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Abstract: In this study, Runge–Kutta–Nyström pairs of orders 6(4) using six stages per step are
considered. The main contribution of the present work is that we introduce a new family of pairs (i.e.,
new methodology of solution for order conditions) that possesses seven free parameters instead of
four, as used by similar pairs until now. Using these extra coefficients efficiently we may construct
methods with better properties. Here, we exploit the free parameters in order to derive a pair with
extended imaginary stability interval. This type of method may furnish better results on problems
with periodic solutions. Extended numerical tests justify our effort.
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1. Introduction

The second order initial value problem with the special form

y′′ = f (x, y), y(x0) = y0, y′(x0) = y′0 (1)

where f : R×Rm → Rm, and (y0, y′0) ∈ R2m, is under consideration here.
We make an approximation to the solution of problem (1) at a collection of separate

points (xn, yn, y′n) using an explicit Runge–Kutta–Nyström (RKN) pair sharing algebraic
orders p(q), p > q. The format of this method is as follows [1]

fi = f (xn + cihn, yn + cihny′n + h2
n

s

∑
j=1

α̃ij f j), i = 1, 2, · · · , s

yn+1 = yn + hny′n + h2
n ∑s

i=1 wi fi, ŷn+1 = yn + hny′n + h2
n ∑s

i=1 ŵi fi,

y′n+1 = y′n + hn ∑s
i=1 w′i fi, ŷ′n+1 = y′n + hn ∑s

i=1 ŵ′i fi,

where hn = xn+1 − xn, is the stepsize. The higher order approximations yn, y′n are used to
propagate the solutions. The weights ŵ and ŵ′ furnish the lower accuracy approximations
used for error estimation.
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The latter can be computed by the expression

εn = hp−q+1
n ·max(‖h2

n

s

∑
i=1

(wi − ŵi) fi‖, ‖hn

s

∑
i=1

(w′i − ŵ′i) fi)‖,

and the compared can be a very small positive number TOL set by the user of the pair. Then,
using this small number, called tolerance, we may guess the length of the next step length

hn+1 = 0.9 · hn ·
(

TOL
εn

)1/p
.

In the exceptional case when TOL < εn, we do not allow the solution to propagate. We
actually repeat the current step and use hn+1 instead of hn as its new and shorter version.

All the coefficients can be formulated using the Butcher tableau [2,3]. So, the method
takes the form

c Ã

w ŵ
w′ ŵ′

with Ã ∈ Rs×s, wT, ŵT, w′T, ŵT, c ∈ Rs.
Pairs of orders six and four (i.e., p = 6 and q = 4) were studied in [1,4]. There,

pairs DEP6(4) and PT6(4) were respectively presented. The following Butcher tableau
characterizes these pairs.

0
c2 α̃21
c3 α̃31 α̃32
c4 α̃41 α̃42 α̃43
c5 α̃51 α̃52 α̃53 α̃54
1 w1 w2 w3 w4 w5 0

w1 w2 w3 w4 w5 0
ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 0
w′1 w′2 w′3 w′4 w′5 w′6
ŵ′1 ŵ′2 ŵ′3 ŵ′4 ŵ′5 0

From the tableau above it can be seen that the last stage (i.e., the sixth) shares as coefficients
the vector w. These are actually six stages pairs (i.e., s = 6) using the FSAL (First Stage As
Last) device. Thus, only five stages are wasted every step. The PT6(4) pair was specially
designed to address periodic problems since it shares higher phase-lag order. Reducing the
phase lag we try to keep the difference in angles between the theoretical and numerical
solution small when integrating harmonic oscillator.

In the following we are interested to study a six stages (i.e., s = 6) pair of orders six
and four (i.e., p = 6 and q = 4). These pairs are shown in the following Butcher tableaus

0
c2 α̃21
c3 α̃31 α̃32
c4 α̃41 α̃42 α̃43
c5 α̃51 α̃52 α̃53 α̃54
1 α̃61 α̃62 α̃63 α̃64 α̃65

w1 w2 w3 w4 w5 0
ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 0
w′1 w′2 w′3 w′4 w′5 w′6
ŵ′1 ŵ′2 ŵ′3 ŵ′4 ŵ′5 0
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Such pairs were firstly studied in [5]. No FSAL device is used on these pairs. In [5]
all the coefficients are expressed with respect to four free parameters that can be chosen
arbitrarily. Namely c3, c4, c5 and w′6. The pair ER6(4) was presented there, achieving
small local truncation errors. However, it seems that we may use seven free parameters
for constructing pairs of this form, as will be seen below. We aim to exploit these extra
parameters for achieving long imaginary stability intervals.

