Article

New Modular Fixed-Point Theorem in the Variable Exponent Spaces $\ell_{p(.)}$

Amnay El Amri ${ }^{1}$ and Mohamed A. Khamsi ${ }^{2, *}$ (D)
1 Faculté des Sciences Ben Msik (LAMS), Hassan II University, Casablanca 21100, Morocco; amnayelamri95@gmail.com or amnay.elamri-etu@etu.univh2c.ma
2 Department of Applied Mathematics and Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
* Correspondence: mohamed.khamsi@ku.ac.ae

Citation: El Amri, A.; Khamsi, M.A. New Modular Fixed Point Theorem in the Variable Exponent Spaces $\ell_{p(.)}$. Mathematics 2022, 10, 869. https://
doi.org/10.3390/math10060869
Academic Editor: Christopher Goodrich

Received: 19 February 2022
Accepted: 7 March 2022
Published: 9 March 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this work, we prove a fixed-point theorem in the variable exponent spaces $\ell_{p(.)}$, when $p^{-}=1$ without further conditions. This result is new and adds more information regarding the modular structure of these spaces. To be more precise, our result concerns ρ-nonexpansive mappings defined on convex subsets of $\ell_{p(.)}$ that satisfy a specific condition which we call "condition of uniform decrease".

Keywords: electrorheological fluid; fixed point; modular vector space; Nakano; strictly convex; uniformly convex

MSC: primary 47H09; 47H10

1. Introduction

Variable exponent spaces first appeared in a work of Orlicz in 1931 [1] (see also [2]), where he defined the following space:

$$
X=\left\{\left\{x_{n}\right\} \in \mathbb{R}^{\mathbb{N}}, \quad \sum_{n=0}^{\infty}\left|\lambda x_{n}\right|^{p(n)}<\infty, \text { for some } \lambda>0\right\} .
$$

They became very important because of their use in the mathematical modeling of non-Newtonian fluids [3,4]. The typical example of such fluids are electrorheological fluids, the viscosity of which exhibits dramatic and sudden changes when exposed to an electric or magnetic field. The necessity of a clear understanding of the spaces with variable integrability is reinforced by their potential applications.

The properties of this vector space have been extensively studied in [5-7]. The norm that was commonly used to investigate the geometrical properties of X is the Minkowski functional associated to the modular unit ball and it is known as the Luxembourg norm. Whereas in the case of classical ℓ_{p} spaces, the natural norm is suitable for making calculations, the Luxembourg norm on X is very difficult to manipulate.

In 1950, Nakano [8] introduced for the first time the notion of modular vector space (see also $[9,10]$). This abstract point of view has been crucial to the development of the research on geometrical and topological properties of the variable exponent spaces $\ell_{p(.)}$.

In this work, we will introduce a class of subsets of $\ell_{p(.)}$ that have some interesting geometrical properties. This will allow us to prove a new fixed-point theorem concerning $\ell_{p(.)}$ spaces. For the study of metric fixed-point theory, we recommend the book [9].

2. Basic Notations and Terminology

For a function $p: \mathbb{N} \longrightarrow[1,+\infty)$, define the vector space

$$
\ell_{p(.)}=\left\{\left\{x_{n}\right\} \in \mathbb{R}^{\mathbb{N}}, \quad \sum_{n=0}^{\infty} \frac{1}{p(n)}\left|\lambda x_{n}\right|^{p(n)}<\infty, \text { for some } \lambda>0\right\}
$$

Nakano $[8,11]$ introduced the concept of modular vector space.
Proposition 1 ([6,9]). Consider the function $\rho: \ell_{p(.)} \longrightarrow[0,+\infty]$ defined by

$$
\rho(x)=\rho\left(\left\{x_{n}\right\}\right)=\sum_{n=0}^{\infty} \frac{1}{p(n)}\left|x_{n}\right|^{p(n)}
$$

then ρ satisfies the following properties
(1) $\rho(x)=0$ if and only if $x=0$,
(2) $\rho(\alpha x)=\rho(x)$, if $|\alpha|=1$,
(3) $\rho(\alpha x+(1-\alpha) y) \leq \alpha \rho(x)+(1-\alpha) \rho(y), \forall \alpha \in[0,1]$.
for any $x, y \in X$. The function ρ is called a convex modular.

For any subset I of \mathbb{N}, we consider the functional

$$
\rho_{I}(x)=\sum_{n \in I}\left|x_{n}\right|^{p(n)} .
$$

If $I=\varnothing$, we set $\rho_{I}(x)=0$. We define on modular spaces a modular topology which is similar to the topology induced by a metric.

Definition 1. Consider the vector space $\ell_{p(.)}$.
(a) We say that a sequence $\left\{x_{n}\right\} \subset \ell_{p(.)}$ is ρ-convergent to $x \in \ell_{p(.)}$ if and only if $\rho\left(x_{n}-x\right) \longrightarrow 0$. The ρ-limit is unique if it exists.
(b) A sequence $\left\{x_{n}\right\} \subset \ell_{p(.)}$ is called ρ-Cauchy if $\rho\left(x_{n}-x_{m}\right) \longrightarrow 0$ as $n, m \longrightarrow+\infty$.
(c) A nonempty subset $C \subset \ell_{p(.)}$ is called ρ-closed if for any sequence $\left\{x_{n}\right\} \subset C$ which ρ converges to x implies that $x \in C$.
(d) A nonempty subset $C \subset \ell_{p(.)}$ is called ρ-bounded if and only if

$$
\delta_{\rho}(C)=\sup \{\rho(x-y), \quad x, y \in C\}<\infty .
$$

Note that ρ satisfies the Fatou property, i.e.,

$$
\rho(x-y) \leq \liminf _{n \rightarrow+\infty} \rho\left(x-y_{n}\right)
$$

holds whenever $\left\{y_{n}\right\} \rho$-converges to y, for any $x, y, y_{n} \in \ell_{p(.)}$. Throughout, we will use the notation $B_{\rho}(x, r)$ to denote the ρ-ball with radius $r \geq 0$ centered at $x \in \ell_{p(.)}$ and defined as

$$
B_{\rho}(x, r)=\left\{y \in \ell_{p(.)}, \rho(x-y) \leq r\right\} .
$$

Note that Fatou property holds if and only if the ρ-balls are ρ-closed. That is, all ρ-balls are ρ-closed in $\ell_{p(.)}$.

