S| ≤ β · |S∗|, where α, β > 0 and S∗ is the optimal
solution.) in O(α2(m + n) log(n)|S|) time complexity, where α ∈ (0, 1) is an input and n, m
refer to the number of nodes, edges in the network.

The authors of [17] recently explored IT in a noisy model resembling a real-world
situation, where we only estimate the influence spread function within an error bound.
The greedy algorithm under noise with theoretical bound was proposed but it retained
time complexity as in [38]. In these studies, they ignored the point that each affected user
provided a different benefit in these experiments. The benefits of the nodes and different
benefit thresholds are considered for identifying the appropriate seed sets in our MBT
problem. In the case of the great similarity in benefits of nodes, the above algorithms can be
used for each threshold Ti, but it is imperative to run k times to find the k seed sets. On the
other hand, our proposed algorithm not only provides theoretical bounds but also returns
multiple seed sets for set of benefit thresholds at a single time.

3. Methodology

In this section, Independent Cascade (IC) model is presented, as the well-known
original model related to the IM problems. [1–4,20,21]. Our notations and symbols are
summarized in Table 1.

Table 1. Table of symbols.

Notional Description

n, m The number of nodes and of edges in G, respectively
Nin(v), Nout(v) The incoming and outgoing neighbor node set of v.
Si The solution returned by our algorithm for threshold Ti
B(S), B̂(S) Define the benefit function and an estimation of benefit function
Γ Γ = ∑u∈V b(u)
S∗i The optimal seed set for threshold Ti

N(i, j) N(i, j) = (2+ 2
3 ε)Γ

ε2(Ti−εTi)
ln((n

j)/δ)

Ni
max Ni

max = maxj:1...|Si |
(2+ 2

3 ε)Γ
ε2(Ti−εTi)

ln((n
j)/δ)

imax imax = arg maxi=1...|Sk | ln((
n
i ))

3.1. Independent Cascade Model

In this work, a social network is abstracted by a directed graph G = (V, E). V and E
represent the set of users and the set of links in the network, respectively. In this model,
each edge e = (u, v) ∈ E has a probability p(u, v) ∈ (0, 1) representing the influence
transmission from u to v. Given a seed set S ⊆ V, each node is in one of two states: active
and inactive, which reflects whether it is influenced by the seed set or not. The diffusion
process starts from S and works as follows:

• At the beginning (step t = 0), all nodes in the seed set are active.
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• At the next steps (step t ≥ 1), an node u, which is activated in previous steps, has a sin-
gle chance to influence each of its neighbors v with the probability of success p(u, v).

• All active nodes retain their status until the end of the diffusion process, and the
process ends at step t if there is no new activated node in this step.

Kempe et al. [1] showed that the IC model was equivalent to sample graph model,
defined as follows. The live-edge model first generates a sample graph g = (Eg, Vg) by
selecting e = (u, v) ∈ E with probability p(e) = p(u, v) and not selecting e = (u, v) ∈ E
with probability 1− p(u, v). The sample graph g is generated with probability

Pr[g / G] = ∏
e∈Eg

p(e) · ∏
e∈E\Eg

(1− p(e)) (1)

In our model setting, we will gain a benefit b(u) >= 0 if the node u becomes active,
as in [4]. Benefit function B(S), denoted as the total benefit over all influenced nodes, is
calculated as follows:

B(S) = ∑
g/G

Pr[g / G] ∑
u∈R(g,S)

b(u) (2)

where R(g, S) is the set of nodes that can reach from any node in S in graph g. In additional,
each node u ∈ V has a cost c(u) > 0, which we have to pay to user u to initiate the influence
process from u and c(S) = ∑u∈S c(u).

3.2. Problem Definition

We formally introduce our studied problem, Multiple Benefit Thresholds (MBT), as follows:

Definition 1 (MBT). Given a graph G = (V, E) under the IC model and the set of benefit
thresholds T = {T1, T2, . . . , Tk}. For each Ti ∈ T, the problem is required to find Si ∈ V with
smallest cost c(Si) so that B(Si) ≥ Ti.

