

Article New Modular Fixed-Point Theorem in the Variable Exponent Spaces $\ell_{p(.)}$

Amnay El Amri¹ and Mohamed A. Khamsi^{2,*}

- ¹ Faculté des Sciences Ben Msik (LAMS), Hassan II University, Casablanca 21100, Morocco; amnayelamri95@gmail.com or amnay.elamri-etu@etu.univh2c.ma
- ² Department of Applied Mathematics and Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- * Correspondence: mohamed.khamsi@ku.ac.ae

Abstract: In this work, we prove a fixed-point theorem in the variable exponent spaces $\ell_{p(.)}$, when $p^- = 1$ without further conditions. This result is new and adds more information regarding the modular structure of these spaces. To be more precise, our result concerns ρ -nonexpansive mappings defined on convex subsets of $\ell_{p(.)}$ that satisfy a specific condition which we call "condition of uniform decrease".

Keywords: electrorheological fluid; fixed point; modular vector space; Nakano; strictly convex; uniformly convex

MSC: primary 47H09; 47H10

1. Introduction

Variable exponent spaces first appeared in a work of Orlicz in 1931 [1] (see also [2]), where he defined the following space:

$$X = \left\{ \{x_n\} \in \mathbb{R}^{\mathbb{N}}, \quad \sum_{n=0}^{\infty} |\lambda x_n|^{p(n)} < \infty, \text{ for some } \lambda > 0 \right\}.$$

They became very important because of their use in the mathematical modeling of non-Newtonian fluids [3,4]. The typical example of such fluids are electrorheological fluids, the viscosity of which exhibits dramatic and sudden changes when exposed to an electric or magnetic field. The necessity of a clear understanding of the spaces with variable integrability is reinforced by their potential applications.

The properties of this vector space have been extensively studied in [5–7]. The norm that was commonly used to investigate the geometrical properties of *X* is the Minkowski functional associated to the modular unit ball and it is known as the Luxembourg norm. Whereas in the case of classical ℓ_p spaces, the natural norm is suitable for making calculations, the Luxembourg norm on *X* is very difficult to manipulate.

In 1950, Nakano [8] introduced for the first time the notion of modular vector space (see also [9,10]). This abstract point of view has been crucial to the development of the research on geometrical and topological properties of the variable exponent spaces $\ell_{p(.)}$.

In this work, we will introduce a class of subsets of $\ell_{p(.)}$ that have some interesting geometrical properties. This will allow us to prove a new fixed-point theorem concerning $\ell_{p(.)}$ spaces. For the study of metric fixed-point theory, we recommend the book [9].

Citation: El Amri, A.; Khamsi, M.A. New Modular Fixed Point Theorem in the Variable Exponent Spaces $\ell_{p(.)}$. *Mathematics* **2022**, *10*, 869. https:// doi.org/10.3390/math10060869

Academic Editor: Christopher Goodrich

Received: 19 February 2022 Accepted: 7 March 2022 Published: 9 March 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

2. Basic Notations and Terminology

For a function $p : \mathbb{N} \longrightarrow [1, +\infty)$, define the vector space

$$\ell_{p(.)} = \left\{ \{x_n\} \in \mathbb{R}^{\mathbb{N}}, \quad \sum_{n=0}^{\infty} \frac{1}{p(n)} |\lambda x_n|^{p(n)} < \infty, \text{ for some } \lambda > 0 \right\}.$$

Nakano [8,11] introduced the concept of modular vector space.

Proposition 1 ([6,9]). *Consider the function* $\rho : \ell_{p(.)} \longrightarrow [0, +\infty]$ *defined by*

$$\rho(x) = \rho(\{x_n\}) = \sum_{n=0}^{\infty} \frac{1}{p(n)} |x_n|^{p(n)}$$

then ρ satisfies the following properties

- (1) $\rho(x) = 0$ if and only if x = 0,
- (2) $\rho(\alpha x) = \rho(x), \text{ if } |\alpha| = 1,$
- (3) $\rho(\alpha x + (1-\alpha)y) \le \alpha \rho(x) + (1-\alpha)\rho(y), \ \forall \alpha \in [0,1].$

for any $x, y \in X$. The function ρ is called a convex modular.

For any subset *I* of \mathbb{N} , we consider the functional

$$\rho_I(x) = \sum_{n \in I} |x_n|^{p(n)}$$

If $I = \emptyset$, we set $\rho_I(x) = 0$. We define on modular spaces a modular topology which is similar to the topology induced by a metric.

Definition 1. Consider the vector space $\ell_{p(.)}$.

