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1. Introduction

Variable exponent spaces first appeared in a work of Orlicz in 1931 [1] (see also [2]),
where he defined the following space:

X =

{
{xn} ∈ RN,

∞

∑
n=0
|λxn|p(n) < ∞, f or some λ > 0

}
.

They became very important because of their use in the mathematical modeling of non-
Newtonian fluids [3,4]. The typical example of such fluids are electrorheological fluids, the
viscosity of which exhibits dramatic and sudden changes when exposed to an electric or
magnetic field. The necessity of a clear understanding of the spaces with variable integrability
is reinforced by their potential applications.

The properties of this vector space have been extensively studied in [5–7]. The norm
that was commonly used to investigate the geometrical properties of X is the Minkowski
functional associated to the modular unit ball and it is known as the Luxembourg norm.
Whereas in the case of classical `p spaces, the natural norm is suitable for making calcula-
tions, the Luxembourg norm on X is very difficult to manipulate.

In 1950, Nakano [8] introduced for the first time the notion of modular vector space
(see also [9,10]). This abstract point of view has been crucial to the development of the
research on geometrical and topological properties of the variable exponent spaces `p(.).

In this work, we will introduce a class of subsets of `p(.) that have some interesting
geometrical properties. This will allow us to prove a new fixed-point theorem concerning
`p(.) spaces. For the study of metric fixed-point theory, we recommend the book [9].
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2. Basic Notations and Terminology

For a function p : N −→ [1,+∞), define the vector space

`p(.) =

{
{xn} ∈ RN,

∞

∑
n=0

1
p(n)
|λxn|p(n) < ∞, f or some λ > 0

}
.

Nakano [8,11] introduced the concept of modular vector space.

Proposition 1 ([6,9]). Consider the function ρ : `p(.) −→ [0,+∞] defined by

ρ(x) = ρ({xn}) =
∞

∑
n=0

1
p(n)
|xn|p(n)

then ρ satisfies the following properties

(1) ρ(x) = 0 if and only if x = 0,
(2) ρ(αx) = ρ(x), if |α| = 1,
(3) ρ(αx + (1− α)y) ≤ αρ(x) + (1− α)ρ(y), ∀α ∈ [0, 1].

for any x, y ∈ X. The function ρ is called a convex modular.

For any subset I of N, we consider the functional

ρI(x) = ∑
n∈I
|xn|p(n).

If I = ∅, we set ρI(x) = 0. We define on modular spaces a modular topology which is
similar to the topology induced by a metric.

Definition 1. Consider the vector space `p(.).

(a) We say that a sequence {xn} ⊂ `p(.) is ρ-convergent to x ∈ `p(.) if and only if ρ(xn− x) −→ 0.
The ρ-limit is unique if it exists.

(b) A sequence {xn} ⊂ `p(.) is called ρ-Cauchy if ρ(xn − xm) −→ 0 as n, m −→ +∞.
(c) A nonempty subset C ⊂ `p(.) is called ρ-closed if for any sequence {xn} ⊂ C which ρ-

converges to x implies that x ∈ C.
(d) A nonempty subset C ⊂ `p(.) is called ρ-bounded if and only if

δρ(C) = sup{ρ(x− y), x, y ∈ C} < ∞.

Note that ρ satisfies the Fatou property, i.e.,

ρ(x− y) ≤ lim inf
n→+∞

ρ(x− yn),

holds whenever {yn} ρ-converges to y, for any x, y, yn ∈ `p(.). Throughout, we will use the
notation Bρ(x, r) to denote the ρ-ball with radius r ≥ 0 centered at x ∈ `p(.) and defined as

Bρ(x, r) =
{

y ∈ `p(.), ρ(x− y) ≤ r
}

.

Note that Fatou property holds if and only if the ρ-balls are ρ-closed. That is, all ρ-balls are
ρ-closed in `p(.).