In the case when b(u) = 1, ∀u ∈ V, the benefit function B(·) becomes the influence
spread function [1]. Ref. [6] showed that it was #P-hard to compute the number of influence
nodes (influence spread function) exactly, so calculating B(·) was also #P-hard. Besides,
the IT problem [8,17,38], a special case of MBT problem with b(u) = c(u) = 1, ∀u ∈ V and
k = 1, is NP-hard, which implies that MBT is also #NP-hard.

3.3. Our Proposed Algorithm

In this section, the Efficient Sampling for Selecting Multiple seed sets (ESSM), an ef-
ficient algorithm for MBT problem with theoretical guarantee, is introduced. Our novel
technique is to develop a method that combines two following ideas: (1) finds the candidate
seed set for each threshold via the benefit sampling; (2) uses the seed set with a smaller
threshold for finding the seed sets with bigger ones, which can improve the running time
as well as memory usage. Moreover, the sampling technique with martingale theory is in
use to estimate the benefit function effectively.

3.3.1. Benefit Sampling

We first recap the concept of Benefit Sample (BS) in [4] to estimate the B(·).

Definition 2 (Benefit Sample). A BS is generated from G = (V, E) under the IC model by
following steps: (1) Choose a source node u with probability b(u)

Γ , (2) create a sample graph g from
G, and (3) return Rj as the set of nodes that can reach node u in g.

The Algorithm 1 in [4] can be used to generate a BS for IC model.
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Algorithm 1: An algorithm for generating a BS under the IC model.

Input: Graph G = (V, E) under IC model
Output: A BS set Rj

1: Choose a source node u with probability b(u)
Γ

2: Initialize a queue Q = {u} and Rj = {u}
3: while Q is not empty do
4: v← Q.pop()
5: for u ∈ Nin(v) \ (Rj ∪Q) do
6: With probability p(u, v) do: Q.push(u), Rj ← Rj ∪ {u};
7: end for
8: end while
9: return Rj

Given R is a collection of BSes, a seed set S, we define a random variable Xj(S)
as follows:

Xj(S) =

{
1, If Rj ∩ S 6= ∅
0, Otherwise

(3)

We can estimate the benefit function B(S) by the following Lemma in [4].

Lemma 1 (Lemma 2, [4]). For any set of nodes S ⊆ V, we have: B(S) = Γ ·E[Xj(S)]

The function B(·) is monotone and submodular [4], i.e., for any S ⊆ T ⊆ V, and v /∈ T,
we have

B(T) ≥ B(S) (4)

B(S + {v})−B(S) ≥ B(T + {v})−B(T) (5)

We can calculate an estimation B̂(S) of B(S) via a collectionR of BSes as follows:

B̂(S) = Γ
|R| ∑

Rj∈R
Xj(S) (6)

It can be seen that Xj(S) ∈ [0, 1]. We define a random variable Yi = ∑i
j=1(Xj(S)− µ),

∀i ≥ 1, where µ = E[Xj] and a sequence random variables Y1, Y2, . . ., we have

E[Yi|Y1, . . . , Yj−1] = E[Yi−1] +E[Yi(S)− µ] = E[Yi−1]

Therefore, Y1, Y2, . . . are a form of martingale [39]. Thus, we have the following Lemma [39].

Lemma 2 ([39]). Given a collectionR with T = |R| and λ > 0, we have

Pr
[ T

∑
j=1

Xj(S)− T · µ ≥ λ
]
≤ exp

{
− λ2

2λ 2
3 + µT

}
(7)

Pr
[ T

∑
j=1

Xj(S)− T · µ ≤ −λ
]
≤ exp

{
− λ2

2µT

}
(8)
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Let λ = εTµ in Lemma 2, we obtain

Pr[B̂(S) ≥ (1 + ε)B(S)] ≤ exp

{
− ε2µT

2 + 2
3 ε

}
(9)

Pr[B̂(S) ≤ (1− ε)B(S)] ≤ exp
{
− ε2µT

2

}
(10)

If the number of BSs is at least T ≥ (2 + 2
3 )

1
µ

1
ε2 ln( 1

δ ) for δ ∈ (0, 1), B̂R(S) is an
(ε, δ)-approximation of B(S), i.e.,

Pr[(1− ε)B(S) ≤ B̂(S) ≤ (1 + ε)B(S)] ≥ 1− δ (11)

The characteristics of the martingale sequence play an important role in devising our
algorithm in the next subsection.