2. The New Family of Runge–Kutta–Nyström Pairs Sharing Orders 6(4)

According to the relevant theory, there are 47 equations of condition for achieving a
pair of orders six and four [5,6]. We may consider the simplifying assumption

Ã · e = 1
2

c2, (2)

with e = [1, 1, · · · , 1]T ∈ Rs and c2 = c ∗ c the component wise multiplication between the
elements of vector c. Then the number of order conditions reduces to just 29. Another
common assumption is

w = w′ · (Is − diag(c)), ŵ = ŵ′ · (Is − diag(c)), (3)

with Is ∈ Rs×s the identity matrix. After (3) holds, only 18 equations remain to be solved.
Namely, 13 of them correspond to the higher order formula:
The 1st, 2nd, and 3rd order conditions, respectively.

w′ · e = 1, w′ · c = 1
2

, w′ · c2 =
1
3

.

The 4th order conditions.
w′ · c3 =

1
4

, w′ · Ã · c = 1
24

.

The 5th order conditions.

w′ · c4 =
1
5

, w′ · (c ∗ Ã · c) = 1
30

, w′ · Ã · c2 =
1
60

.

The 6th order conditions.

w′ · c5 =
1
6

, w′ ·
(

c2 ∗ Ã · c
)
=

1
36

, w′ ·
(

c ∗ Ã · c2
)
=

1
72

,

w′ · Ã · c3 =
1

120
, w′ · Ã2 · c = 1

720
.

Whereas for the lower order formula, the following five equations must be satisfied,

ŵ′ · e = 1, ŵ′ · c = 1
2

, ŵ′ · c2 =
1
3

, ŵ′ · c3 =
1
4

, ŵ′ · Ã · c = 1
24

.

In these equations, “∗” is to be understood as a component-wise multiplic·ation among
vectors and h·as the lowest priority after all other oper·ations. Also, c2 = c ∗ c, c3 = c2 ∗ c,
etc. This latter oper·ation (“r·aising” a vector to a power) has the highest p ·riority and is
ev·aluated befo ·re dot products and “∗”.

The parameters available are 25. Specifically

c2, c3, c4, c5, α̃32, α̃42, α̃43, α̃52, α̃53, α̃54, α̃62, α̃63, α̃64, α̃65, w′1, w′2, w′3, w′4, w′5, w′6, ŵ′1, ŵ′2, ŵ′3, ŵ′4, ŵ′6.

Thus, we may choose 7 of them arbitrarily. We select c2, c3, c4, c5, α̃62, α̃63 and α̃64 as free
parameters. Then we may explicitly evaluate all the remaining coefficients. The algorithm
for this is as follows.
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Firstly, set

α̃65 = −

{
(c2 − 1)(c3 − 1)(c4 − 1)(c5 − 1)2(c2(5c3(2c4 − 1)− 5c4 + 3)

+c3(3− 5c4) + 3c4 − 2)

}


2c5(c5 − c2)(c3 − c5)(c5 − c4)(c2(5c3(6c4c5 − 4c4 − 4c5 + 3)
−20c4c5 + 15c4 + 15c5 − 12) + c3(−20c4c5 + 15c4 + 15c5 − 12)

+15c4c5 − 12c4 − 12c5 + 10)


.

Continue evaluating w′1, w′2, w′3, w′4, w′5, and w′6 after solving the linear system

w′ · e = 1, w′ · c = 1
2

, w′ · c2 =
1
3

, w′ · c3 =
1
4

, w′ · c4 =
1
5

, w′ · c5 =
1
6

.