Definition 2. Let C ⊂ `p(.) be a nonempty subset. A mapping T : C −→ C is called ρ-Lipschitzian
if there exists a constant K ≥ 0 such that

ρ(T(x)− T(y)) ≤ K ρ(x− y), ∀x, y ∈ C.
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If K = 1, T is called ρ-nonexpansive. A point x ∈ C is called a fixed point of T if T(x) = x.

The concept of modular uniform convexity was first introduced by Nakano [11], but
a weaker definition of modular uniform convexity called (UUC2) was introduced in [9]
and seems to be more suitable to hold in `p(.) when weaker assumptions on the exponent
function p(·) hold. The following definition is given in terms of subsets because of the
subsequent results discovered in this work.

Definition 3 ([9]). Consider the vector space `p(.). Let C be a nonempty subset of `p(.).

1. Let r > 0 and ε > 0. Define

D2(r, ε) =

{
(x, y) ∈ `p(.) × `p(.), ρ(x) ≤ r, ρ(y) ≤ r, ρ

(
x− y

2

)
≥ εr

}
.

If D2(r, ε) ∩ (C× C) 6= ∅, let

δ2,C(r, ε) = inf
{

1− 1
r

ρ

(
x + y

2

)
, (x, y) ∈ D2(r, ε) ∩ (C× C)

}
.

If D2(r, ε) ∩ (C × C) = ∅, we set δ2(r, ε) = 1. We say that ρ satisfies (UC2) on C if
for every r > 0 and ε > 0, we have δ2,C(r, ε) > 0. When C = `p(.), we remark that for
every r > 0, D2(r, ε) 6= ∅, for ε > 0 small enough. In this case, we will use the notation
δ2,`p(.)

= δ2.

2. We say that ρ satisfies (UUC2) on C if for every s ≥ 0 and ε > 0, there exists η2(s, ε) > 0
depending on s and ε such that

δ2,C(r, ε) ≥ η2(s, ε) > 0 f or r > s.

3. We say that ρ is strictly convex on C (in short (SC)), if for every x, y ∈ C such that

ρ(x) = ρ(y) and ρ

(
x + y

2

)
=

ρ(x) + ρ(y)
2

imply x = y.

In the study of the properties of `p(.) (see [12]), the following values are very important:

p+ = sup
n∈N

p(n) and p− = inf
n∈N

p(n).

In [5], the authors proved that for `p(.), with p− > 1, the modular is (UUC2). This
modular geometrical property allows to prove the following fixed-point result:

Theorem 1. Consider the vector space `p(.). Assume p− > 1. Let C be a nonempty ρ-closed
convex ρ-bounded subset of `p(.). Let T : C −→ C be a ρ-nonexpansive mapping. Then T has a
fixed point.

In [13], the authors proved a similar fixed-point theorem in the case where {n ∈ N, p(n) = 1}
has at most one element which is an improvement from p− > 1.

Before we close this section, we recall the following lemma, of a rather technical nature,
which plays a crucial role when dealing with `p(.) spaces.

Lemma 1. The following inequalities hold:

(i) [14]. If p ≥ 2, then ∣∣∣∣ a + b
2

∣∣∣∣p + ∣∣∣∣ a− b
2

∣∣∣∣p ≤ 1
2

(
|a|p + |b|p

)
,

for any a, b ∈ R.
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(ii) [15]. If 1 < p ≤ 2, then∣∣∣∣ a + b
2

∣∣∣∣p + p(p− 1)
2

∣∣∣∣ a− b
|a|+ |b|

∣∣∣∣2−p∣∣∣∣ a− b
2

∣∣∣∣p ≤ 1
2

(
|a|p + |b|p

)
,

for any a, b ∈ R such that |a|+ |b| 6= 0.

In this work, using a different approach, we obtain some fixed-point results when
p− = 1 without the known conditions on the function p(·).

3. Uniform Decrease Condition

First, we introduce an interesting class of subsets of `p(.), which will play an important
part in our work. In particular, they enjoy similar modular geometric properties as `p(.)
when p− > 1. Before, let us introduce the following notations:

Ia =
{

n ∈ N; p(n) ≥ a
}

and Ja = N \ Ia =
{

n ∈ N; p(n) < a
}

,

where a ∈ [1,+∞).