3.3.2. ESSM Algorithm

Our proposed algorithm is now described. On a high level, our algorithm combines
two methods: (1) We provide a (δ, ε)-approximation of the benefit function via martingale
theory. (2) In each iteration, we propose the algorithmic framework that finds some
candidate seed sets for a threshold and then choose the final seed set, which guarantees the
solution quality by checking static evidence. (3) We reuse the seed set for smaller threshold
for finding the seed sets with the larger threshold. Our proposed algorithm is presented
in Algorithm 2.

Algorithm 2: ESSM algorithm.

Input: A graph G = (V, E), T = {T1, . . . , Tk}, ε, δ ∈ (0, 1)
Output: S1, S2, . . . , Sk

1: GenerateR0 containing (2+ 2
3 ε)Γ

ε2(Ti−εTi)
(ln n + ln(1/δ)) BSs by using Algorithm 1

2: S0 ← ∅
3: for i = 1 to k do
4: Ri ← Ri−1
5: Si ← Si−1
6: Calculate B̂(Si) by Equation (6)
7: while B̂(Si) < Ti − εTi − ε do

8: u← arg maxv∈V\Si
min(B̂(Si∪v),Ti−εTi−ε)−B̂(Si)

c(v)
9: Si ← Si ∪ {u}

10: j← |Si|
11: N(i, j)← (2+ 2

3 ε)Γ
ε2(Ti−εTi)

ln((n
j)/δ)

12: if |Ri| < N(i, j) then
13: Generate more N(i, j)− |Ri| BSs and add them intoRi
14: N ← N(i, j)
15: Si ← ∅
16: end if
17: end while
18: end for
19: return S1, S2, . . . , Sk

At the beginning of the algorithm, it generates collection R0 that contains
(2+ 2

3 ε)Γ
ε2(Ti−εTi)

(ln n + ln(1/δ)) BSs by using Algorithm 1 and initiates a seed set S1 as empty.
At each iteration i of first loop (line 3–18), it finds the seed set with respect to threshold

Ti. Denote f (Si) = min(B̂(Si), Ti− εTi− ε). At each iteration of the second loop (line 7–18),
the algorithm finds a seed Si, by iteratively selecting a node u with maximum marginal of
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the estimation function f as per its cost, i.e., ( f (Si ∪ {u})− f (Si))/c(v) and (2) checking
the condition of the number of samples (line 12). If the number of samples is sufficient
to give an (δ, ε)-approximation (by Lemma 3), the algorithm moves into next iterations
and keeps current seed set Si; otherwise, the algorithm generates more samples (line 13) so
that the number of samples is N(i, j) and adds them into Ri. In this case, the seed set Si is
suitable for new collection Ri. The second loop terminates when it satisfies the condition
B̂(Si) ≥ Ti − εTi − ε. Next, the algorithm reuses the current samples and seed set to find
the seed set for larger threshold (lines 4–5) by using similar steps with previous iteration.

The theoretical bounds of the algorithm are now analyzed. Firstly, the satisfactory
number of BSes is provided to estimate B(·) is shown in Lemma 3.

Lemma 3. If |R| ≥ (2+ 2
3 ε)Γ

ε2(Ti−εTi)
(ln n + ln 1

δ ) then Pr[B̂(S∗i ) ≥ Ti − Tiε] ≥ 1− δ

Proof. Denote µ = B(S∗i )/Γ, µ̂ = B̂(S∗i )/Γ, we have

Pr[B̂(S∗i ) ≤ Ti − Tiε] ≤ Pr[B̂(S∗i ) ≤ (1− ε)B(S∗i )]
= Pr[µ̂ ≤ (1− ε)µ] (By applying (10))

≤ exp
(
−ε2|R|µ

2

)
≤ exp

(
−ε2|R|µ̂
2(1− ε)

)
(Due to µ ≥ µ̂/(1− ε))

≤ exp

(
−

(2 + 2
3 ε)B̂(S∗i )

2(1− ε)(Ti − εTi)
ln

1
δ

)
≤ δ

which implies the proof.