Definition 2. Let $C \subset \ell_{p(.)}$ be a nonempty subset. A mapping $T: C \longrightarrow C$ is called ρ-Lipschitzian if there exists a constant $K \geq 0$ such that

$$
\rho(T(x)-T(y)) \leq K \rho(x-y), \quad \forall x, y \in C .
$$

If $K=1, T$ is called ρ-nonexpansive. A point $x \in C$ is called a fixed point of T if $T(x)=x$.
The concept of modular uniform convexity was first introduced by Nakano [11], but a weaker definition of modular uniform convexity called (UUC2) was introduced in [9] and seems to be more suitable to hold in $\ell_{p(.)}$ when weaker assumptions on the exponent function $p(\cdot)$ hold. The following definition is given in terms of subsets because of the subsequent results discovered in this work.

Definition 3 ([9]). Consider the vector space $\ell_{p(.)}$. Let C be a nonempty subset of $\ell_{p(.)}$.

1. Let $r>0$ and $\varepsilon>0$. Define

$$
D_{2}(r, \varepsilon)=\left\{(x, y) \in \ell_{p(.)} \times \ell_{p(.)}, \rho(x) \leq r, \rho(y) \leq r, \rho\left(\frac{x-y}{2}\right) \geq \varepsilon r\right\}
$$

If $D_{2}(r, \varepsilon) \cap(C \times C) \neq \varnothing$, let

$$
\delta_{2, C}(r, \varepsilon)=\inf \left\{1-\frac{1}{r} \rho\left(\frac{x+y}{2}\right),(x, y) \in D_{2}(r, \varepsilon) \cap(C \times C)\right\} .
$$

If $D_{2}(r, \varepsilon) \cap(C \times C)=\varnothing$, we set $\delta_{2}(r, \varepsilon)=1$. We say that ρ satisfies (UC2) on C if for every $r>0$ and $\varepsilon>0$, we have $\delta_{2, C}(r, \varepsilon)>0$. When $C=\ell_{p(.)}$, we remark that for every $r>0, D_{2}(r, \varepsilon) \neq \varnothing$, for $\varepsilon>0$ small enough. In this case, we will use the notation $\delta_{2, \ell_{p(.)}}=\delta_{2}$.
2. We say that ρ satisfies (UUC2) on C if for every $s \geq 0$ and $\varepsilon>0$, there exists $\eta_{2}(s, \varepsilon)>0$ depending on s and ε such that

$$
\delta_{2, C}(r, \varepsilon) \geq \eta_{2}(s, \varepsilon)>0 \text { for } r>s .
$$

3. We say that ρ is strictly convex on C (in short (SC)), if for every $x, y \in C$ such that

$$
\rho(x)=\rho(y) \text { and } \rho\left(\frac{x+y}{2}\right)=\frac{\rho(x)+\rho(y)}{2} \text { imply } x=y .
$$

In the study of the properties of $\ell_{p(.)}$ (see [12]), the following values are very important:

$$
p^{+}=\sup _{n \in \mathbb{N}} p(n) \text { and } p^{-}=\inf _{n \in \mathbb{N}} p(n)
$$

In [5], the authors proved that for $\ell_{p(.)}$, with $p^{-}>1$, the modular is (UUC2). This modular geometrical property allows to prove the following fixed-point result:

Theorem 1. Consider the vector space $\ell_{p(.)}$. Assume $p^{-}>1$. Let C be a nonempty ρ-closed convex ρ-bounded subset of $\ell_{p(.)}$. Let $T: C \longrightarrow C$ be a ρ-nonexpansive mapping. Then T has a fixed point.

In [13], the authors proved a similar fixed-point theorem in the case where $\{n \in \mathbb{N}, p(n)=1\}$ has at most one element which is an improvement from $p^{-}>1$.

Before we close this section, we recall the following lemma, of a rather technical nature, which plays a crucial role when dealing with $\ell_{p(.)}$ spaces.

Lemma 1. The following inequalities hold:
(i) [14]. If $p \geq 2$, then

$$
\left|\frac{a+b}{2}\right|^{p}+\left|\frac{a-b}{2}\right|^{p} \leq \frac{1}{2}\left(|a|^{p}+|b|^{p}\right)
$$

for any $a, b \in \mathbb{R}$.
(ii) [15]. If $1<p \leq 2$, then

$$
\left|\frac{a+b}{2}\right|^{p}+\frac{p(p-1)}{2}\left|\frac{a-b}{|a|+|b|}\right|^{2-p}\left|\frac{a-b}{2}\right|^{p} \leq \frac{1}{2}\left(|a|^{p}+|b|^{p}\right)
$$

for any $a, b \in \mathbb{R}$ such that $|a|+|b| \neq 0$.
In this work, using a different approach, we obtain some fixed-point results when $p^{-}=1$ without the known conditions on the function $p(\cdot)$.

3. Uniform Decrease Condition

First, we introduce an interesting class of subsets of $\ell_{p(.)}$, which will play an important part in our work. In particular, they enjoy similar modular geometric properties as $\ell_{p(.)}$ when $p^{-}>1$. Before, let us introduce the following notations:

$$
I_{a}=\{n \in \mathbb{N} ; p(n) \geq a\} \text { and } J_{a}=\mathbb{N} \backslash I_{a}=\{n \in \mathbb{N} ; p(n)<a\}
$$

where $a \in[1,+\infty)$.
Definition 4. Consider the vector space $\ell_{p(.)}$. A nonempty subset C of $\ell_{p(.)}$ is said to satisfy the uniform decrease condition (in short (UD)) if for any $\alpha>0$, there exists $a>1$ such that

$$
\sup _{x \in C} \rho_{J_{a}}(x) \leq \alpha
$$

Obviously the condition (UD) passes from a set to its subsets. Moreover, if $p(\cdot)$ is identically equal to 1 , then the only $(U D)$ subset is $C=\{0\}$. Since this case is not interesting, we will assume throughout that $p(\cdot)$ is not identically equal to 1 . Moreover, if $p^{-}>1$, then any nonempty subset of $\ell_{p(.)}$ satisfies the condition (UD). Indeed, let C be a nonempty subset of $\ell_{p(.)}$ and $\alpha>0$. Let $a \in\left(1, p^{-}\right)$. Then $J_{a}=\varnothing$ which implies

$$
\sup _{x \in C} \rho_{J_{a}}(x)=0 \leq \alpha
$$

Therefore, the condition (UD) is interesting to study only when $p^{-}=1$ and $p(\cdot)$ is not identically equal to 1 , which will be the case throughout.