Definition 4. Consider the vector space `p(.). A nonempty subset C of `p(.) is said to satisfy the
uniform decrease condition (in short (UD)) if for any α > 0, there exists a > 1 such that

sup
x∈C

ρJa(x) ≤ α.

Obviously the condition (UD) passes from a set to its subsets. Moreover, if p(·) is
identically equal to 1, then the only (UD) subset is C = {0}. Since this case is not interesting,
we will assume throughout that p(·) is not identically equal to 1. Moreover, if p− > 1, then
any nonempty subset of `p(.) satisfies the condition (UD). Indeed, let C be a nonempty
subset of `p(.) and α > 0. Let a ∈ (1, p−). Then Ja = ∅ which implies

sup
x∈C

ρJa(x) = 0 ≤ α.

Therefore, the condition (UD) is interesting to study only when p− = 1 and p(·) is not
identically equal to 1, which will be the case throughout.

Example 1. Consider the function p(·) defined by

p(n) = 1 +
1

n + 1
, n ∈ N.

Consider the subset

C =

{
x ∈ `p(.); |xn| ≤

1
(n + 1)2 , n ∈ N

}
.

C is nonempty, convex and ρ-closed. Let us show that it satisfies the condition (UD). Indeed, fix

α > 0. Let N ≥ 1 be such that ∑
k≥N

1
(k + 1)2 ≤ α. Set a = 1 + 1

N . We have
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ρJa(x) = ∑
n∈Ja

|xn|p(n)
p(n)

≤ ∑
n≥N

|xn|p(n)
p(n)

≤ ∑
n≥N

1
p(n)

1
(n + 1)2p(n)

≤ ∑
n≥N

1
(n + 1)2

≤ α,

for all x ∈ C, which proves our claim that C is (UD).

Before we give a characterization of subsets which satisfy the condition (UD), we
need to introduce a new class of subsets of `p(.).

Definition 5. Consider the vector space `p(.) such that p− = 1 and p(·) not identically equal to 1.
Let f : (0,+∞)→ (1, 2] be a nondecreasing function. Define the set C f to be

C f =
{

x ∈ `p(.); ρJ f (α)
(x) ≤ α, f or all α > 0

}
.

Note that C f is never empty since 0 ∈ C f . Some of the basic properties of C f are given
in the following lemma.

Lemma 2. Consider the vector space `p(.) such that p− = 1 and p(·) not identically equal to 1.
Let f : (0,+∞)→ (1, 2] be a non-decreasing function. Then the following properties hold:

1. C f is convex.
2. C f is symmetrical, i.e., −z ∈ C f whenever z ∈ C f .
3. The Fatou property implies easily that C f is ρ-closed as a subset of `p(.) which in turn implies

that C f is ρ-complete.

Proposition 2. Consider the vector space `p(.) such that p− = 1 and p(·) not identically equal to
1. A subset C of `p(.) satisfies the condition (UD) if and only if there exists f : (0,+∞)→ (1, 2]
non-decreasing such that C ⊂ C f .

Proof. First, we prove that C f satisfies the condition (UD). Fix α > 0. If we take a = f (α),
we obtain

sup
x∈C f

ρJa(x) ≤ α,

which proves our claim. Clearly, any subset C of C f will also satisfy the condition (UD).
Conversely, let C be a nonempty subset of `p(.) which satisfies the condition (UD). For any
α > 0, there exists a > 1 such that sup

x∈C
ρJa(x) ≤ α. Set

[α] =
{

a > 1; sup
x∈C

ρJa(x) ≤ α
}

.

Define

f (α) =

{
2 if [α] ⊂ [2,+∞),

sup
(
[α] ∩ (1, 2]

)
if [α] ∩ (1, 2] 6= ∅.