The remaining six equations (except w′ · Ã2 · c = 1
720 ) for the higher order formula can

also be solved explicitly, since they are linear in ã32, ã42, ã43, ã52, ã53, ã54. The 13th equation
was already satisfied by ã65. The remaining coefficients of the first column of Ã (i.e., ã21,
ã31, ã41, ã51 and ã61) are found by expression (2).

We proceed by evaluating the weights of the lower order formula. Thus, we set

ŵ′5 =


c4(c2 − c4)(2ã32c2(6c2c4 − 4c2 − 4c4 + 3) + c3(c2 − c3)(c3 − c4))

−2ã42c2c3
(
c2

2(6c3 − 4) + c2
(
3− 6c2

3
)
+ c3(4c3 − 3)

)
+2ã43c2

3
(
c2

2(4− 6c3) + c2
(
6c2

3 − 3
)
+ (3− 4c3)c3

)


24



ã32c3
2c2

4c5 − ã32c3
2c4c2

5 − ã32c2
2c3

4c5 + ã32c2
2c4c3

5 + ã32c2c3
4c2

5 − ã32c2c2
4c3

5
−ã42c3

2c2
3c5 + ã42c3

2c3c2
5 + ã42c2

2c3
3c5 − ã42c2

2c3c3
5 − ã42c2c3

3c2
5 + ã42c2c2

3c3
5

−ã43c2
2c3

3c5 + ã43c2
2c2

3c2
5 + ã43c2c4

3c5 − ã43c2c2
3c3

5 − ã43c4
3c2

5 + ã43c3
3c3

5
+ã52c2c3c4(c2 − c3)(c2 − c4)(c3 − c4)

+ã53c2
3c4(c2 − c3)(c2 − c4)(c3 − c4) + ã54c2

2c2
3c2

4 − ã54c2
2c3c3

4
−ã54c2c3

3c2
4 + ã54c2c3c4

4 + ã54c3
3c3

4 − ã54c2
3c4

4


and conclude by finding ŵ′1, ŵ′2, ŵ′3, ŵ′4, after solving the linear system

ŵ′ · e = 1, ŵ′ · c = 1
2

, ŵ′ · c2 =
1
3

, ŵ′ · c3 =
1
4

,

with respect to these parameters.
Finally, the coefficients in vectors w and ŵ can be found explicitly by expressions (3).

3. Stability Intervals

Having at hand seven free coefficients instead of four we may exploit them in various
directions. Here, we will try to derive a pair that performs best on periodic problems.

Following Horn [7] or Dormand et al. [1], we consider the test problem y′′ = µ2y (with
µ complex). Since y′ = µy, we conclude to the following recursions for y and y′,

yn+1 =

{
1 + v2w

(
I − v2 Ã

)−1
e + v

(
1 + v2w

(
I − v2 Ã

)−1
c
)}
· yn = R(v) · yn,

y′n+1 =

{
vw′
(

I − v2 Ã
)−1

e +
(

1 + v2w′
(

I − v2 Ã
)−1

c
)}
· y′n = R∗(v) · y′n,

with v = µh. Thus, the RKN methods posses a couple of stability regions associated
with their higher orders formulas. Namely, for y and y′. We may produce them requi ·ring
|R(v)| < 1 and |R∗(v)| < 1. This type of stability analysis is associated to the co ·rresponding
A-stability of Runge–Kutta methods.

Let, for i ≥ 1,

δ2 i−1 = wÃi−1e, δ2 i = wÃi−1c, δ′2 i−1 = w′ Ãi−1e, δ′2i = w′ Ãi−1c,
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with δ′−1 = 0, δ0 = δ−1 = δ′0 = 1. Applying the formal Neumann expansion of (I − zA)−1

and since Ã is strictly lower triangular, we may write

R(v) = 1 + v +
1
2

v2 +
1
6

v3 +
1
24

v4 +
1

120
v5 +

1
720

v6 + δ6v7 + δ7v8 + δ8v9 + δ9v10,

R∗(v) = 1+ v+
1
2

v2 +
1
6

v3 +
1

24
v4 +

1
120

v5 +
1

720
v6 + δ′7v7 + δ′8v8 + δ′9v9 + δ′10v10 + δ′11v11.