Example 1. Consider the function $p(\cdot)$ defined by

$$
p(n)=1+\frac{1}{n+1}, \quad n \in \mathbb{N}
$$

Consider the subset

$$
C=\left\{x \in \ell_{p(.)} ;\left|x_{n}\right| \leq \frac{1}{(n+1)^{2}}, n \in \mathbb{N}\right\}
$$

C is nonempty, convex and ρ-closed. Let us show that it satisfies the condition (UD). Indeed, fix $\alpha>0$. Let $N \geq 1$ be such that $\sum_{k \geq N} \frac{1}{(k+1)^{2}} \leq \alpha$. Set $a=1+\frac{1}{N}$. We have

$$
\begin{aligned}
\rho_{J_{a}}(x) & =\sum_{n \in J_{a}} \frac{\left|x_{n}\right|^{p(n)}}{p(n)} \\
& \leq \sum_{n \geq N} \frac{\left|x_{n}\right|^{p(n)}}{p(n)} \\
& \leq \sum_{n \geq N} \frac{1}{p(n)} \frac{1}{(n+1)^{2 p(n)}} \\
& \leq \sum_{n \geq N} \frac{1}{(n+1)^{2}} \\
& \leq \alpha,
\end{aligned}
$$

for all $x \in C$, which proves our claim that C is (UD).
Before we give a characterization of subsets which satisfy the condition (UD), we need to introduce a new class of subsets of $\ell_{p(.)}$.

Definition 5. Consider the vector space $\ell_{p(.)}$ such that $p^{-}=1$ and $p(\cdot)$ not identically equal to 1 . Let $f:(0,+\infty) \rightarrow(1,2]$ be a nondecreasing function. Define the set C_{f} to be

$$
C_{f}=\left\{x \in \ell_{p(.)} ; \quad \rho_{J_{f(\alpha)}}(x) \leq \alpha, \text { for all } \alpha>0\right\} .
$$

Note that C_{f} is never empty since $0 \in C_{f}$. Some of the basic properties of C_{f} are given in the following lemma.

Lemma 2. Consider the vector space $\ell_{p(.)}$ such that $p^{-}=1$ and $p(\cdot)$ not identically equal to 1 . Let $f:(0,+\infty) \rightarrow(1,2]$ be a non-decreasing function. Then the following properties hold:

1. C_{f} is convex.
2. C_{f} is symmetrical, i.e., $-z \in C_{f}$ whenever $z \in C_{f}$.
3. The Fatou property implies easily that C_{f} is ρ-closed as a subset of $\ell_{p(.)}$ which in turn implies that C_{f} is ρ-complete.

Proposition 2. Consider the vector space $\ell_{p(.)}$ such that $p^{-}=1$ and $p(\cdot)$ not identically equal to 1. A subset C of $\ell_{p(.)}$ satisfies the condition (UD) if and only if there exists $f:(0,+\infty) \rightarrow(1,2]$ non-decreasing such that $C \subset C_{f}$.

Proof. First, we prove that C_{f} satisfies the condition (UD). Fix $\alpha>0$. If we take $a=f(\alpha)$, we obtain

$$
\sup _{x \in \mathrm{C}_{f}} \rho_{J_{a}}(x) \leq \alpha
$$

which proves our claim. Clearly, any subset C of C_{f} will also satisfy the condition (UD). Conversely, let C be a nonempty subset of $\ell_{p(.)}$ which satisfies the condition (UD). For any $\alpha>0$, there exists $a>1$ such that $\sup _{x \in C} \rho_{J_{a}}(x) \leq \alpha$. Set

$$
[\alpha]=\left\{a>1 ; \sup _{x \in C} \rho_{J_{a}}(x) \leq \alpha\right\} .
$$

Define

$$
f(\alpha)= \begin{cases}2 & \text { if }[\alpha] \subset[2,+\infty) \\ \sup ([\alpha] \cap(1,2]) & \text { if }[\alpha] \cap(1,2] \neq \varnothing\end{cases}
$$

Clearly, f is well defined and $f(\alpha) \in(1,2]$, for all $\alpha>0$. Let α and β be such that $0<\alpha \leq \beta$. We claim that $f(\alpha) \leq f(\beta)$. Indeed, it is easy to see that $[\alpha] \subset[\beta]$. If $[\alpha] \cap(1,2] \neq \varnothing$, then we have $[\beta] \cap(1,2] \neq \varnothing$ which easily implies $f(\alpha) \leq f(\beta)$. Otherwise, assume $[\alpha] \subset[2,+\infty)$.

Let $a \in[\alpha]$. We have $a \geq 2$ and $a \in[\beta]$. By definition of the sets J, we have $J_{2} \subset J_{a}$. Since $\rho_{J_{2}}(x) \leq J_{a}(x)$, for all $x \in \ell_{p(.)}$, we obtain

$$
\sup _{x \in C} \rho_{J_{2}}(x) \leq \sup _{x \in C} \rho_{J_{a}}(x) \leq \beta
$$

i.e., $2 \in[\beta]$. This fact, will force $f(\beta)=2$. In all cases, we have $f(\alpha) \leq f(\beta)$. In other words, the function $f:(0,+\infty) \rightarrow(1,2]$ is non-decreasing. Finally, let us show that $C \subset \ell_{g}$, where $g(\alpha)=(1+f(\alpha)) / 2$, for all $\alpha>0$. Since $1<f(\alpha)$, then we have $1<g(\alpha)<f(\alpha)$, for all $\alpha>0$. If $[\alpha] \subset[2,+\infty)$, pick $a \in[\alpha]$. Then $g(\alpha)=3 / 2<a$ which implies $J_{g(\alpha)} \subset J_{a}$. Hence

$$
\rho_{J_{g(\alpha)}}(x) \leq \rho_{J_{a}}(x), \text { for all } x \in C
$$

which implies $\sup _{x \in C} \rho_{J_{g(\alpha)}}(x) \leq \sup _{x \in C} \rho_{J_{a}}(x) \leq \alpha$. Otherwise, assume $[\alpha] \cap(1,2] \neq \varnothing$, then $f(\alpha)=\sup ([\alpha] \cap(1,2])$. Since $g(\alpha)<f(\alpha)$, there exists $a \in[\alpha]$ such that $g(\alpha)<a \leq f(\alpha)$. Similar argument will show that

$$
\sup _{x \in C} \rho_{J_{g(\alpha)}}(x) \leq \sup _{x \in C} \rho_{J_{a}}(x) \leq \alpha
$$