Clearly, f is well defined and f (α) ∈ (1, 2], for all α > 0. Let α and β be such that 0 < α ≤ β.
We claim that f (α) ≤ f (β). Indeed, it is easy to see that [α] ⊂ [β]. If [α]∩ (1, 2] 6= ∅, then we
have [β] ∩ (1, 2] 6= ∅ which easily implies f (α) ≤ f (β). Otherwise, assume [α] ⊂ [2,+∞).
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Let a ∈ [α]. We have a ≥ 2 and a ∈ [β]. By definition of the sets J, we have J2 ⊂ Ja. Since
ρJ2(x) ≤ Ja(x), for all x ∈ `p(.), we obtain

sup
x∈C

ρJ2(x) ≤ sup
x∈C

ρJa(x) ≤ β,

i.e., 2 ∈ [β]. This fact, will force f (β) = 2. In all cases, we have f (α) ≤ f (β). In other words,
the function f : (0,+∞)→ (1, 2] is non-decreasing. Finally, let us show that C ⊂ `g, where
g(α) = (1 + f (α))/2, for all α > 0. Since 1 < f (α), then we have 1 < g(α) < f (α), for all
α > 0. If [α] ⊂ [2,+∞), pick a ∈ [α]. Then g(α) = 3/2 < a which implies Jg(α) ⊂ Ja. Hence

ρJg(α)
(x) ≤ ρJa(x), f or all x ∈ C,

which implies sup
x∈C

ρJg(α)
(x) ≤ sup

x∈C
ρJa(x) ≤ α. Otherwise, assume [α] ∩ (1, 2] 6= ∅, then

f (α) = sup
(
[α]∩ (1, 2]

)
. Since g(α) < f (α), there exists a ∈ [α] such that g(α) < a ≤ f (α).

Similar argument will show that

sup
x∈C

ρJg(α)
(x) ≤ sup

x∈C
ρJa(x) ≤ α.

In both cases, we showed that sup
x∈C

ρJg(α)
(x) ≤ α, for all α > 0, i.e., C ⊂ Cg as claimed.

Proposition 2 allows us to focus on the subsets C f instead of subsets which satisfy the
condition (UD). The next result is amazing and surprising since it tells us that the subsets
C f enjoy nice modular geometric properties despite the fact that p− = 1.

Theorem 2. Consider the vector space `p(.) such that p− = 1 and p(·) not identically equal to 1.
Let f : (0,+∞)→ (1, 2] be a non-decreasing function. Then, ρ is (UUC2) on C f .

Proof. Let r > 0 and ε > 0. Let x, y ∈ C f such that ρ(x) ≤ r, ρ(y) ≤ r and ρ

(
x− y

2

)
≥ rε.

Since ρ is convex, we have

rε ≤ ρ

(
x− y

2

)
≤ ρ(x) + ρ(y)

2
≤ r,

which implies ε ≤ 1. Set α =
rε

2
. The properties of C f imply

x− y
2
∈ C f . So

ρJ f (α)

(
x− y

2

)
≤ α,

which implies

ρI f (α)

(
x− y

2

)
= ρ

(
x− y

2

)
− ρJ f (α)

(
x− y

2

)
≥ rε− α =

rε

2
.

Next, set
K = I f (α) ∩ {n, p(n) ≥ 2} and L = I f (α) ∩ {n, p(n) < 2}.

Since I f (α) = K ∪ L, we obtain ρI f (α)
(z) = ρK(z) + ρL(z), for all z ∈ C f . From our assump-

tions, we have

ρK

(
x− y

2

)
≥ rε

4
or ρL

(
x− y

2

)
≥ rε

4
.

Assume first that

ρK

(
x− y

2

)
≥ rε

4
.
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Using Lemma 1, we obtain

ρK

(
x + y

2

)
+ ρK

(
x− y

2

)
≤ ρK(x) + ρK(y)

2
,

which implies

ρK

(
x + y

2

)
≤ ρK(x) + ρK(y)

2
− rε

4
.

Using the convexity of the modular, we have

ρL∪J f (α)

(
x + y

2

)
≤

ρL∪J f (α)
(x) + ρL∪J f (α)

(y)

2
,

which implies

ρ

(
x + y

2

)
≤ ρ(x) + ρ(y)

2
− εr

4
≤ r
(

1− ε

4

)
.