- (a) We say that a sequence $\{x_n\} \subset \ell_{p(.)}$ is ρ -convergent to $x \in \ell_{p(.)}$ if and only if $\rho(x_n x) \longrightarrow 0$. The ρ -limit is unique if it exists.
- (b) A sequence $\{x_n\} \subset \ell_{p(.)}$ is called ρ -Cauchy if $\rho(x_n x_m) \longrightarrow 0$ as $n, m \longrightarrow +\infty$.
- (c) A nonempty subset $C \subset \ell_{p(.)}$ is called ρ -closed if for any sequence $\{x_n\} \subset C$ which ρ converges to x implies that $x \in C$.
- (d) A nonempty subset $C \subset \ell_{p(.)}$ is called ρ -bounded if and only if

$$\delta_{\rho}(C) = \sup\{\rho(x-y), x, y \in C\} < \infty.$$

Note that ρ satisfies the Fatou property, i.e.,

$$\rho(x-y) \leq \liminf_{n \to \pm\infty} \rho(x-y_n),$$

holds whenever $\{y_n\} \rho$ -converges to y, for any $x, y, y_n \in \ell_{p(.)}$. Throughout, we will use the notation $B_{\rho}(x, r)$ to denote the ρ -ball with radius $r \ge 0$ centered at $x \in \ell_{p(.)}$ and defined as

$$B_{\rho}(x,r) = \Big\{ y \in \ell_{p(.)}, \ \rho(x-y) \leq r \Big\}.$$

Note that Fatou property holds if and only if the ρ -balls are ρ -closed. That is, all ρ -balls are ρ -closed in $\ell_{\nu(.)}$.

Definition 2. Let $C \subset \ell_{p(.)}$ be a nonempty subset. A mapping $T : C \longrightarrow C$ is called ρ -Lipschitzian *if there exists a constant* $K \ge 0$ *such that*

$$\rho(T(x) - T(y)) \le K \rho(x - y), \quad \forall x, y \in C.$$

If K = 1, T is called ρ -nonexpansive. A point $x \in C$ is called a fixed point of T if T(x) = x.

The concept of modular uniform convexity was first introduced by Nakano [11], but a weaker definition of modular uniform convexity called (*UUC2*) was introduced in [9] and seems to be more suitable to hold in $\ell_{p(.)}$ when weaker assumptions on the exponent function $p(\cdot)$ hold. The following definition is given in terms of subsets because of the subsequent results discovered in this work.

Definition 3 ([9]). Consider the vector space $\ell_{p(.)}$. Let C be a nonempty subset of $\ell_{p(.)}$.

1. Let r > 0 and $\varepsilon > 0$. Define

$$D_2(r,\varepsilon) = \bigg\{ (x,y) \in \ell_{p(.)} \times \ell_{p(.)}, \ \rho(x) \le r, \ \rho(y) \le r, \ \rho\bigg(\frac{x-y}{2}\bigg) \ge \varepsilon r \bigg\}.$$

If $D_2(r,\varepsilon) \cap (C \times C) \neq \emptyset$, let

$$\delta_{2,C}(r,\varepsilon) = \inf\left\{1 - \frac{1}{r}\rho\left(\frac{x+y}{2}\right), \ (x,y) \in D_2(r,\varepsilon) \cap (C \times C)\right\}.$$

If $D_2(r,\varepsilon) \cap (C \times C) = \emptyset$, we set $\delta_2(r,\varepsilon) = 1$. We say that ρ satisfies (UC2) on C if for every r > 0 and $\varepsilon > 0$, we have $\delta_{2,C}(r,\varepsilon) > 0$. When $C = \ell_{p(.)}$, we remark that for every r > 0, $D_2(r,\varepsilon) \neq \emptyset$, for $\varepsilon > 0$ small enough. In this case, we will use the notation $\delta_{2,\ell_{p(.)}} = \delta_2$.

2. We say that ρ satisfies (UUC2) on C if for every $s \ge 0$ and $\varepsilon > 0$, there exists $\eta_2(s, \varepsilon) > 0$ depending on s and ε such that

$$\delta_{2,C}(r,\varepsilon) \ge \eta_2(s,\varepsilon) > 0$$
 for $r > s$.

3. We say that ρ is strictly convex on C (in short (SC)), if for every $x, y \in C$ such that

$$\rho(x) = \rho(y) \text{ and } \rho\left(\frac{x+y}{2}\right) = \frac{\rho(x) + \rho(y)}{2} \text{ imply } x = y.$$

In the study of the properties of $\ell_{p(.)}$ (see [12]), the following values are very important:

$$p^+ = \sup_{n \in \mathbb{N}} p(n)$$
 and $p^- = \inf_{n \in \mathbb{N}} p(n)$.

In [5], the authors proved that for $\ell_{p(.)}$, with $p^- > 1$, the modular is (*UUC*2). This modular geometrical property allows to prove the following fixed-point result:

Theorem 1. Consider the vector space $\ell_{p(.)}$. Assume $p^- > 1$. Let C be a nonempty ρ -closed convex ρ -bounded subset of $\ell_{p(.)}$. Let $T : C \longrightarrow C$ be a ρ -nonexpansive mapping. Then T has a fixed point.

In [13], the authors proved a similar fixed-point theorem in the case where $\{n \in \mathbb{N}, p(n) = 1\}$ has at most one element which is an improvement from $p^- > 1$.

Before we close this section, we recall the following lemma, of a rather technical nature, which plays a crucial role when dealing with $\ell_{p(.)}$ spaces.