The theoretical guarantee of Algorithm 2 is stated as follows.

Theorem 1. For any inputs ε, δ ∈ (0, 1), the Algorithm 2 returns a set of seed sets S =
{S1, S2, . . . , Sk} satisfying

(a) Pr[c(Si) ≤ (1 + ln Ti−εTi
ε )c(S∗i )] ≥ 1− δ/n.

(b) Pr
(
B(Si) ≥ Ti · 1−ε

1+ε − ε
)
≥ 1− δ.

Proof. At any i-th iterator of the first loop (line 3 to 19) in Algorithm 2, denote
Si = St

i = {s1
i , s2

i , . . . , st
i} as the solution of algorithm with respect to the threshold Ti,

and Pi = {vi
1, vi

2, . . . , vi
l} as a set of nodes with minimum cost satisfying B̂(Pi) ≥ Ti − εTi

and Ci = c(Pi). Due to the checking condition in line 12, the number of BSes at the end of
iteration i obtains at least

Ni
min =

(2 + 2
3 ε)Γ

ε2(Ti − εTi)
ln(
(

n
|Si|

)
/δ) (12)

and obtains at most,

Ni
max = max

j:1...|Si |

(2 + 2
3 ε)Γ

ε2(Ti − εTi)
ln(
(

n
j

)
/δ) (13)
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Prove (a) As B̂(·) is submodular, we have

Ti − εTi − B̂(St−1
i )) ≤ B̂(Pi)− B̂(St−1

i ))

≤ B̂(Pi ∪ St−1
i )− B̂(St−1

i ))

≤ ∑
v∈Pi\St−1

i

(B̂(St−1
i ∪ {v})− B̂(St−1

i ))

≤ Ci

c(St−1
i )

∑
v∈Pi\St−1

i

(B̂(St−1
i ∪ {v})− B̂(St−1

i ))

For any positive numbers a1, . . . al and b1, . . . , bl . According to [40], we have

min
i=1...l

ai
bi
≤ ∑l

i=1 ai

∑l
i=1 bi

≤ max
i=1...l

ai
bi

(14)

Applying the above inequality, we obtain

Ti − εTi − B̂(St
i ) ≤

Ci

c(st
i)
(B̂(St

i )− B̂(St−1
i )) (15)

≤ (1−
c(st

i)

Ci
)(Ti − εTi − B̂(St−1

i )) (16)

≤ e−
c(st

i )
Ci (Ti − εTi − B̂(St−1

i )) (17)

The (17) condition must satisfy x + 1 ≤ ex, for any x > 0. Therefore,

Ti − εTi − B̂(St
i ) ≤ e−

1
Ci

∑t
j=1 c(st

i )(Ti − εTi) (18)

= e−
1

Ci
c(St

i )(Ti − εTi) (19)

By the definition of St
i and because Si satisfies the condition in line 7, we have

B̂(St−1
i ) < Ti − εTi − ε and B̂(St

i ) ≥ Ti − εTi − ε. Combining with (19), we have

(Ti − εTi)e
− 1

Ci
c(St−1

i ) ≥ Ti − εTi − B̂(St−1
i )

> Ti − εTi − (Ti − εTi − ε) = ε

implying that c(St−1
i ) < Ci ln Ti−εTi

ε . On the other hand, from (17), we obtain

c(st
i) ≤ Ci ln

Ti − εTi − B̂(St−1
i )

Ti − εTi − B̂(St
i )
≤ 1 (20)

Thus, c(St
i ) = c(St−1

i ) + c(st
i) ≤ Ci(1 + ln( Ti−εTi

ε )), where Si is the candidate solution

for threshold Ti. After i-th iteration of the first loop, |Ri| = N(i, j) = (2+ 2
3 ε)Γ

ε2(Ti−εTi)
ln((n

j)/δ).