For the second case, assume

ρL

(
x− y

2

)
≥ εr

4
.

Set
c =

ε

8
, L1 =

{
n, |xn − yn| ≤ c

(
|xn|+ |yn|

)}
and L2 = L\L1.

Since c < 1, we obtain

ρL1

(
x− y

2

)
≤ ∑

n∈L1

cp(n)

p(n)

(
|xn|+ |yn|

2

)p(n)
≤ c

2 ∑
n∈L1

|xn|p(n) + |yn|p(n)
p(n)

.

Hence

ρL1

(
x− y

2

)
≤ c

2

(
ρL1(x) + ρL1(y)

)
≤ c

2

(
ρ(x) + ρ(y)

)
≤ c

2
r.

Our assumption on ρL

(
x− y

2

)
implies

ρL2

(
x− y

2

)
= ρL

(
x− y

2

)
− ρL1

(
x− y

2

)
≥ r

ε

4
− c

2
r ≥ r

ε

8
.

For any n ∈ L2, we have

f
( rε

2

)
− 1 = f (α)− 1 ≤ p(n)− 1 ≤ p(n)(p(n)− 1)

c ≤ c2−p(n) ≤
(
|xn − yn|
|xn|+ |yn|

)2−p(n)
.

Using Lemma 1, we obtain∣∣∣∣ xn + yn

2

∣∣∣∣p(n) + ( f (α)− 1)
2

c
∣∣∣∣ xn − yn

2

∣∣∣∣p(n) ≤ 1
2

(
|xn|p(n) + |yn|p(n)

)
,

for any n ∈ L2. Hence

ρL2

(
x + y

2

)
≤

ρL2(x) + ρL2(y)
2

− r( f (α)− 1)ε2

128
,

which implies

ρ

(
x + y

2

)
≤ r
(

1− ( f (α)− 1)ε2

128

)
.
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Both cases imply that ρ is (UC2) on C f with

δ2,C f (r, ε) ≥ min

 ε

4
,

(
f
( rε

2

)
− 1
)

ε2

128

 > 0,

since f (a) > 1, for any a > 0. Since f (·) is nondecreasing, we may set

η2(r, ε) = min

 ε

4
,

(
f
( rε

2

)
− 1
)

ε2

128


to see that in fact ρ is (UUC2) on C f which completes the proof of Theorem 2.

The following lemma will be useful:

Lemma 3. Consider the vector space `p(.) such that p− = 1 and p(·) not identically equal to 1.

Let f : (0,+∞)→ (1, 2] be a non-decreasing function. Set g(α) = f
(α

4

)
, for α > 0. We have

C f + C f =
{

x + y; x, y ∈ C f

}
⊂ Cg.

Proof. Let x, y ∈ C f . For any n ∈ Jg(α) =
{

n; p(n) ≤ f
(α

4

)}
, we have

∣∣∣∣ xn + yn

2

∣∣∣∣p(n) ≤ 1
2

(
|xn|p(n) + |yn|p(n)

)
,

which implies
1

p(n)
|xn + yn|p(n) ≤

2p(n)−1

p(n)

(
|xn|p(n) + |yn|p(n)

)
.

Hence

ρJ f ( α
4 )
(x + y) ≤ 2 f ( α

4 )−1
(

ρJ f ( α
4 )
(x) + ρJ f ( α

4 )
(y)
)

≤ 2
(α

4
+

α

4

)
= α.

Therefore ρJg(α)
(x + y) ≤ α, that is x + y ∈ Cg, which completes the proof of Lemma 3.

In the next section, we will prove a fixed-point theorem for modular nonexpansive
mappings.

4. Application

As an application to Theorem 2, we will prove a fixed-point result for modular nonex-
pansive mappings. The classical ingredients will be needed. First, we prove the proximinality
of ρ-closed convex subsets which satisfies the condition (UD).