Lemma 1. The following inequalities hold:

(*i*) [14]. If $p \ge 2$, then

$$\left|\frac{a+b}{2}\right|^p + \left|\frac{a-b}{2}\right|^p \le \frac{1}{2}\left(|a|^p + |b|^p\right),$$

for any $a, b \in \mathbb{R}$.

(*ii*) [15]. If 1 , then

$$\left|\frac{a+b}{2}\right|^{p} + \frac{p(p-1)}{2} \left|\frac{a-b}{|a|+|b|}\right|^{2-p} \left|\frac{a-b}{2}\right|^{p} \le \frac{1}{2} \left(|a|^{p} + |b|^{p}\right).$$

for any $a, b \in \mathbb{R}$ such that $|a| + |b| \neq 0$.

In this work, using a different approach, we obtain some fixed-point results when $p^- = 1$ without the known conditions on the function $p(\cdot)$.

3. Uniform Decrease Condition

First, we introduce an interesting class of subsets of $\ell_{p(.)}$, which will play an important part in our work. In particular, they enjoy similar modular geometric properties as $\ell_{p(.)}$ when $p^- > 1$. Before, let us introduce the following notations:

$$I_a = \left\{ n \in \mathbb{N}; \ p(n) \ge a \right\}$$
 and $J_a = \mathbb{N} \setminus I_a = \left\{ n \in \mathbb{N}; \ p(n) < a \right\}$

where $a \in [1, +\infty)$.

Definition 4. Consider the vector space $\ell_{p(.)}$. A nonempty subset C of $\ell_{p(.)}$ is said to satisfy the uniform decrease condition (in short (UD)) if for any $\alpha > 0$, there exists a > 1 such that

$$\sup_{x\in C} \rho_{J_a}(x) \leq \alpha.$$

Obviously the condition (UD) passes from a set to its subsets. Moreover, if $p(\cdot)$ is identically equal to 1, then the only (UD) subset is $C = \{0\}$. Since this case is not interesting, we will assume throughout that $p(\cdot)$ is not identically equal to 1. Moreover, if $p^- > 1$, then any nonempty subset of $\ell_{p(\cdot)}$ satisfies the condition (UD). Indeed, let *C* be a nonempty subset of $\ell_{p(\cdot)}$ and $\alpha > 0$. Let $a \in (1, p^-)$. Then $J_a = \emptyset$ which implies

$$\sup_{x\in C}\rho_{J_a}(x)=0\leq \alpha.$$

Therefore, the condition (*UD*) is interesting to study only when $p^- = 1$ and $p(\cdot)$ is not identically equal to 1, which will be the case throughout.

Example 1. Consider the function $p(\cdot)$ defined by

$$p(n) = 1 + \frac{1}{n+1}, \ n \in \mathbb{N}.$$

Consider the subset

$$C = \left\{ x \in \ell_{p(.)}; \ |x_n| \le \frac{1}{(n+1)^2}, \ n \in \mathbb{N} \right\}.$$

C is nonempty, convex and ρ -closed. Let us show that it satisfies the condition (UD). Indeed, fix $\alpha > 0$. Let $N \ge 1$ be such that $\sum_{k\ge N} \frac{1}{(k+1)^2} \le \alpha$. Set $a = 1 + \frac{1}{N}$. We have

$$\rho_{J_a}(x) = \sum_{n \in J_a} \frac{|x_n|^{p(n)}}{p(n)}$$

$$\leq \sum_{n \geq N} \frac{|x_n|^{p(n)}}{p(n)}$$

$$\leq \sum_{n \geq N} \frac{1}{p(n)} \frac{1}{(n+1)^{2p(n)}}$$

$$\leq \sum_{n \geq N} \frac{1}{(n+1)^2}$$

$$\leq \alpha,$$

for all $x \in C$, which proves our claim that C is (UD).

Before we give a characterization of subsets which satisfy the condition (UD), we need to introduce a new class of subsets of $\ell_{p(.)}$.

Definition 5. Consider the vector space $\ell_{p(.)}$ such that $p^- = 1$ and $p(\cdot)$ not identically equal to 1. Let $f: (0, +\infty) \to (1, 2]$ be a nondecreasing function. Define the set C_f to be

$$C_f = \Big\{ x \in \ell_{p(.)}; \ \rho_{J_{f(\alpha)}}(x) \le \alpha, \ for \ all \ \alpha > 0 \Big\}.$$

Note that C_f is never empty since $0 \in C_f$. Some of the basic properties of C_f are given in the following lemma.

Lemma 2. Consider the vector space $\ell_{p(.)}$ such that $p^- = 1$ and $p(\cdot)$ not identically equal to 1. Let $f: (0, +\infty) \to (1, 2]$ be a non-decreasing function. Then the following properties hold:

- 1. C_f is convex.
- 2. C_f is symmetrical, i.e., $-z \in C_f$ whenever $z \in C_f$.
- 3. The Fatou property implies easily that C_f is ρ -closed as a subset of $\ell_{p(.)}$ which in turn implies that C_f is ρ -complete.