The stability region defined by R(v) is characterized by its first cuts (i.e., those clos-
est to origin) with the two axes, i.e., the real and imaginary axes. Thus, we define the
corresponding intervals. Namely (i) the real stability interval (−ṽ, 0) (ii) the imaginary
stability interval (0, v̂) with both ṽ and v̂ being real numbers. Analogously we define the
corresponding intervals (−ṽ∗, 0) and (0, v̂∗) associated with R∗(v).

We focus on pairs with long imaginary stability intervals since such pairs are expected
to perform better on periodic problems. For deriving such a method we expressed R(v)
and R∗(v) with respect to the free parameters and v. Let us assume v = v

√
−1, v ∈ R,

i.e., concentrate on the imaginary axis. Then, for a sixth order method, we conclude to

|R(v)|2 = (1− v2

2
+

v4

24
− v6

720
+ δ7v8 − δ9v10)2 + (v− v3

6
+

v5

120
− δ6v7 + δ8v9)2

and

|R∗(v)|2 = (1− v2

2
+

v4

24
− v6

720
+ δ′8v8− δ′10v10)2 + (v− v3

6
+

v5

120
− δ′7v7 + δ′9v9− δ′11v11)2.

Then, we used Differential Evolution Algorithm [8,9] for maximizing v with respect
to |R(v)|2 ≤ 1 and |R∗(v)|2 ≤ 1. We manage to get such a pair (named NEW6(4)) with
coefficients presented in the Appendix A as part of a MATLAB [10] listing.

In fact, we compute with these coefficients

|R(v)|2 ≈ (
1− v2/2 + v4/24− v6/720

+2.477993886208964524× 10−5v8 − 2.15355114080193519× 10−7v10

)2

+

(
v− v3/6 + v5/120

+1.984043154492196× 10−4v7 − 2.5011619564014669781× 10−6v9

)2

.

Observe that |R(v)|2 ≤ 1 for v ∈ [0, 5.39] and thus we get an imaginary stability
interval for y. Analogously, we may work for y′.

The main characteristics of the major RKN pairs of orders 6(4) that have appeared
until now in the literature are given in Table 1. As can be seen there, they do not posses an
imaginary stability interval for y′. In addition, the new pair has longer stability interval for
y. The corresponding regions are presented in Figures 1 and 2.

Table 1. Basic characteristics of the RKN Pairs considered.

Pair Stages
∥∥∥T(p+1)

∥∥∥
2

∥∥∥T ′(p+1)
∥∥∥

2
v̂ v̂∗ ṽ ṽ∗

PT6(4) [4] 5 8.4× 10−5 6.7× 10−5 4.39 0 5.32 5.33
DEP6(4) [1] 5 8.7× 10−5 7.7× 10−5 3.27 0 6.95 6.93
ER6(4) [5] 6 4.9× 10−9 4.8× 10−9 1.82 0 4.61 4.61
NEW6(4) 6 1.1× 10−5 1.4× 10−5 5.39 4.44 5.13 5.19

v̂: Length of Imaginary Stability Interval associated with y. v̂∗: Length of Imaginary Stability Interval associated
with y′. ṽ: Length of Real Stability Interval associated with y. ṽ∗: Length of Real Stability Interval associated
with y′.

∥∥∥T(p+1)
∥∥∥

2
: Euclidean norm of the vector consisting of all the principal truncation error coefficients of the

higher order method of a pair (regarding the solution y).
∥∥∥T′(p+1)

∥∥∥
2
: as before, but regarding y′.
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Figure 1. Absolute stability regions for y.
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Figure 2. Absolute stability regions for y′.
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4. Numerical Tests

We tested the following pairs

• The five stages (effectively) pair PT6(4) given in [4];
• The five stages (effectively) pair DEP6(4) given in [1];
• The six stages pair ER6(4) given in [5];
• The six stages Runge–Kutta–Nyström pairs of orders 6(4) presented here.

The problems with periodic solutions selected for tests are the following. All these
examples were tested using the listing in the Appendix A and changing only the coefficients
in the preamble according to the pair under consideration.
(A) The model problem

y′′ = −9y, y(0) = 1, y′(0) = 0, x ∈ [0, 10π],

with analytical solution y(x) = cos(3x). We integrated the problem in the interval x ∈
[0, 10π] for tolerances 10−5, 10−6, · · · , 10−11.