In both cases, we showed that $\sup _{x \in C} \rho_{J_{g(\alpha)}}(x) \leq \alpha$, for all $\alpha>0$, i.e., $C \subset C_{g}$ as claimed.
Proposition 2 allows us to focus on the subsets C_{f} instead of subsets which satisfy the condition $(U D)$. The next result is amazing and surprising since it tells us that the subsets C_{f} enjoy nice modular geometric properties despite the fact that $p^{-}=1$.

Theorem 2. Consider the vector space $\ell_{p(.)}$ such that $p^{-}=1$ and $p(\cdot)$ not identically equal to 1 . Let $f:(0,+\infty) \rightarrow(1,2]$ be a non-decreasing function. Then, ρ is $(U U C 2)$ on C_{f}.

Proof. Let $r>0$ and $\varepsilon>0$. Let $x, y \in C_{f}$ such that $\rho(x) \leq r, \rho(y) \leq r$ and $\rho\left(\frac{x-y}{2}\right) \geq r \varepsilon$. Since ρ is convex, we have

$$
r \varepsilon \leq \rho\left(\frac{x-y}{2}\right) \leq \frac{\rho(x)+\rho(y)}{2} \leq r
$$

which implies $\varepsilon \leq 1$. Set $\alpha=\frac{r \varepsilon}{2}$. The properties of C_{f} imply $\frac{x-y}{2} \in C_{f}$. So

$$
\rho_{J_{f(\alpha)}}\left(\frac{x-y}{2}\right) \leq \alpha
$$

which implies

$$
\rho_{I_{f(\alpha)}}\left(\frac{x-y}{2}\right)=\rho\left(\frac{x-y}{2}\right)-\rho_{J_{f(\alpha)}}\left(\frac{x-y}{2}\right) \geq r \varepsilon-\alpha=\frac{r \varepsilon}{2} .
$$

Next, set

$$
K=I_{f(\alpha)} \cap\{n, p(n) \geq 2\} \text { and } L=I_{f(\alpha)} \cap\{n, p(n)<2\} .
$$

Since $I_{f(\alpha)}=K \cup L$, we obtain $\rho_{I_{f(\alpha)}}(z)=\rho_{K}(z)+\rho_{L}(z)$, for all $z \in C_{f}$. From our assumptions, we have

$$
\rho_{K}\left(\frac{x-y}{2}\right) \geq \frac{r \varepsilon}{4} \text { or } \rho_{L}\left(\frac{x-y}{2}\right) \geq \frac{r \varepsilon}{4} .
$$

Assume first that

$$
\rho_{K}\left(\frac{x-y}{2}\right) \geq \frac{r \varepsilon}{4} .
$$

Using Lemma 1, we obtain

$$
\rho_{K}\left(\frac{x+y}{2}\right)+\rho_{K}\left(\frac{x-y}{2}\right) \leq \frac{\rho_{K}(x)+\rho_{K}(y)}{2},
$$

which implies

$$
\rho_{K}\left(\frac{x+y}{2}\right) \leq \frac{\rho_{K}(x)+\rho_{K}(y)}{2}-\frac{r \varepsilon}{4} .
$$

Using the convexity of the modular, we have

$$
\rho_{L \cup J_{f(\alpha)}}\left(\frac{x+y}{2}\right) \leq \frac{\rho_{L \cup J_{f(\alpha)}}(x)+\rho_{L \cup J_{f(\alpha)}}(y)}{2}
$$

which implies

$$
\rho\left(\frac{x+y}{2}\right) \leq \frac{\rho(x)+\rho(y)}{2}-\frac{\varepsilon r}{4} \leq r\left(1-\frac{\varepsilon}{4}\right) .
$$

For the second case, assume

$$
\rho_{L}\left(\frac{x-y}{2}\right) \geq \frac{\varepsilon r}{4} .
$$

Set

$$
c=\frac{\varepsilon}{8}, L_{1}=\left\{n,\left|x_{n}-y_{n}\right| \leq c\left(\left|x_{n}\right|+\left|y_{n}\right|\right)\right\} \text { and } L_{2}=L \backslash L_{1} .
$$

Since $c<1$, we obtain

$$
\rho_{L_{1}}\left(\frac{x-y}{2}\right) \leq \sum_{n \in L_{1}} \frac{c^{p(n)}}{p(n)}\left(\frac{\left|x_{n}\right|+\left|y_{n}\right|}{2}\right)^{p(n)} \leq \frac{c}{2} \sum_{n \in L_{1}} \frac{\left|x_{n}\right|^{p(n)}+\left|y_{n}\right|^{p(n)}}{p(n)} .
$$

Hence

$$
\rho_{L_{1}}\left(\frac{x-y}{2}\right) \leq \frac{c}{2}\left(\rho_{L_{1}}(x)+\rho_{L_{1}}(y)\right) \leq \frac{c}{2}(\rho(x)+\rho(y)) \leq \frac{c}{2} r .
$$

Our assumption on $\rho_{L}\left(\frac{x-y}{2}\right)$ implies

$$
\rho_{L_{2}}\left(\frac{x-y}{2}\right)=\rho_{L}\left(\frac{x-y}{2}\right)-\rho_{L_{1}}\left(\frac{x-y}{2}\right) \geq r \frac{\varepsilon}{4}-\frac{c}{2} r \geq r \frac{\varepsilon}{8} .
$$