Proposition 2. Consider the vector space $\ell_{p(.)}$ such that $p^- = 1$ and $p(\cdot)$ not identically equal to 1. A subset C of $\ell_{p(.)}$ satisfies the condition (UD) if and only if there exists $f : (0, +\infty) \to (1, 2]$ non-decreasing such that $C \subset C_f$.

Proof. First, we prove that C_f satisfies the condition (*UD*). Fix $\alpha > 0$. If we take $a = f(\alpha)$, we obtain

$$\sup_{x\in C_f} \rho_{J_a}(x) \leq \alpha,$$

which proves our claim. Clearly, any subset *C* of *C*_{*f*} will also satisfy the condition (*UD*). Conversely, let *C* be a nonempty subset of $\ell_{p(.)}$ which satisfies the condition (*UD*). For any $\alpha > 0$, there exists a > 1 such that sup $\rho_{J_a}(x) \le \alpha$. Set

$$x \in C$$

$$[\alpha] = \Big\{ a > 1; \sup_{x \in C} \rho_{J_a}(x) \le \alpha \Big\}.$$

Define

$$f(\alpha) = \begin{cases} 2 & \text{if } [\alpha] \subset [2, +\infty), \\ \sup ([\alpha] \cap (1, 2]) & \text{if } [\alpha] \cap (1, 2] \neq \emptyset \end{cases}$$

Clearly, *f* is well defined and $f(\alpha) \in (1, 2]$, for all $\alpha > 0$. Let α and β be such that $0 < \alpha \le \beta$. We claim that $f(\alpha) \le f(\beta)$. Indeed, it is easy to see that $[\alpha] \subset [\beta]$. If $[\alpha] \cap (1, 2] \ne \emptyset$, then we have $[\beta] \cap (1, 2] \ne \emptyset$ which easily implies $f(\alpha) \le f(\beta)$. Otherwise, assume $[\alpha] \subset [2, +\infty)$. Let $a \in [\alpha]$. We have $a \ge 2$ and $a \in [\beta]$. By definition of the sets J, we have $J_2 \subset J_a$. Since $\rho_{J_2}(x) \le J_a(x)$, for all $x \in \ell_{p(.)}$, we obtain

$$\sup_{x\in C} \rho_{J_2}(x) \leq \sup_{x\in C} \rho_{J_a}(x) \leq \beta,$$

i.e., $2 \in [\beta]$. This fact, will force $f(\beta) = 2$. In all cases, we have $f(\alpha) \leq f(\beta)$. In other words, the function $f : (0, +\infty) \to (1, 2]$ is non-decreasing. Finally, let us show that $C \subset \ell_g$, where $g(\alpha) = (1 + f(\alpha))/2$, for all $\alpha > 0$. Since $1 < f(\alpha)$, then we have $1 < g(\alpha) < f(\alpha)$, for all $\alpha > 0$. If $[\alpha] \subset [2, +\infty)$, pick $a \in [\alpha]$. Then $g(\alpha) = 3/2 < a$ which implies $J_{g(\alpha)} \subset J_a$. Hence

$$\rho_{I_{a(x)}}(x) \leq \rho_{I_{a}}(x)$$
, for all $x \in C$,

which implies $\sup_{x \in C} \rho_{J_{g(\alpha)}}(x) \leq \sup_{x \in C} \rho_{J_a}(x) \leq \alpha$. Otherwise, assume $[\alpha] \cap (1, 2] \neq \emptyset$, then $f(\alpha) = \sup([\alpha] \cap (1, 2])$. Since $g(\alpha) < f(\alpha)$, there exists $a \in [\alpha]$ such that $g(\alpha) < a \leq f(\alpha)$. Similar argument will show that

$$\sup_{x\in C} \rho_{J_{g(\alpha)}}(x) \leq \sup_{x\in C} \rho_{J_a}(x) \leq \alpha.$$

In both cases, we showed that $\sup_{x \in C} \rho_{J_{g(\alpha)}}(x) \leq \alpha$, for all $\alpha > 0$, i.e., $C \subset C_g$ as claimed. \Box

Proposition 2 allows us to focus on the subsets C_f instead of subsets which satisfy the condition (*UD*). The next result is amazing and surprising since it tells us that the subsets C_f enjoy nice modular geometric properties despite the fact that $p^- = 1$.

Theorem 2. Consider the vector space $\ell_{p(.)}$ such that $p^- = 1$ and $p(\cdot)$ not identically equal to 1. Let $f: (0, +\infty) \to (1, 2]$ be a non-decreasing function. Then, ρ is (UUC2) on C_f .