The efficiency plot recording the stages used by the four pairs versus the maximum
global errors observed over the whole grid is presented in Figure 3. All figures of efficiency
plots are in log-log scale.

103 104

stages

10-14

10-12

10-10

10-8

10-6

10-4

lo
g
 e

rr
o
r

Model

ER6(4)

NEW6(4)

PT6(4)

DEP6(4)

Figure 3. Efficiency plots for the model problem.

(B) In-homogeneous problem [11]

y′′(x) = −100y(x) + 99 sin(x), y(0) = 1, y′(0) = 11,

with analytical solution

y(x) = cos(10x) + sin(10x) + sin(x).

We integrated the problem in the interval x ∈ [0, 10π] for tolerances 10−5, 10−6, · · · ,
10−11. The efficiency plot recording the stages used by the four pairs versus the maximum
global errors observed over the whole grid is presented in Figure 4.
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104

stages

10-14

10-12

10-10

10-8

10-6

10-4

lo
g
 e

rr
o
r

Inhomogeneous

ER6(4)

NEW6(4)

PT6(4)

DEP6(4)

Figure 4. Efficiency plots for the Inhomogeneous problem.

(C) Bessel problem [12]
The well known Bessel equation

y′′ = −y(x) · 1 + 400x2

4x2 ,

is verified by an analytical solution of the form

y(x) = J0(10x) ·
√

x,

with J0 being the zeroth order Bessel function of the first kind. We solved the above equation
in the interval [1, 10π] for tolerances 10−5, 10−6, · · · , 10−11. The efficiency plot recording
the stages used by the four pairs versus the maximum global errors observed over the
whole grid is presented in Figure 5.

104

stages

10-14

10-12

10-10

10-8

10-6

10-4

lo
g
 e

rr
o
r

Bessel

ER6(4)

NEW6(4)

PT6(4)

DEP6(4)

Figure 5. Efficiency plots for Bessel problem.
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(D) The Duffing equation
Next, we choose the equation [13]

y′′(x) = −y(x)− y(x)3 +
1

500
· cos(1.01x),

y(0) = 0.2004267280699011, y′(0) = 0,

with an approximate analytical solution

y(x) ≈
0.2001794775368452 cos(1.01x) + 2.469461432611× 10−4 cos(3.03x)
+3.040149839× 10−7 cos(5.05x) + 3.743495× 10−10 cos(7.07x)

+4.609× 10−13 cos(9.09x) + 6× 10−16 cos(11.11x).

We solved the above equation in the interval
[
0, 20.5

1.01 π
]

for tolerances 10−5, 10−6, · · · ,
10−11. The efficiency plot recording the stages used by the four pairs versus the maximum
global errors observed over the whole grid is presented in Figure 6.

103

stages

10-14

10-12

10-10

10-8

10-6

10-4

lo
g
 e

rr
o
r

Duffing

ER6(4)

NEW6(4)

PT6(4)

DEP6(4)

Figure 6. Efficiency plots for the Duffing problem.

(E) semi-Linear system
The nonlinear problem proposed by Franco and Gomez [14] follows.

y′′(x) =

(
−199 −198

99 98

)
· y(x) +

(
(y1 + y2)

2 + sin2(10x)− 1

(y1 + 2y2)
2 − 10−6 sin 2(x)

)
,

x ∈ [0, 10π],

with theoretical solution

y(x) =
(

2 cos(10x)− 10−3 sin(x)
− cos(10x) + 10−3 sin(x)

)
.

Notice that y1, y2 may be understood here as components of vector y. We solved the
above equation in the interval

[
0, 20.5

1.01 π
]

for tolerances 10−5, 10−6, · · · , 10−10. The efficiency
plot recording the stages used by the four pairs versus the maximum global errors observed
over the whole grid is presented in Figure 7.
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104

stages

10-12

10-10

10-8

10-6

10-4

lo
g
 e

rr
o
r

semi-Linear

ER6(4)

NEW6(4)

PT6(4)

DEP6(4)

Figure 7. Efficiency plots for semi-Linear problem.