For any $n \in L_{2}$, we have

$$
\begin{gathered}
f\left(\frac{r \varepsilon}{2}\right)-1=f(\alpha)-1 \leq p(n)-1 \leq p(n)(p(n)-1) \\
c \leq c^{2-p(n)} \leq\left(\frac{\left|x_{n}-y_{n}\right|}{\left|x_{n}\right|+\left|y_{n}\right|}\right)^{2-p(n)} .
\end{gathered}
$$

Using Lemma 1, we obtain

$$
\left|\frac{x_{n}+y_{n}}{2}\right|^{p(n)}+\frac{(f(\alpha)-1)}{2} c\left|\frac{x_{n}-y_{n}}{2}\right|^{p(n)} \leq \frac{1}{2}\left(\left|x_{n}\right|^{p(n)}+\left|y_{n}\right|^{p(n)}\right)
$$

for any $n \in L_{2}$. Hence

$$
\rho_{L_{2}}\left(\frac{x+y}{2}\right) \leq \frac{\rho_{L_{2}}(x)+\rho_{L_{2}}(y)}{2}-\frac{r(f(\alpha)-1) \varepsilon^{2}}{128}
$$

which implies

$$
\rho\left(\frac{x+y}{2}\right) \leq r\left(1-\frac{(f(\alpha)-1) \varepsilon^{2}}{128}\right)
$$

Both cases imply that ρ is (UC2) on C_{f} with

$$
\delta_{2, C_{f}}(r, \varepsilon) \geq \min \left(\frac{\varepsilon}{4}, \frac{\left(f\left(\frac{r \varepsilon}{2}\right)-1\right) \varepsilon^{2}}{128}\right)>0
$$

since $f(a)>1$, for any $a>0$. Since $f(\cdot)$ is nondecreasing, we may set

$$
\eta_{2}(r, \varepsilon)=\min \left(\frac{\varepsilon}{4}, \frac{\left(f\left(\frac{r \varepsilon}{2}\right)-1\right) \varepsilon^{2}}{128}\right)
$$

to see that in fact ρ is (UUC2) on C_{f} which completes the proof of Theorem 2.
The following lemma will be useful:
Lemma 3. Consider the vector space $\ell_{p(.)}$ such that $p^{-}=1$ and $p(\cdot)$ not identically equal to 1 . Let $f:(0,+\infty) \rightarrow(1,2]$ be a non-decreasing function. Set $g(\alpha)=f\left(\frac{\alpha}{4}\right)$,for $\alpha>0$. We have

$$
C_{f}+C_{f}=\left\{x+y ; x, y \in C_{f}\right\} \subset C_{g} .
$$

Proof. Let $x, y \in C_{f}$. For any $n \in J_{g(\alpha)}=\left\{n ; p(n) \leq f\left(\frac{\alpha}{4}\right)\right\}$, we have

$$
\left|\frac{x_{n}+y_{n}}{2}\right|^{p(n)} \leq \frac{1}{2}\left(\left|x_{n}\right|^{p(n)}+\left|y_{n}\right|^{p(n)}\right)
$$

which implies

$$
\frac{1}{p(n)}\left|x_{n}+y_{n}\right|^{p(n)} \leq \frac{2^{p(n)-1}}{p(n)}\left(\left|x_{n}\right|^{p(n)}+\left|y_{n}\right|^{p(n)}\right)
$$

Hence

$$
\begin{aligned}
\rho_{f\left(\frac{\alpha}{4}\right)}(x+y) & \leq 2^{f\left(\frac{\alpha}{4}\right)-1}\left(\rho_{J_{f\left(\frac{\alpha}{4}\right)}}(x)+\rho_{J_{f\left(\frac{\alpha}{4}\right)}}(y)\right) \\
& \leq 2\left(\frac{\alpha}{4}+\frac{\alpha}{4}\right) \\
& =\alpha .
\end{aligned}
$$

Therefore $\rho_{J_{g(\alpha)}}(x+y) \leq \alpha$, that is $x+y \in C_{g}$, which completes the proof of Lemma 3 .
In the next section, we will prove a fixed-point theorem for modular nonexpansive mappings.

4. Application

As an application to Theorem 2, we will prove a fixed-point result for modular nonexpansive mappings. The classical ingredients will be needed. First, we prove the proximinality of ρ-closed convex subsets which satisfies the condition (UD).

Proposition 3. Consider the vector space $\ell_{p(.)}$ such that $p^{-}=1$ and $p(\cdot)$ not identically equal to 1 . Let $f:(0,+\infty) \rightarrow(1,2]$ non-decreasing. Any nonempty ρ-closed convex subset C of C_{f} is proximinal, i.e., for any $x \in C_{f}$ such that

$$
d_{\rho}(x, C)=\inf \{\rho(x-y) ; y \in C\}<\infty,
$$

there exists a unique $c \in C$ such that $d_{\rho}(x, C)=\rho(x-c)$.

Proof. Without loss of generality, we assume that $x \notin C$. Since C is ρ-closed we have, $R=d_{\rho}(x, C)>0$. For any $n \geq 1$, there exists $y_{n} \in C$ such that $\rho\left(x-y_{n}\right)<R(1+1 / n)$. We claim that $\left\{y_{n} / 2\right\}$ is ρ-Cauchy. Assume not. Then there exists a subsequence $\left\{y_{\phi(n)}\right\}$ of $\left\{y_{n}\right\}$ and $\varepsilon_{0}>0$ such that

$$
\rho\left(\frac{y_{\phi(n)}-y_{\phi(m)}}{2}\right) \geq \varepsilon_{0}
$$

for any $n>m \geq 1$. According to Lemma 3, $\left\{x-y_{\phi(n)}\right\}$ is in C_{g}, where $g(\alpha)=f(\alpha / 4)$, for any $\alpha>0$. Fix $n>m \geq 1$. We have

$$
\max \left\{\rho\left(x-y_{\phi(n)}\right), \rho\left(x-y_{\phi(m)}\right)\right\} \leq R\left(1+\frac{1}{\phi(m)}\right) .
$$