Proof. Let r > 0 and $\varepsilon > 0$. Let $x, y \in C_f$ such that $\rho(x) \le r$, $\rho(y) \le r$ and $\rho\left(\frac{x-y}{2}\right) \ge r\varepsilon$. Since ρ is convex, we have

$$r\varepsilon \leq
ho\left(rac{x-y}{2}
ight) \leq rac{
ho(x)+
ho(y)}{2} \leq r,$$

which implies $\varepsilon \leq 1$. Set $\alpha = \frac{r\varepsilon}{2}$. The properties of C_f imply $\frac{x-y}{2} \in C_f$. So

1

$$\rho_{J_{f(\alpha)}}\left(\frac{x-y}{2}\right) \leq \alpha$$

which implies

$$\rho_{I_{f(\alpha)}}\left(\frac{x-y}{2}\right) = \rho\left(\frac{x-y}{2}\right) - \rho_{J_{f(\alpha)}}\left(\frac{x-y}{2}\right) \ge r\varepsilon - \alpha = \frac{r\varepsilon}{2}$$

Next, set

$$K = I_{f(\alpha)} \cap \{n, p(n) \ge 2\}$$
 and $L = I_{f(\alpha)} \cap \{n, p(n) < 2\}.$

Since $I_{f(\alpha)} = K \cup L$, we obtain $\rho_{I_{f(\alpha)}}(z) = \rho_K(z) + \rho_L(z)$, for all $z \in C_f$. From our assumptions, we have

$$\rho_K\left(\frac{x-y}{2}\right) \geq \frac{r\varepsilon}{4} \text{ or } \rho_L\left(\frac{x-y}{2}\right) \geq \frac{r\varepsilon}{4}.$$

Assume first that

$$\rho_K\left(\frac{x-y}{2}\right) \geq \frac{r\varepsilon}{4}.$$

Using Lemma 1, we obtain

$$\rho_K\left(\frac{x+y}{2}\right) + \rho_K\left(\frac{x-y}{2}\right) \leq \frac{\rho_K(x) + \rho_K(y)}{2},$$

which implies

$$\rho_K\left(rac{x+y}{2}
ight) \leq rac{
ho_K(x)+
ho_K(y)}{2} - rac{rarepsilon}{4}.$$

Using the convexity of the modular, we have

$$ho_{L\cup J_{f(lpha)}}igg(rac{x+y}{2}igg)\leq rac{
ho_{L\cup J_{f(lpha)}}(x)+
ho_{L\cup J_{f(lpha)}}(y)}{2},$$

which implies

$$\rho\left(\frac{x+y}{2}\right) \leq \frac{\rho(x)+\rho(y)}{2} - \frac{\varepsilon r}{4} \leq r\left(1-\frac{\varepsilon}{4}\right).$$

For the second case, assume

$$\rho_L\left(\frac{x-y}{2}\right)\geq \frac{\varepsilon r}{4}.$$

Set

$$c = \frac{\varepsilon}{8}, L_1 = \left\{n, |x_n - y_n| \le c \left(|x_n| + |y_n|\right)\right\}$$
 and $L_2 = L \setminus L_1$

Since c < 1, we obtain

$$\rho_{L_1}\left(\frac{x-y}{2}\right) \le \sum_{n \in L_1} \frac{c^{p(n)}}{p(n)} \left(\frac{|x_n| + |y_n|}{2}\right)^{p(n)} \le \frac{c}{2} \sum_{n \in L_1} \frac{|x_n|^{p(n)} + |y_n|^{p(n)}}{p(n)}$$

Hence

$$\rho_{L_1}\left(\frac{x-y}{2}\right) \leq \frac{c}{2}\left(\rho_{L_1}(x) + \rho_{L_1}(y)\right) \leq \frac{c}{2}\left(\rho(x) + \rho(y)\right) \leq \frac{c}{2}r.$$

Our assumption on $\rho_L\left(\frac{x-y}{2}\right)$ implies

$$\rho_{L_2}\left(\frac{x-y}{2}\right) = \rho_L\left(\frac{x-y}{2}\right) - \rho_{L_1}\left(\frac{x-y}{2}\right) \ge r\frac{\varepsilon}{4} - \frac{c}{2}r \ge r\frac{\varepsilon}{8}.$$

For any $n \in L_2$, we have

$$f\left(\frac{r\varepsilon}{2}\right) - 1 = f(\alpha) - 1 \le p(n) - 1 \le p(n)(p(n) - 1)$$
$$c \le c^{2-p(n)} \le \left(\frac{|x_n - y_n|}{|x_n| + |y_n|}\right)^{2-p(n)}.$$

Using Lemma 1, we obtain

$$\left|\frac{x_n+y_n}{2}\right|^{p(n)}+\frac{(f(\alpha)-1)}{2}c\left|\frac{x_n-y_n}{2}\right|^{p(n)}\leq \frac{1}{2}\left(|x_n|^{p(n)}+|y_n|^{p(n)}\right),$$

for any $n \in L_2$. Hence

$$\rho_{L_2}\left(\frac{x+y}{2}\right) \leq \frac{\rho_{L_2}(x) + \rho_{L_2}(y)}{2} - \frac{r(f(\alpha)-1)\varepsilon^2}{128},$$

which implies

$$\rho\left(\frac{x+y}{2}\right) \leq r\left(1 - \frac{(f(\alpha)-1)\varepsilon^2}{128}\right).$$