(F) Wave equation
We finally consider the Wave equation of the form [15],

∂2y
∂t2 = 4

∂2y
∂r2 + sin t · cos

( πr
100

)
, 0 ≤ r ≤ 100, t ∈ [0, 10π],

∂y
∂r

(t, 0) =
∂y
∂r

(t, 100) = 0

y(0, r) ≡ 0,
∂y
∂t

(0, r) =
1002

4π2 − 1002 cos
πr
100

,

with the exact solution

y(t, r) =
1002

4π2 − 1002 · sin(t) · cos
πr
100

.

We semi-discretisize ∂2y
∂r2 with fourth order symmetric differences at internal points

and one sided differences of the same order at the boundaries and conclude to the system:


y′′1
y′′2

y′′N+1

 =
4

(∆r)2



− 415
72 8 −3 8

9 − 1
8 0 · · ·

257
144 − 10

3
7
4 − 2

9
1

48 0 · · ·

− 1
12

4
3 − 5

2
4
3 − 1

12
...

0
. . . . . . . . . . . . . . . 0

... − 1
12

4
3 − 5

2
4
3 − 1

12

· · · 0 1
48 − 2

9
7
4 − 10

3
257
144

· · · 0 − 1
8

8
9 −3 8 − 415

72


·


y1
y2
...

yN+1



+ sin t ·



cos
(

0·∆r
r · π

)
cos
(

1·∆r
r · π

)
...

cos
(

N·∆r
r · π

)


.
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By choosing ∆r = 1
4 we arrive at a constant coefficients linear system with N = 401.

Then y1 ≈ y(t, 0), y2 ≈ y(t, ∆r), y3 ≈ y(t, 2∆r), · · · , y401 ≈ y(t, 400∆r). In addition, here
y1, y2, · · · may be understood as components of vector y.

We solved the above equation in the interval [0, 10π] for tolerances 10−7.5, 10−8, · · · ,
10−9.5, 10−10. The efficiency plot recording the stages used by the four pairs versus the
maximum global errors observed over the whole grid is presented in Figure 8.
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g
 e
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o
r

Wave
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NEW6(4)

PT6(4)

DEP6(4)

Figure 8. Efficiency plots for Wave equation.

The wave equation is a mildly stiff problem. This explains the peculiar performance
of the pairs. The maximum accuracy is limited due to the space discretezation error
there. Even so, the new pair reaches it faster. Lower order finite difference methods (e.g.,
Crank–Nicolson) have difficulties in attaining such high accuracies as NEW6(4).

The overall results indicate the superiority of the new pair over non stiff problems
with periodic solutions.

It is standard in RKN literature to present comparisons with stages vs. error. This
is independent from the hardware used and programming issues. Besides, some runs
here ended after very few stages and the timing might be unreliable even using the same
machine. In the following we present a couple of figures (in log-log scale) with efficiency
plots including times vs. accuracies. The tests were carried on AMD Ryzen 9-3900X, 12-Core
Processor at 3.79 GHz. Parallel computation of MATLAB was not applied in time or space
direction of the problems.

The similarity of the above Figures 9 and 10 with the corresponding Figures 5 and 7,
respectively, is indicative.
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Figure 9. Efficiency plots (time vs. accuracy) for the Bessel problem.
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Figure 10. Efficiency plots (time vs. accuracy) for the semi linear problem.

5. Conclusions

We considered the Runge–Kutta–Nyström pairs of orders 6(4) for addressing the
special second order Initial Value Problem. We focused on problems with periodic solutions.
Thus, we proposed a new family of such pairs and derived a certain representative with
extended imaginary stability regions. The extensive results justified our effort.
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Appendix A

We present a MATLAB listing with a naive program outlining the new implementation
NEW6(4). We give explanations for inputs and outputs in the listing. In the following
program the coefficients for ŵ are given in the vector ww while the coefficients for ŵ′ are
given in vector dww.