Proposition 3. Consider the vector space `p(.) such that p− = 1 and p(·) not identically equal
to 1. Let f : (0,+∞)→ (1, 2] non-decreasing. Any nonempty ρ-closed convex subset C of C f is
proximinal, i.e., for any x ∈ C f such that

dρ(x, C) = inf
{

ρ(x− y); y ∈ C
}
< ∞,

there exists a unique c ∈ C such that dρ(x, C) = ρ(x− c).
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Proof. Without loss of generality, we assume that x /∈ C. Since C is ρ-closed we have,
R = dρ(x, C) > 0. For any n ≥ 1, there exists yn ∈ C such that ρ(x− yn) < R(1 + 1/n).
We claim that {yn/2} is ρ-Cauchy. Assume not. Then there exists a subsequence {yφ(n)} of
{yn} and ε0 > 0 such that

ρ

(yφ(n) − yφ(m)

2

)
≥ ε0,

for any n > m ≥ 1. According to Lemma 3, {x− yφ(n)} is in Cg, where g(α) = f (α/4), for
any α > 0. Fix n > m ≥ 1. We have

max
{

ρ
(

x− yφ(n)

)
, ρ
(

x− yφ(m)

)}
≤ R

(
1 +

1
φ(m)

)
.

Since

ε0 = R
(

1 +
1

φ(m)

)
ε0

R
(

1 +
1

φ(m)

) ≥ R
(

1 +
1

φ(m)

)
ε1,

with ε1 =
ε0

2R
, and using Theorem 2, we obtain

ρ

(
x−

yφ(n) + yφ(m)

2

)
≤ R(1 + 1/φ(m))

(
1− δ2,Cg

(
R
(

1 +
1

φ(m)

)
, ε1

))

≤ R(1 + 1/φ(m))
(

1− η2(R, ε1)
)

,

where

η2(R, ε1) = min

 ε1

4
,

(
g
(

Rε1

2

)
− 1
)

ε2
1

128

.

Since yφ(n) and yφ(m) are in C and C is convex, we obtain

R = dρ(x, C) ≤ ρ

(
x−

yφ(n) + yφ(m)

2

)
≤ R(1 + 1/φ(m))

(
1− η2(R, ε1)

)
.

If we let m→ +∞, we obtain

R ≤ R(
(

1− η2(R, ε1)
)
< R.

This contradiction implies that {yn/2} is ρ-Cauchy. Since `p(·) is ρ-complete, there exists
y ∈ `p(·) such that {yn/2} ρ-converges to y. Since C is convex and ρ-closed, we conclude
that 2y ∈ C. Using the Fatou property, we have

R = dρ(x, C) ≤ ρ(x− 2y)
≤ lim inf

m→+∞
ρ
(

x−
(

y +
ym

2

))
≤ lim inf

m→+∞
lim inf
n→+∞

ρ

(
x− yn + ym

2

)
≤ lim inf

m→+∞
lim inf
n→+∞

ρ(x− yn) + ρ(x− ym)

2
= R = dρ(x, C).

If we set c = 2y, we obtain d(x, C) = ρ(x− c). The uniqueness of the point c comes from
the fact that ρ is strictly convex on Cg since it is (UUC2).

The next result discusses an intersection property known as the property (R) [9].
Recall that a nonempty ρ-closed convex subset C of `p(·) is said to satisfy the property (R)
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if for any decreasing sequence of nonempty ρ-closed ρ-bounded convex subsets of C have
a nonempty intersection.

Proposition 4. Consider the vector space `p(.) such that p− = 1 and p(·) not identically equal to
1. Let f : (0,+∞)→ (1, 2] be a non-decreasing function. Then C f satisfies the property (R).

Proof. Let {Cn} be a decreasing sequence of nonempty ρ-closed ρ-bounded convex subsets
of C f . Let x ∈ C1. We have

dρ(x, Cn) = inf {ρ(x− xn); xn ∈ Cn} ≤ sup{ρ(x− y), x, y ∈ C1} = δρ(C1) < ∞.