By applying Lemma 3, after iterator i, we have Pr[B(S∗i ) ≥ Ti − εTi] ≥ 1− δ/(n
j). Com-

bining with the definition of Pi, the following events happen with a probability of at least
1− δ/(n

t) ≥ 1− δ/n:

c(Si) ≤ Ci(1 + ln(
Ti − εTi

ε
)) (21)

≤ c(S∗i )(1 + ln(
Ti − εTi

ε
)) (22)
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Prove (b) The i-th iteration of the first loop ends when B̂(Si) ≥ Ti − Tiε− ε, we obtain

Pr
(
B(Si) ≤ Ti

1− ε

1 + ε
− ε

)
≤ Pr

(
B(Si) ≤

Ti − Tiε− ε

1 + ε

)
≤ Pr

(
B(Si) ≤

B̂(Si)

1 + ε

)

≤ e
−ε2 |Ri |B̂(Si)

2Γ(1+ε) (By applying (10))

≤ e
− ln((nj )/δ)

1+ε

≤ 1− δ/
(

n
j

)
Since |Si| = j there are at most (n

j) possible solutions Si. By applying the union

bound of the probability of events, we have Pr
(
∀Si,B(Si) ≤ Ti · 1−ε

1+ε − ε
)
≤ δ. Hence,

Pr
(
B(Si) ≥ Ti · 1−ε

1+ε − ε
)
≥ 1− δ. The proof is completed.

Theorem 2 (Number of required BSes). For any ε, δ ∈ (0, 1), the sample complexity of ESSM
is O(ε−2n ln(( n

imax
)/δ)), where imax = arg maxi=1...|Sk | ln((

n
i )).

Proof. The number of BSes for finding seed set Si is at most Ni
max. The algorithm reuses the

set of BSes for current seed set for next iteration, so the number of BSes generated by the
algorithm is at most Nk

max. On the other hand, Γ = ∑u∈V b(u) ≤ bmaxn = O(n). Therefore,
the number of samples used in the algorithm is

(2 + 2
3 ε)Γ

ε2(T1 − εT1)
ln(
(

n
imax

)
/δ) = O(ε−2n ln(

(
n

imax

)
/δ))

which completes the proof.

Denote M, (M ≤ n) is the expected running time for generating one BS, and jmax is the
largest number of iterations of selecting a seed set. The time complexity of the algorithm is
O(ε−2nkjmax M ln(( n

Nk
max

)/δ)).

4. Experiments and Discussion

In this section, some extensive experiments are carried out to show the performance of
the ESSM algorithm in comparison with other state-of-the-art algorithms on three important
metrics: running time, cost of seed sets, and memory usage.

4.1. Experiment Settings
4.1.1. Datasets

For a comprehensive experiment, six networks are selected for information propa-
gation problems [1–5,21] of different sizes. The description of used datasets is presented
in Table 2.

• Gnutella [41] represents Gnutella peer-to-peer file sharing network in August 2002.
In this network, 20,777 edges among 6301 nodes show connections among hosts in the
Gnutella network topology.

• Email-Enron [42] network covers all the email communication within a dataset of
around half a million emails. These originally public data were posted on the web,
by the Federal Energy Regulatory Commission during its investigation. Nodes of the
network are email addresses and if an address i has sent at least one email to address
j, the graph contains an undirected edge. Note that non-Enron email addresses act
as sinks and sources in the network as their communication with the Enron email



Mathematics 2022, 10, 876 11 of 18

addresses is only under observation. The Enron email data were originally released
by William Cohen at CMU.

• Net-Hept [43] and Net-Phy [5] are collaborative networks from the “high-energy
physics theory” section and “physics” section, in which the nodes represent the
authors and undirected edges represent papers written by the same authors.

• Amazon [44] was collected in 2 March 2003 by crawling the Amazon website. It is
based on customers who bought an item and also bought features of the Amazon
website. If a product i is frequently copurchased with product j, the graph contains a
directed edge from i to j.

• DBLP computer science bibliography [45] provides a comprehensive list of research
papers in computer science. If two authors publish at least one publication together,
they establish a coauthorship network.