%--------------------------------------------------------------------------
function [xout, yout ,dyout, iaccept, ireject] = ...

rkn64new(FunFcn, x0, xfinal, z0, dz0, tol);
% INPUT
% FunFcn : The function
% x0 : Initial x0
% xfinal : Final point of integration
% z0 & dz0: Initial values of zeta and zeta’
% tol : Tolerance
%
% OUTPUT
% xout : Mesh taken
% yout : Values of zeta in the mesh
% dyout : Values of zeta’ in the mesh
% iaccept : Number of accepted steps
% ireject : Number of rejected steps

% NEW RKN6(4) pair
a =[[0,0,0,0,0,0]

[0.01482711807655034,0,0,0,0,0]
[0.00062449844578251,0.065061429939298668,0,0,0,0]
[0.05622389072652324,0.058601160078843646,0.078098199892575091,0,0,0]
[-0.042000614127432975,0.41744321207855056,-0.11853094859376230, ...

0.163333329204407128,0,0]
[-7.334796422344126266,19.97592645432741120,-17.41344677580923977, ...

5.680720596250579913,-0.408403852424625077,0]]’;
c=[0,0.17220405382307550,0.362452557957813777,0.62116543802427060, ...

0.91678239355014056,1]’;
w=[0.053772224335670126,0.19896228297262670,0.10189585227060081, ...

0.12786879611632362,0.01750084430477873,0];
ww=[-0.05435824461644818, 0.49413311984995589, -0.15675921515853398, ...

0.20477412600961192, 0.01221021391541433,0];
dw=[0.053772224335670126,0.24035184503078320,0.15982473703322993, ...

0.33753202308007929,0.210302183052133357,-0.00178301253189590];
dww=[-0.05435824461644818,0.59692623783922841,-0.24587851008609532, ...

0.54053707492172021,0.14672632915453185,0.01604711278706310];

ireject=0;iaccept=0;
pow = 1/6;
if nargin < 6, tol = 1.e-6; end
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% Initialization
x=x0;z=z0;dz=dz0;
xout = x0(:)’;yout = z0(:)’;dyout = dz0(:)’;
hmax = (xfinal - x0)/1; % maximum stepsize allowed
hmin = (xfinal - x0)/100000000; % minimum stepsize allowed
f = z0*zeros(1,length(c));
f(:,1) = feval(FunFcn,x,z); % first stage of~integration

% initial step
h=tol^pow/max(max(abs([dz’ f(:,1)’])),1e-2);
h=min(hmax,max(h,hmin));

% The main loop
while (x < xfinal) & (h >= hmin)

if x + h > xfinal, h = xfinal - x; end

% Compute the six slopes
for j = 1:6,

f(:,j) = feval(FunFcn, x+c(j)*h,z+c(j)*h*dz+h^2*f*a(:,j));
end

% Estimate the error and the acceptable error
delta1 = max(abs(h^2*f*(w-ww)’));
delta2 = max(abs(h*f*(dw-dww)’));
delta=max(delta1,delta2)*h;

% Update the solution only if the error is acceptable
if delta <= tol,

x = x + h;
z = z + h*dz+h^2*f*w’;
dz = dz +h*f*dw’;
iaccept=iaccept+1;
xout=[xout; x];
yout=[yout; z’];
dyout=[dyout; dz’];

else
ireject=ireject+1;

end

if delta ~= 0.0
h = min(hmax, .9*h*(tol/delta)^pow);

end
end;

if (x < xfinal)
disp(’SINGULARITY LIKELY.’)

end
%--------------------------------------------------------------------------

We proceed with an application of the above to the semi linear problem for tolerance
10−11. Thus, we write in the command window of MATLAB:

>> [xout,yout,dyout,iaccept,ireject] = rkn64new(@(x,y) [-199 -198;99 98]*y+ ...
[(y(1)+y(2))^2+sin(10*x)^2-1 (y(1)+2*y(2))^2-1e-6*sin(x)^2]’, 0, ...

10*pi, [2 -1]’,[-0.001 0.001]’, 1e-10);

After this we may extract the stages and the global error observed by typing:



Mathematics 2022, 10, 875 15 of 15

>> (iaccept+ireject)*6
ans =

25746
>> max(max(abs(yout-[2*cos(10*xout)-1e-3*sin(xout) ...

-cos(10*xout)+1e-3*sin(xout)])))
ans =

4.6527e-12

The last two numbers above correspond to the bottom rightmost square of Figure 7.
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