Since {Cn} is decreasing, the sequence {dρ(x, Cn)} is increasing bounded above by δρ(C1).
Set R = lim

n→+∞
dρ(x, Cn) = sup

n
dρ(x, Cn). If R = 0, then x ∈ Cn for any n ≥ 1, which will

imply
⋂

n≥1
Cn 6= ∅. Otherwise, assume R > 0. Using Proposition 3, there exists cn ∈ Cn

such that dρ(x, Cn) = ρ(x− cn), for any n ≥ 1. Similar argument as the one used in the
proof of Proposition 3 will show that {cn/2} is ρ-Cauchy and converges to c ∈ `p(·). Since
{Cn} is a decreasing sequence of ρ-closed subsets, we conclude that 2c ∈ ⋂

n≥1
Cn. Again

this will show that
⋂

n≥1
Cn 6= ∅ which completes the proof of Proposition 4. Moreover,

using Fatou property, we note that

ρ(x− 2c) ≤ lim inf
m→+∞

lim inf
n→+∞

ρ

(
x− cn + cm

2

)
,

which will imply

dρ

(
x,
⋂

n≥1

Cn

)
= lim

n→+∞
dρ(x, Cn).

Remark 1. Let us note that under the assumptions of Proposition 4, the conclusion still holds
when we consider any family {Cα}α∈Γ of nonempty, convex, ρ-closed subsets of C, where (Γ,≺)
is upward directed, such that there exists x ∈ C which satisfies sup

α∈Γ
dρ(x, Cα) < ∞. Indeed, set

d = sup
α∈Γ

dρ(x, Cα). Without loss of generality, we may assume d > 0. For any n ≥ 1, there exists

αn ∈ Γ such that

d
(

1− 1
n

)
< dρ (x, Cαn) ≤ d.

Since (Γ,≺) is upward directed, we may assume αn ≺ αn+1 which implies Cαn+1 ⊂ Cαn . Proposition 4
implies C0 =

⋂
n≥1

Cαn 6= ∅. Clearly C0 is ρ-closed and using the last noted point in the proof of

Proposition 4, we obtain

dρ(x, C0) = lim
n→+∞

dρ(x, Cαn) = sup
n≥1

dρ(x, Cαn) = d.

Let c0 ∈ C0 such that dρ(x, C0) = ρ(x− c0). We claim that c0 ∈ Cα, for any α ∈ Γ. Indeed, fix
α ∈ Γ. If for some n ≥ 1 we have α ≺ αn, then obviously we have c0 ∈ Cαn ⊂ Cα. Therefore let
us assume that α 6≺ αn, for any n ≥ 1. Since Γ is upward directed, there exists βn ∈ Γ such that
αn ≺ βn and α ≺ βn, for any n ≥ 1. We can also assume that βn ≺ βn+1 for any n ≥ 1. Again
we have C1 =

⋂
n≥1

Cβn 6= ∅. Since Cβn ⊂ Cαn , for any n ≥ 1, we obtain C1 ⊂ C0. Moreover we

have
d = dρ(x, C0) ≤ dρ(x, C1) = sup

n≥1
dρ(x, Cβn) ≤ d.
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Hence, dρ(x, C1) = d which implies the existence of a unique point c1 ∈ C1 such that dρ(x, C1) =
ρ(x− c1) = d. Since ρ is (SC) on C f , we obtain c0 = c1. In particular, we have c0 ∈ Cβn , for any
n ≥ 1. Since α ≺ βn, we conclude that Cβn ⊂ Cα, for any n ≥ 1, which implies c0 ∈ Cα. Since α
was taking arbitrary in Γ, we obtain c0 ∈

⋂
α∈Γ

Cα, which implies
⋂

α∈Γ
Cα 6= ∅ as claimed.

The next result is necessary to obtain the fixed-point theorem sought for ρ-nonexpansive
mappings.

Proposition 5. Consider the vector space `p(.) such that p− = 1 and p(·) are not identically equal
to 1. Let f : (0,+∞)→ (1, 2] be a nondecreasing function. Then C f has the ρ-normal structure
property, i.e., for any nonempty ρ-closed convex ρ-bounded subset C of ` f not reduced to one point,
there exists x ∈ C such that

sup
y∈C

ρ(x− y) < δρ(C).