Both cases imply that ρ is (*UC*2) on *C*^{*f*} with

$$\delta_{2,C_f}(r,\varepsilon) \geq \min\left(\frac{\varepsilon}{4}, \frac{\left(f\left(\frac{r\varepsilon}{2}\right)-1\right)\varepsilon^2}{128}\right) > 0,$$

since f(a) > 1, for any a > 0. Since $f(\cdot)$ is nondecreasing, we may set

$$\eta_2(r,\varepsilon) = \min\left(\frac{\varepsilon}{4}, \frac{\left(f\left(\frac{r\varepsilon}{2}\right) - 1\right)\varepsilon^2}{128}\right)$$

to see that in fact ρ is (*UUC*2) on *C*_{*f*} which completes the proof of Theorem 2. \Box

The following lemma will be useful:

Lemma 3. Consider the vector space $\ell_{p(.)}$ such that $p^- = 1$ and $p(\cdot)$ not identically equal to 1. Let $f: (0, +\infty) \to (1, 2]$ be a non-decreasing function. Set $g(\alpha) = f(\frac{\alpha}{4})$, for $\alpha > 0$. We have

$$C_f + C_f = \left\{ x + y; \ x, y \in C_f \right\} \subset C_g.$$

Proof. Let $x, y \in C_f$. For any $n \in J_{g(\alpha)} = \left\{n; p(n) \leq f\left(\frac{\alpha}{4}\right)\right\}$, we have

$$\left|\frac{x_n+y_n}{2}\right|^{p(n)} \leq \frac{1}{2} \Big(|x_n|^{p(n)}+|y_n|^{p(n)} \Big),$$

which implies

$$\frac{1}{p(n)}|x_n+y_n|^{p(n)} \le \frac{2^{p(n)-1}}{p(n)} \Big(|x_n|^{p(n)}+|y_n|^{p(n)}\Big)$$

Hence

$$\begin{split} \rho_{J_{f(\frac{\alpha}{4})}}(x+y) &\leq 2^{f(\frac{\alpha}{4})-1} \bigg(\rho_{J_{f(\frac{\alpha}{4})}}(x) + \rho_{J_{f(\frac{\alpha}{4})}}(y) \bigg) \\ &\leq 2\bigg(\frac{\alpha}{4} + \frac{\alpha}{4}\bigg) \\ &= \alpha. \end{split}$$

Therefore $\rho_{J_{g(\alpha)}}(x+y) \leq \alpha$, that is $x+y \in C_g$, which completes the proof of Lemma 3. \Box

In the next section, we will prove a fixed-point theorem for modular nonexpansive mappings.

4. Application

As an application to Theorem 2, we will prove a fixed-point result for modular nonexpansive mappings. The classical ingredients will be needed. First, we prove the proximinality of ρ -closed convex subsets which satisfies the condition (*UD*).

Proposition 3. Consider the vector space $\ell_{p(.)}$ such that $p^- = 1$ and $p(\cdot)$ not identically equal to 1. Let $f : (0, +\infty) \to (1, 2]$ non-decreasing. Any nonempty ρ -closed convex subset C of C_f is proximinal, i.e., for any $x \in C_f$ such that

$$d_{\rho}(x,C) = \inf\left\{\rho(x-y); y \in C\right\} < \infty,$$

there exists a unique $c \in C$ such that $d_{\rho}(x, C) = \rho(x - c)$.

Proof. Without loss of generality, we assume that $x \notin C$. Since *C* is ρ -closed we have, $R = d_{\rho}(x, C) > 0$. For any $n \ge 1$, there exists $y_n \in C$ such that $\rho(x - y_n) < R(1 + 1/n)$. We claim that $\{y_n/2\}$ is ρ -Cauchy. Assume not. Then there exists a subsequence $\{y_{\phi(n)}\}$ of $\{y_n\}$ and $\varepsilon_0 > 0$ such that

$$\rho\left(\frac{y_{\phi(n)}-y_{\phi(m)}}{2}\right)\geq\varepsilon_0,$$

for any $n > m \ge 1$. According to Lemma 3, $\{x - y_{\phi(n)}\}$ is in C_g , where $g(\alpha) = f(\alpha/4)$, for any $\alpha > 0$. Fix $n > m \ge 1$. We have

$$\max \left\{ \rho\left(x - y_{\phi(n)}\right), \rho\left(x - y_{\phi(m)}\right) \right\} \le R\left(1 + \frac{1}{\phi(m)}\right).$$

Since

$$\varepsilon_0 = R\left(1 + \frac{1}{\phi(m)}\right) \frac{\varepsilon_0}{R\left(1 + \frac{1}{\phi(m)}\right)} \ge R\left(1 + \frac{1}{\phi(m)}\right)\varepsilon_1,$$

with $\varepsilon_1 = \frac{\varepsilon_0}{2R}$, and using Theorem 2, we obtain

$$\begin{split} \rho\bigg(x - \frac{y_{\phi(n)} + y_{\phi(m)}}{2}\bigg) &\leq R(1 + 1/\phi(m))\bigg(1 - \delta_{2,C_g}\bigg(R\bigg(1 + \frac{1}{\phi(m)}\bigg), \varepsilon_1\bigg)\bigg) \\ &\leq R(1 + 1/\phi(m))\bigg(1 - \eta_2(R, \varepsilon_1)\bigg), \end{split}$$

where

$$\eta_2(R,\varepsilon_1) = \min\left(\frac{\varepsilon_1}{4}, \frac{\left(g\left(\frac{R\varepsilon_1}{2}\right) - 1\right)\varepsilon_1^2}{128}\right)$$