Table 2. Datasets.

Dataset #Nodes #Edges Avg. Degree Source

Gnutella 6301 20,777 3.3 [41]
Enron 36,692 183,831 5.0 [42]

Net-Hept 15,233 58,891 5.5 [43]
Net-Phy 37,154 231,584 13.4 [5]
Amazon 262,111 1,234,877 9.4 [44]

DBLP 317,080 1,049,866 6.6 [45]

4.1.2. Algorithms Compared

Since IT [36] and CTVM [4] are the problems most closely related to MBT problem,
ESSM is compared with their algorithms with some modifications in our experiment. In ad-
dition, the DEGREE algorithm, a popular baseline algorithm for information propagation
problems [1,2,5,6], is in use. Compared algorithms are listed below.

• BCT is an algorithm for CTVM problem [4]. BCT is used by comparison due to the
similarity between the BCT and CTVM problem by considering the costs and benefits
of the nodes. However, due to the differences between MBT and CTVM, BCT is
adapted with some modifications as follows: For each threshold Ti, we use a binary
search on the cost from range [0, ∑u c(u)] until the reached benefit function falls in
[Ti(1− ε), Ti], where ε = 0.1 and returns the seed set with minimum cost.

• IT is a greedy algorithm for the Influence Threshold problem in [36]. In order to adapt
IT algorithm for MBT problem, the Monte Carlo simulation is used to estimate benefit
function with 10,000 time simulations as in [1,5].

• DEGREE is one of common baseline algorithms for influence problem [1,4,22], which
select the highest degree of nodes until the benefit of the selection set exceeds thresholds.

4.1.3. Parameter Settings

For computing the transmission probability in IC model, the conventional computation
as in [1–4] is followed and the transmission probability is calculated as p(u, v) = 1

|Nin(v)|
.

We set c(u) = n.Nout(u)
∑v∈V Nout(v)

and randomly choose 20% of nodes in each network and set the
benefit to 1, the rest assign to 0 as in [4]. Finally, ε = 0.1 and δ = 1/n are set as a default
setting [2–4] in all the experiments.

We utilize a Linux computer with 2 × Intel(R) Xeon(R) CPU E5-2630 v4 processors
running at 2.20 GHz and used 64 GB DDR4 RAM performing at 2400 MHz. Our algorithms
are developed in C/C++ using the g++11 compiler.

4.2. Experimental Results
4.2.1. Comparison of the Cost

Figure 1 showed the costs of seed sets returned by algorithms in which the smaller
one was better. Our algorithm ESSM outperformed other algorithms by a large gap in most
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datasets except the Gnutella network. Particularly, ESSM returned the seed sets whose costs
are 1875 to 116,000 times more than that of other algorithms. The results also confirmed
that our framework algorithm was more efficient than the others.
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Figure 1. Comparison about Costs of seed sets between ESSM and other algorithms with threshold
Ti from 300 to 9000.

The IT algorithm only produced good results on the Gnutella dataset and produced
worse results than ESSM did on the rest. However, it delivered better results than the rest
algorithms did, because the algorithm always finds important seed nodes with low and
rational cost as our algorithm do. With large datasets (Amazon and DBLP), IT did not
finish within the time limit. This showed that the Monte Carlo method was not suitable
for large networks due to its high complexity. DEGREE algorithm selected the highest
out-degree of nodes to prioritize as seed nodes, so the highest degree value affected the cost
of computing formula, leading to considerable increase in cost, even when the variety of
found seed nodes were small. Especially in the Email-Enron dataset, at the first threshold
Ti, where a seed node was loaded with the highest out-degree, the DEGREE algorithm
resulted in the high cost value, even higher than that of the BCT algorithm; although, BCT
was also based on the use of BS samples but produced worse results because it used binary
search, which could give much larger results than the optimal solution.