Since

$$
\varepsilon_{0}=R\left(1+\frac{1}{\phi(m)}\right) \frac{\varepsilon_{0}}{R\left(1+\frac{1}{\phi(m)}\right)} \geq R\left(1+\frac{1}{\phi(m)}\right) \varepsilon_{1}
$$

with $\varepsilon_{1}=\frac{\varepsilon_{0}}{2 R}$, and using Theorem 2 , we obtain

$$
\begin{aligned}
\rho\left(x-\frac{y_{\phi(n)}+y_{\phi(m)}}{2}\right) & \leq R(1+1 / \phi(m))\left(1-\delta_{2, C_{g}}\left(R\left(1+\frac{1}{\phi(m)}\right), \varepsilon_{1}\right)\right) \\
& \leq R(1+1 / \phi(m))\left(1-\eta_{2}\left(R, \varepsilon_{1}\right)\right)
\end{aligned}
$$

where

$$
\eta_{2}\left(R, \varepsilon_{1}\right)=\min \left(\frac{\varepsilon_{1}}{4}, \frac{\left(g\left(\frac{R \varepsilon_{1}}{2}\right)-1\right) \varepsilon_{1}^{2}}{128}\right)
$$

Since $y_{\phi(n)}$ and $y_{\phi(m)}$ are in C and C is convex, we obtain

$$
R=d_{\rho}(x, C) \leq \rho\left(x-\frac{y_{\phi(n)}+y_{\phi(m)}}{2}\right) \leq R(1+1 / \phi(m))\left(1-\eta_{2}\left(R, \varepsilon_{1}\right)\right)
$$

If we let $m \rightarrow+\infty$, we obtain

$$
R \leq R\left(\left(1-\eta_{2}\left(R, \varepsilon_{1}\right)\right)<R\right.
$$

This contradiction implies that $\left\{y_{n} / 2\right\}$ is ρ-Cauchy. Since $\ell_{p(\cdot)}$ is ρ-complete, there exists $y \in \ell_{p(\cdot)}$ such that $\left\{y_{n} / 2\right\} \rho$-converges to y. Since C is convex and ρ-closed, we conclude that $2 y \in C$. Using the Fatou property, we have

$$
\begin{aligned}
R=d_{\rho}(x, C) & \leq \rho(x-2 y) \\
& \leq \liminf _{m \rightarrow+\infty} \rho\left(x-\left(y+\frac{y_{m}}{2}\right)\right) \\
& \leq \liminf _{m \rightarrow+\infty} \liminf _{n \rightarrow+\infty} \rho\left(x-\frac{y_{n}+y_{m}}{2}\right) \\
& \leq \liminf _{m \rightarrow+\infty} \liminf _{n \rightarrow+\infty} \frac{\rho\left(x-y_{n}\right)+\rho\left(x-y_{m}\right)}{2}=R=d_{\rho}(x, C) .
\end{aligned}
$$

If we set $c=2 y$, we obtain $d(x, C)=\rho(x-c)$. The uniqueness of the point c comes from the fact that ρ is strictly convex on C_{g} since it is (UUC2).

The next result discusses an intersection property known as the property (R) [9]. Recall that a nonempty ρ-closed convex subset C of $\ell_{p(\cdot)}$ is said to satisfy the property (R)
if for any decreasing sequence of nonempty ρ-closed ρ-bounded convex subsets of C have a nonempty intersection.

Proposition 4. Consider the vector space $\ell_{p(.)}$ such that $p^{-}=1$ and $p(\cdot)$ not identically equal to 1. Let $f:(0,+\infty) \rightarrow(1,2]$ be a non-decreasing function. Then C_{f} satisfies the property (R).

Proof. Let $\left\{C_{n}\right\}$ be a decreasing sequence of nonempty ρ-closed ρ-bounded convex subsets of C_{f}. Let $x \in C_{1}$. We have

$$
d_{\rho}\left(x, C_{n}\right)=\inf \left\{\rho\left(x-x_{n}\right) ; x_{n} \in C_{n}\right\} \leq \sup \left\{\rho(x-y), x, y \in C_{1}\right\}=\delta_{\rho}\left(C_{1}\right)<\infty .
$$

Since $\left\{C_{n}\right\}$ is decreasing, the sequence $\left\{d_{\rho}\left(x, C_{n}\right)\right\}$ is increasing bounded above by $\delta_{\rho}\left(C_{1}\right)$. Set $R=\lim _{n \rightarrow+\infty} d_{\rho}\left(x, C_{n}\right)=\sup _{n} d_{\rho}\left(x, C_{n}\right)$. If $R=0$, then $x \in C_{n}$ for any $n \geq 1$, which will imply $\bigcap_{n \geq 1} C_{n} \neq \varnothing$. Otherwise, assume $R>0$. Using Proposition 3, there exists $c_{n} \in C_{n}$ such that $d_{\rho}\left(x, C_{n}\right)=\rho\left(x-c_{n}\right)$, for any $n \geq 1$. Similar argument as the one used in the proof of Proposition 3 will show that $\left\{c_{n} / 2\right\}$ is ρ-Cauchy and converges to $c \in \ell_{p(\cdot)}$. Since $\left\{C_{n}\right\}$ is a decreasing sequence of ρ-closed subsets, we conclude that $2 c \in \bigcap_{n \geq 1} C_{n}$. Again this will show that $\bigcap_{n \geq 1} C_{n} \neq \varnothing$ which completes the proof of Proposition 4. Moreover, using Fatou property, we note that

$$
\rho(x-2 c) \leq \liminf _{m \rightarrow+\infty} \liminf _{n \rightarrow+\infty} \rho\left(x-\frac{c_{n}+c_{m}}{2}\right)
$$

which will imply

$$
d_{\rho}\left(x, \bigcap_{n \geq 1} C_{n}\right)=\lim _{n \rightarrow+\infty} d_{\rho}\left(x, C_{n}\right)
$$