Since $y_{\phi(n)}$ and $y_{\phi(m)}$ are in *C* and *C* is convex, we obtain

$$R = d_{\rho}(x, C) \le \rho\left(x - \frac{y_{\phi(n)} + y_{\phi(m)}}{2}\right) \le R(1 + 1/\phi(m))\left(1 - \eta_2(R, \varepsilon_1)\right).$$

If we let $m \to +\infty$, we obtain

$$R \leq R((1-\eta_2(R,\varepsilon_1))) < R.$$

This contradiction implies that $\{y_n/2\}$ is ρ -Cauchy. Since $\ell_{p(\cdot)}$ is ρ -complete, there exists $y \in \ell_{p(\cdot)}$ such that $\{y_n/2\}$ ρ -converges to y. Since C is convex and ρ -closed, we conclude that $2y \in C$. Using the Fatou property, we have

$$\begin{split} R &= d_{\rho}(x,C) &\leq \rho(x-2y) \\ &\leq \liminf_{m \to +\infty} \rho\left(x - \left(y + \frac{y_m}{2}\right)\right) \\ &\leq \liminf_{m \to +\infty} \liminf_{n \to +\infty} \rho\left(x - \frac{y_n + y_m}{2}\right) \\ &\leq \liminf_{m \to +\infty} \liminf_{n \to +\infty} \frac{\rho(x-y_n) + \rho(x-y_m)}{2} = R = d_{\rho}(x,C). \end{split}$$

If we set c = 2y, we obtain $d(x, C) = \rho(x - c)$. The uniqueness of the point *c* comes from the fact that ρ is strictly convex on C_g since it is (*UUC2*). \Box

The next result discusses an intersection property known as the property (*R*) [9]. Recall that a nonempty ρ -closed convex subset *C* of $\ell_{p(\cdot)}$ is said to satisfy the property (*R*)

if for any decreasing sequence of nonempty ρ -closed ρ -bounded convex subsets of *C* have a nonempty intersection.

Proposition 4. Consider the vector space $\ell_{p(.)}$ such that $p^- = 1$ and $p(\cdot)$ not identically equal to 1. Let $f : (0, +\infty) \to (1, 2]$ be a non-decreasing function. Then C_f satisfies the property (R).

Proof. Let $\{C_n\}$ be a decreasing sequence of nonempty ρ -closed ρ -bounded convex subsets of C_f . Let $x \in C_1$. We have

$$d_{\rho}(x, C_n) = \inf \{ \rho(x - x_n); x_n \in C_n \} \le \sup \{ \rho(x - y), x, y \in C_1 \} = \delta_{\rho}(C_1) < \infty$$

Since $\{C_n\}$ is decreasing, the sequence $\{d_\rho(x, C_n)\}$ is increasing bounded above by $\delta_\rho(C_1)$. Set $R = \lim_{n \to +\infty} d_\rho(x, C_n) = \sup_n d_\rho(x, C_n)$. If R = 0, then $x \in C_n$ for any $n \ge 1$, which will imply $\bigcap_{n\ge 1} C_n \neq \emptyset$. Otherwise, assume R > 0. Using Proposition 3, there exists $c_n \in C_n$ such that $d_\rho(x, C_n) = \rho(x - c_n)$, for any $n \ge 1$. Similar argument as the one used in the proof of Proposition 3 will show that $\{c_n/2\}$ is ρ -Cauchy and converges to $c \in \ell_{p(\cdot)}$. Since $\{C_n\}$ is a decreasing sequence of ρ -closed subsets, we conclude that $2c \in \bigcap_{n\ge 1} C_n$. Again this will show that $\bigcap_{n\ge 1} C_n \neq \emptyset$ which completes the proof of Proposition 4. Moreover, using Fatou property, we note that

$$\rho(x-2c) \leq \liminf_{m \to +\infty} \liminf_{n \to +\infty} \rho\left(x - \frac{c_n + c_m}{2}\right),$$

which will imply

 $d_{\rho}\left(x,\bigcap_{n\geq 1} C_n\right) = \lim_{n\to+\infty} d_{\rho}(x,C_n).$

Remark 1. Let us note that under the assumptions of Proposition 4, the conclusion still holds when we consider any family $\{C_{\alpha}\}_{\alpha\in\Gamma}$ of nonempty, convex, ρ -closed subsets of C, where (Γ, \prec) is upward directed, such that there exists $x \in C$ which satisfies $\sup_{\alpha\in\Gamma} d_{\rho}(x, C_{\alpha}) < \infty$. Indeed, set