4.2.2. Comparison of Running Time

The running times of algorithms were demonstrated in Figure 2. ESSM was signifi-
cantly faster than the others on all datasets. ESSM algorithm was 6900 to 127,710 times
faster and 39 to 2120 times faster than IT and BCT, respectively. The running time of IT was
the longest and could not finish within time limit for Amazon and DBLP networks. This
was caused by the long time IT spent on accessing Monte Carlo simulation to estimate the
benefit function.
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BCT IT DEGREE ESSM

(a) Gnutella (b) Enron

(c) Net-Hept (d) Net-Phy

(e) Amazon (f) DBLP

Figure 2. Comparison of Running time between ESSM and other algorithms with threshold Ti from
300 to 9000.

The running times of algorithms are shown in Figure 2. ESSM was significantly faster
than the others on all datasets. ESSM algorithm is 6900 to 127,710 times faster and 39 to
2120 times faster than IT and BCT, respectively. The running time of IT was the longest and
it could not finish within time limit for Amazon and DBLP networks. This resulted from IT
spending a long time on calling Monte Carlo simulation to estimate benefit function.

BCT was significantly faster than IT even though it used many loops for binary search
for the reason that the BCT used BS samples to estimate the benefit function instead
of Monte Carlo simulation method. However, BCT was significantly slower than our
algorithm because it did not have a mechanism for reusing the seed set in finding other
seed sets with a larger benefit threshold. The larger number of vertices of the datasets,
the more time it took BCT to find a solution. The above results were consistent with
our assessment that the seed selection strategy in the reuse of solution could shorten the
running time of the algorithm. The above results were consistent with our assessment that
the seed selection strategy with the reuse seed sets in our algorithm could shorten the time
to find the solution.

DEGREE algorithm was also based on the use of a Monte-Carlo-like IT algorithm.
Nevertheless, choosing seed nodes was easily dependent on the existing seed set without
predicting the next seed nodes. As a consequence, DEGREE ran for a few seconds and was
4 to 54 times faster than our algorithm.

4.2.3. Comparison of Memory Usage

The memory usage of algorithms are illustrated in Table 3. The memory of our
ESSM algorithm was not the lowest in small and medium datasets, depending on the
characteristics of the data, but the difference was not fairly significant. In the remaining
medium and large datasets, the ESSM algorithm clearly offered its advantages with a
reduction in memory usage of more than 20,000 times compared with the BCT algorithm in
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the DBLP dataset. The ESSM algorithm will be more likely to be used on larger datasets
while the BCT and IT algorithms will be less likely.

Table 3. Memory usage of compared algorithms.

Dataset Threshold
Algorithm

BCT IT DEGREE ESSM

Gnutella

300 0.758 0.77 0.855 1.02
540 0.805 0.75 0.852 1.02
780 0.805 0.758 0.719 1.02
1020 0.758 0.789 0.75 1.02
1260 0.758 0.789 0.723 1.02
1500 0.809 0.816 0.723 1.02
1740 0.824 0.855 0.785 1.02
1980 0.824 0.813 0.746 1.02

Email-Enron

3300 4859.98 1.051 0.746 0.813
3350 4874.96 1.051 0.855 0.809
3400 4841.89 1.051 0.77 0.715
3450 4863.27 1.051 0.75 0.855
3500 4839.59 2.328 0.809 0.75
3550 4856.99 2.582 0.711 0.816
3600 4858.67 2.582 0.746 0.7
3650 4835.6 2.582 0.855 0.715

Net-Hept

2800 0.723 0.711 0.711 0.77
2850 0.723 0.742 0.855 0.77
2900 0.723 0.75 0.754 0.77
2950 0.77 0.75 0.855 0.77
3000 0.805 0.77 0.754 0.77
3050 0.746 0.809 0.809 0.77
3100 0.75 0.715 0.75 0.77
3150 0.75 0.754 0.809 0.77

Net-Phy

1700 2800.25 0.805 20.66 1.117
1900 1444.21 0.723 20.66 1.117
2100 1446.43 0.82 20.66 1.117
2300 1442.56 0.82 20.66 1.117
2500 1434.55 0.867 20.66 1.117
2700 1429.17 0.75 20.66 1.117
2900 1426.53 0.758 20.66 1.117
3100 1437.99 0.793 20.66 1.117