Proof. Let C be a ρ-closed convex ρ-bounded subset C of C f not reduced to one point.
Since C is not reduced to one point, we have δρ(C) > 0. Let x, y ∈ C such that x 6= y. Set

ε0 =
1

δρ(C)
ρ

(
x− y

2

)
> 0.

Fix c ∈ C. Using Lemma 3, we have x− c and y− c are in C f −C f ⊂ Cg, where g(α) = f (α/4),
for any α > 0. So far we have

max
{

ρ(x− c), ρ(y− c)
}
≤ δρ(C) and ρ

(
x− y

2

)
≥ δρ(C) ε0.

Theorem 2 implies

ρ

(
c− x + y

2

)
≤ δρ(C)

(
1− δ2,Cg(R, ε0)

)
.

Since c was taken arbitrary in C, we conclude that

sup
c∈C

ρ

(
c− x + y

2

)
≤ δρ(C)

(
1− δ2,Cg

(
δρ(C), ε0

))
< δρ(C) > 0.

Therefore the proof of Proposition 5 is complete.

Putting all this together, we are ready to prove the main fixed-point result of our work.

Theorem 3. Consider the vector space `p(.) such that p− = 1 and p(·) are not identically equal
to 1. Let C be a nonempty ρ-closed convex ρ-bounded subset of `p(.), which satisfies the condition
(UD). Any ρ-nonexpansive mapping T : C → C has a fixed point.

Proof. Since C satisfies the condition (UD), Proposition 2 secures the existence of a non-
decreasing function f : (0,+∞) → (1, 2] such that C is a subset of C f . The conclusion is
trivial if C is reduced to one point. Therefore, we will assume that C is not reduced to one
point, i.e., δρ(C) > 0. Consider the family

F = {K ⊂ C, K 6= ∅, ρ− closed convex and T(K) ⊂ K}

The family F is not empty since C ∈ F . Since C is bounded, we use Remark 1 to be able
to use Zorn’s lemma and conclude that F contains a minimal element K0. Let us show
that K0 is reduced to one point. Assume not, i.e., K0 contains more than one point. Set
co(T(K0)) to be the intersection of all ρ-closed convex subset of C containing T(K0). Hence
co(T(K0)) ⊂ K0 since K0 ∈ F . Moreover, we have
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T(co(T(K0))) ⊂ T(K0) ⊂ co(T(K0)),

which implies that co(T(K0)) ∈ F . K0 being a minimal element of F we deduce that
K0 = co(T(K0)). Using Proposition 5, we deduce the existence of x0 ∈ K0 such that

r0 = sup
y∈K0

ρ(x0 − y) < δρ(K0).

Define the subset K =

{
x ∈ K0, sup

y∈K0

ρ(x− y) ≤ r0

}
. K is not empty since x0 ∈ K. Note

that we have K =
⋂

y∈K0

Bρ(y, r0) ∩ K0. Using the properties of modular balls, K is a ρ-closed

and convex subset of K0. Next, we prove that T(K) ⊂ K. Indeed, let x ∈ K. Since T is
ρ-nonexpansive, we have

ρ(T(x)− T(y)) ≤ ρ(x− y) ≤ r0,

for all y ∈ K0. So we have T(y) ∈ Bρ(T(x), r0) ∩ K0, which implies T(K0) ⊂ Bρ(T(x), r0).
Since K0 = co(T(K0)), we conclude that K0 ⊂ Bρ(T(x), r0), which implies

ρ(T(x)− y) ≤ r0,

for all y ∈ K0. Hence T(x) ∈ K. Since x was taken as arbitrary in K, we obtain T(K) ⊂ K.
The minimality of K0 will force K = K0. Hence

r0 < δρ(K0) = δρ(K) ≤ r0.

This is a contradiction. Therefore, K0 is reduced to one point and it is a fixed point of T
because T(K0) ⊂ K0.

Remark 2. In Theorem 3, the condition (UD) can be replaced by the following condition which is
slightly more general:

there exists x0 ∈ `p(.) such that x0 + C satisfies the condition (UD).
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