Remark 1. Let us note that under the assumptions of Proposition 4, the conclusion still holds when we consider any family $\left\{C_{\alpha}\right\}_{\alpha \in \Gamma}$ of nonempty, convex, ρ-closed subsets of C, where (Γ, \prec) is upward directed, such that there exists $x \in C$ which satisfies $\sup _{\alpha \in \Gamma} d_{\rho}\left(x, C_{\alpha}\right)<\infty$. Indeed, set $d=\sup _{\alpha \in \Gamma} d_{\rho}\left(x, C_{\alpha}\right)$. Without loss of generality, we may assume $d>0$. For any $n \geq 1$, there exists $\alpha_{n} \in \Gamma$ such that

$$
d\left(1-\frac{1}{n}\right)<d_{\rho}\left(x, C_{\alpha_{n}}\right) \leq d
$$

Since (Γ, \prec) is upward directed, we may assume $\alpha_{n} \prec \alpha_{n+1}$ which implies $C_{\alpha_{n+1}} \subset C_{\alpha_{n}}$. Proposition 4 implies $C_{0}=\bigcap_{n>1} C_{\alpha_{n}} \neq \varnothing$. Clearly C_{0} is ρ-closed and using the last noted point in the proof of Proposition 4, we obtain

$$
d_{\rho}\left(x, C_{0}\right)=\lim _{n \rightarrow+\infty} d_{\rho}\left(x, C_{\alpha_{n}}\right)=\sup _{n \geq 1} d_{\rho}\left(x, C_{\alpha_{n}}\right)=d
$$

Let $c_{0} \in C_{0}$ such that $d_{\rho}\left(x, C_{0}\right)=\rho\left(x-c_{0}\right)$. We claim that $c_{0} \in C_{\alpha}$, for any $\alpha \in \Gamma$. Indeed, fix $\alpha \in \Gamma$. If for some $n \geq 1$ we have $\alpha \prec \alpha_{n}$, then obviously we have $c_{0} \in C_{\alpha_{n}} \subset C_{\alpha}$. Therefore let us assume that $\alpha \nprec \alpha_{n}$, for any $n \geq 1$. Since Γ is upward directed, there exists $\beta_{n} \in \Gamma$ such that $\alpha_{n} \prec \beta_{n}$ and $\alpha \prec \beta_{n}$, for any $n \geq 1$. We can also assume that $\beta_{n} \prec \beta_{n+1}$ for any $n \geq 1$. Again we have $C_{1}=\bigcap_{n \geq 1} C_{\beta_{n}} \neq \varnothing$. Since $C_{\beta_{n}} \subset C_{\alpha_{n}}$, for any $n \geq 1$, we obtain $C_{1} \subset C_{0}$. Moreover we have

$$
d=d_{\rho}\left(x, C_{0}\right) \leq d_{\rho}\left(x, C_{1}\right)=\sup _{n \geq 1} d_{\rho}\left(x, C_{\beta_{n}}\right) \leq d
$$

Hence, $d_{\rho}\left(x, C_{1}\right)=d$ which implies the existence of a unique point $c_{1} \in C_{1}$ such that $d_{\rho}\left(x, C_{1}\right)=$ $\rho\left(x-c_{1}\right)=d$. Since ρ is $(S C)$ on C_{f}, we obtain $c_{0}=c_{1}$. In particular, we have $c_{0} \in C_{\beta_{n}}$, for any $n \geq 1$. Since $\alpha \prec \beta_{n}$, we conclude that $C_{\beta_{n}} \subset C_{\alpha}$, for any $n \geq 1$, which implies $c_{0} \in C_{\alpha}$. Since α was taking arbitrary in Γ, we obtain $c_{0} \in \bigcap_{\alpha \in \Gamma} C_{\alpha}$, which implies $\bigcap_{\alpha \in \Gamma} C_{\alpha} \neq \varnothing$ as claimed.

The next result is necessary to obtain the fixed-point theorem sought for ρ-nonexpansive mappings.

Proposition 5. Consider the vector space $\ell_{p(.)}$ such that $p^{-}=1$ and $p(\cdot)$ are not identically equal to 1. Let $f:(0,+\infty) \rightarrow(1,2]$ be a nondecreasing function. Then C_{f} has the ρ-normal structure property, i.e., for any nonempty ρ-closed convex ρ-bounded subset C of ℓ_{f} not reduced to one point, there exists $x \in C$ such that

$$
\sup _{y \in C} \rho(x-y)<\delta_{\rho}(C)
$$

Proof. Let C be a ρ-closed convex ρ-bounded subset C of C_{f} not reduced to one point. Since C is not reduced to one point, we have $\delta_{\rho}(C)>0$. Let $x, y \in C$ such that $x \neq y$. Set

$$
\varepsilon_{0}=\frac{1}{\delta_{\rho}(C)} \rho\left(\frac{x-y}{2}\right)>0
$$

Fix $c \in C$. Using Lemma 3, we have $x-c$ and $y-c$ are in $C_{f}-C_{f} \subset C_{g}$, where $g(\alpha)=f(\alpha / 4)$, for any $\alpha>0$. So far we have

$$
\max \{\rho(x-c), \rho(y-c)\} \leq \delta_{\rho}(C) \text { and } \rho\left(\frac{x-y}{2}\right) \geq \delta_{\rho}(C) \varepsilon_{0} .
$$

Theorem 2 implies

$$
\rho\left(c-\frac{x+y}{2}\right) \leq \delta_{\rho}(C)\left(1-\delta_{2, C_{g}}\left(R, \varepsilon_{0}\right)\right) .
$$

Since c was taken arbitrary in C, we conclude that

$$
\sup _{c \in C} \rho\left(c-\frac{x+y}{2}\right) \leq \delta_{\rho}(C)\left(1-\delta_{2, C_{g}}\left(\delta_{\rho}(C), \varepsilon_{0}\right)\right)<\delta_{\rho}(C)>0 .
$$

Therefore the proof of Proposition 5 is complete.
Putting all this together, we are ready to prove the main fixed-point result of our work.
Theorem 3. Consider the vector space $\ell_{p(.)}$ such that $p^{-}=1$ and $p(\cdot)$ are not identically equal to 1. Let C be a nonempty ρ-closed convex ρ-bounded subset of $\ell_{p(.)}$, which satisfies the condition (UD). Any ρ-nonexpansive mapping $T: C \rightarrow C$ has a fixed point.