Amazon

600 0.195 N/A 0.723 12.453
1800 0.742 N/A 0.789 12.453
3000 0.742 N/A 0.809 12.512
4200 0.746 N/A 0.719 12.512
5400 0.715 N/A 0.813 12.512
6600 0.715 N/A 0.746 12.512
7800 0.805 N/A 0.758 12.512
9000 0.715 N/A 0.742 12.512

DBLP

1280 26,316.8 N/A 0.711 19.121
1400 41,369.6 N/A 0.715 19.227
1520 26,009.6 N/A 0.813 19.227
1640 24,883.2 N/A 0.816 19.227
1760 24,883.2 N/A 0.719 19.227
1880 24,883.2 N/A 0.711 19.227
2000 24,883.2 N/A 0.711 19.227
2120 24,883.2 N/A 0.754 19.227

The BCT algorithm does not inherit the sample set across multiple thresholds, such as
regenerating independent time-consumption and memory usage for sample sets at each
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threshold. With a lower threshold, the formula for calculation requires the large number of
samples. Whereas the threshold increases, the total required sample set decreases. As a
result, the memory usage must decrease and the threshold value must increase. Moreover,
the BCT’s sampling algorithm does not guarantee the consistency of the number of samples
at a certain threshold, leading to an unusual variation in memory usage among these closing
thresholds Ti, which was clearly displayed in small datasets using the close thresholds in
the experiments as Gnutella, Net-Hept.

During the experiment, the IT algorithm always consumed the highest running time
among the algorithms, caused by the use of the classical Monte Carlo sampling algorithm,
which consumed the memory usage as well as the run-times. Two large datasets as Amazon
and DBLP could not experiment with the IT algorithm partly because during the sampling
process, the algorithm overloaded the memory usage. This exhibited the disadvantage of
IT algorithm compared with other algorithms. On the contrary, IT used less memory than
BCT and ESSM did in some cases because of its no need of storing BS samples such as the
other two mentioned algorithms. Finally, similar to IT, DEGREE used the least amount of
memory because of its simplicity with no inheritance in building solutions.

4.3. Discussions

The primary difference between our algorithm and the other algorithms was its per-
mission for the reuse of solutions at lower thresholds for higher thresholds while still
ensuring the quality of solutions. To ensure approximate guarantee for MBT problem, cur-
rent state-of-the-art algorithms require to do this once for each threshold Ti. Our algorithm
only needs to be performed one time for all thresholds of the problem. Consequently, it
saves time and performs well with large networks. This is consistent with our experimental
results. For most datasets, our algorithm guarantees solution quality (total cost of reaching
thresholds) but is significantly faster than the other algorithms. Furthermore, our algorithm
also offers significantly better solution quality than the other algorithms do. The reason is
that the candidate solutions are still checked by the sampling method with the appropriate
number of samples.

5. Conclusions and Future Work

In this paper, motivated by applications in viral marketing, we the investigate MBT
problem, which finds seed sets S1, S2, . . . , Sk so that their influence benefits are at least given
thresholds T1, T2, . . . , Tk, respectively, under the well-known Independent Cascade model.
In the above model, the relationships among users in a social network are represented by a
propagation probability or transmission probability.

The problem of our study generalizes the IT problem by considering the following
factors: the benefit of each node and finding many seed sets with many thresholds. Al-
though the current IT algorithms are applicable to our problem, multiple repetitions of
these are required to find solutions for all thresholds, which makes them expensive and
time-consuming.

In order to address the above challenge, we devise ESSM, an efficient algorithm that
not only provides solutions with theoretical bounds but also can find multiple seed sets
at once. The results confirmed the effectiveness of our algorithm and indicated that it
highly outperformed the state-of-the-art algorithms in terms of both solution quality and
running time.

One question that arises is whether our algorithm can keep solution guarantees as
well as performance against other information propagation models. In the future work,
further investigation into MBT problem is going to reveal under other information diffusion
models and efficient algorithms are further proposed.

Another interesting question about our research is whether our algorithm is still
efficient when each user relationship is affected by different topics. In the future, this issue
will be thoroughly under discussion and an algorithm that is appropriate for that context
is recommended.
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