Proof. Since C satisfies the condition (UD), Proposition 2 secures the existence of a nondecreasing function $f:(0,+\infty) \rightarrow(1,2]$ such that C is a subset of C_{f}. The conclusion is trivial if C is reduced to one point. Therefore, we will assume that C is not reduced to one point, i.e., $\delta_{\rho}(C)>0$. Consider the family

$$
\mathcal{F}=\{K \subset C, K \neq \varnothing, \rho-\text { closed convex and } T(K) \subset K\}
$$

The family \mathcal{F} is not empty since $C \in \mathcal{F}$. Since C is bounded, we use Remark 1 to be able to use Zorn's lemma and conclude that \mathcal{F} contains a minimal element K_{0}. Let us show that K_{0} is reduced to one point. Assume not, i.e., K_{0} contains more than one point. Set $\operatorname{co}\left(T\left(K_{0}\right)\right)$ to be the intersection of all ρ-closed convex subset of C containing $T\left(K_{0}\right)$. Hence $\operatorname{co}\left(T\left(K_{0}\right)\right) \subset K_{0}$ since $K_{0} \in \mathcal{F}$. Moreover, we have

$$
T\left(\operatorname{co}\left(T\left(K_{0}\right)\right)\right) \subset T\left(K_{0}\right) \subset \operatorname{co}\left(T\left(K_{0}\right)\right)
$$

which implies that $\operatorname{co}\left(T\left(K_{0}\right)\right) \in \mathcal{F}$. K_{0} being a minimal element of \mathcal{F} we deduce that $K_{0}=\operatorname{co}\left(T\left(K_{0}\right)\right)$. Using Proposition 5, we deduce the existence of $x_{0} \in K_{0}$ such that

$$
r_{0}=\sup _{y \in K_{0}} \rho\left(x_{0}-y\right)<\delta_{\rho}\left(K_{0}\right) .
$$

Define the subset $K=\left\{x \in K_{0}, \sup _{y \in K_{0}} \rho(x-y) \leq r_{0}\right\}$. K is not empty since $x_{0} \in K$. Note that we have $K=\bigcap_{y \in K_{0}} B_{\rho}\left(y, r_{0}\right) \cap K_{0}$. Using the properties of modular balls, K is a ρ-closed and convex subset of K_{0}. Next, we prove that $T(K) \subset K$. Indeed, let $x \in K$. Since T is ρ-nonexpansive, we have

$$
\rho(T(x)-T(y)) \leq \rho(x-y) \leq r_{0}
$$

for all $y \in K_{0}$. So we have $T(y) \in B_{\rho}\left(T(x), r_{0}\right) \cap K_{0}$, which implies $T\left(K_{0}\right) \subset B_{\rho}\left(T(x), r_{0}\right)$. Since $K_{0}=c o\left(T\left(K_{0}\right)\right)$, we conclude that $K_{0} \subset B_{\rho}\left(T(x), r_{0}\right)$, which implies

$$
\rho(T(x)-y) \leq r_{0}
$$

for all $y \in K_{0}$. Hence $T(x) \in K$. Since x was taken as arbitrary in K, we obtain $T(K) \subset K$. The minimality of K_{0} will force $K=K_{0}$. Hence

$$
r_{0}<\delta_{\rho}\left(K_{0}\right)=\delta_{\rho}(K) \leq r_{0} .
$$

This is a contradiction. Therefore, K_{0} is reduced to one point and it is a fixed point of T because $T\left(K_{0}\right) \subset K_{0}$.

Remark 2. In Theorem 3, the condition (UD) can be replaced by the following condition which is slightly more general:
there exists $x_{0} \in \ell_{p(.)}$ such that $x_{0}+C$ satisfies the condition (UD).

Author Contributions: A.E.A. and M.A.K. contributed equally on the development of the theory and their respective analysis. All authors have read and agreed to the published version of the manuscript.

Funding: Khalifa University research project No. 8474000357.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The second author was funded by Khalifa University, UAE, under grant No. 8474000357. The authors, therefore, gratefully acknowledge, with thanks, Khalifa University's technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD linear dichroism

References

1. Orlicz, W. Über konjugierte Exponentenfolgen. Studia Math. 1931, 3, 200-211. [CrossRef]
2. Musielak, J. Orlicz Spaces and Modular Spaces; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1983; Volume 1034.
3. Rajagopal, K.; Ružička, M. On the modeling of electrorheological materials. Mech. Res. Commun. 1996, 23, 401-407. [CrossRef]
4. Ružička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics 1748; Springer: Berlin/Heidelberg, Germany, 2000.
5. Bachar, M.; Bounkhel, M.; Khamsi, M.A. Uniform Convexity in $\ell_{p(.)}$. J. Nonlinear Sci. Appl. 2017, 10, 5292-5299. [CrossRef]
6. Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Note in Mathematics 2017; Springer: Berlin/Heidelberg, Germany, 2011.
7. Khamsi, M.A.; Kozlowski, W.K.; Reich, S. Fixed point theory in modular function spaces. Nonlinear Anal. 1990, 14, 935-953. [CrossRef]
8. Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen Co.: Tokyo, Japan, 1950.
9. Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhauser: New York, NY, USA, 2015.
10. Kozlowski, W.M. Modular Function Spaces; Series of Monographs and Textbooks in Pure and Applied Mathematics; Dekker: New York, NY, USA; Basel, Switzerland, 1988; Volume 122.
11. Nakano, H. Topology of Linear Topological Spaces; Maruzen Co., Ltd.: Tokyo, Japan, 1951.
12. Waterman, D.; Ito, T.; Barber, F.; Ratti, J. Reflexivity and Summability: The Nakano $\ell\left(p_{i}\right)$ spaces. Stud. Math. 1969, 331, 141-146. [CrossRef]
13. Bachar, M.; Khamsi, M.A.; Mendez, O.; Bounkhel, M. A geometric property in $\ell_{p(.)}$ and its applications. Math. Nachr. 2019, 292, 1931-1940. [CrossRef]
14. Clarkson, J.A. Uniformly Convex Spaces. Trans. Am. Math. Soc. 1936, 40, 396-414. [CrossRef]
15. Sundaresan, K. Uniform convexity of Banach spaces $\ell\left(\left\{p_{i}\right\}\right)$. Stud. Math. 1971, 39, 227-231. [CrossRef]