 $d = \sup_{\alpha \in \Gamma} d_{\rho}(x, C_{\alpha})$. Without loss of generality, we may assume d > 0. For any $n \ge 1$, there exists $\alpha_n \in \Gamma$ such that

$$d\left(1-\frac{1}{n}\right) < d_{\rho}\left(x, C_{\alpha_n}\right) \leq d.$$

Since (Γ, \prec) is upward directed, we may assume $\alpha_n \prec \alpha_{n+1}$ which implies $C_{\alpha_{n+1}} \subset C_{\alpha_n}$. Proposition 4 implies $C_0 = \bigcap_{n \ge 1} C_{\alpha_n} \neq \emptyset$. Clearly C_0 is ρ -closed and using the last noted point in the proof of Proposition 4, we obtain

$$d_{\rho}(x,C_0) = \lim_{n \to +\infty} d_{\rho}(x,C_{\alpha_n}) = \sup_{n \ge 1} d_{\rho}(x,C_{\alpha_n}) = d_{\rho}(x,C_{\alpha_n}) = d_{\rho}(x,C_{\alpha_n})$$

Let $c_0 \in C_0$ such that $d_\rho(x, C_0) = \rho(x - c_0)$. We claim that $c_0 \in C_\alpha$, for any $\alpha \in \Gamma$. Indeed, fix $\alpha \in \Gamma$. If for some $n \ge 1$ we have $\alpha \prec \alpha_n$, then obviously we have $c_0 \in C_{\alpha_n} \subset C_\alpha$. Therefore let us assume that $\alpha \not\prec \alpha_n$, for any $n \ge 1$. Since Γ is upward directed, there exists $\beta_n \in \Gamma$ such that $\alpha_n \prec \beta_n$ and $\alpha \prec \beta_n$, for any $n \ge 1$. We can also assume that $\beta_n \prec \beta_{n+1}$ for any $n \ge 1$. Again we have $C_1 = \bigcap_{n\ge 1} C_{\beta_n} \neq \emptyset$. Since $C_{\beta_n} \subset C_{\alpha_n}$, for any $n \ge 1$, we obtain $C_1 \subset C_0$. Moreover we have

$$d = d_{\rho}(x, C_0) \le d_{\rho}(x, C_1) = \sup_{n \ge 1} d_{\rho}(x, C_{\beta_n}) \le d.$$

Hence, $d_{\rho}(x, C_1) = d$ which implies the existence of a unique point $c_1 \in C_1$ such that $d_{\rho}(x, C_1) = \rho(x - c_1) = d$. Since ρ is (SC) on C_f , we obtain $c_0 = c_1$. In particular, we have $c_0 \in C_{\beta_n}$, for any $n \ge 1$. Since $\alpha \prec \beta_n$, we conclude that $C_{\beta_n} \subset C_{\alpha}$, for any $n \ge 1$, which implies $c_0 \in C_{\alpha}$. Since α was taking arbitrary in Γ , we obtain $c_0 \in \bigcap_{\alpha \in \Gamma} C_{\alpha}$, which implies $\bigcap_{\alpha \in \Gamma} C_{\alpha} \neq \emptyset$ as claimed.

The next result is necessary to obtain the fixed-point theorem sought for ρ -nonexpansive mappings.

Proposition 5. Consider the vector space $\ell_{p(.)}$ such that $p^- = 1$ and $p(\cdot)$ are not identically equal to 1. Let $f : (0, +\infty) \to (1, 2]$ be a nondecreasing function. Then C_f has the ρ -normal structure property, i.e., for any nonempty ρ -closed convex ρ -bounded subset C of ℓ_f not reduced to one point, there exists $x \in C$ such that

$$\sup_{y\in C}\rho(x-y)<\delta_{\rho}(C).$$

Proof. Let *C* be a ρ -closed convex ρ -bounded subset *C* of C_f not reduced to one point. Since *C* is not reduced to one point, we have $\delta_{\rho}(C) > 0$. Let $x, y \in C$ such that $x \neq y$. Set

$$\varepsilon_0 = \frac{1}{\delta_{\rho}(C)} \rho\left(\frac{x-y}{2}\right) > 0.$$

Fix $c \in C$. Using Lemma 3, we have x - c and y - c are in $C_f - C_f \subset C_g$, where $g(\alpha) = f(\alpha/4)$, for any $\alpha > 0$. So far we have

$$\max\left\{\rho(x-c),\rho(y-c)\right\} \leq \delta_{\rho}(C) \text{ and } \rho\left(\frac{x-y}{2}\right) \geq \delta_{\rho}(C) \varepsilon_{0}.$$

Theorem 2 implies

$$\rho\left(c-\frac{x+y}{2}\right) \leq \delta_{\rho}(C) \left(1-\delta_{2,C_g}(R,\varepsilon_0)\right).$$

Since *c* was taken arbitrary in *C*, we conclude that

$$\sup_{c \in C} \rho\left(c - \frac{x + y}{2}\right) \le \delta_{\rho}(C) \left(1 - \delta_{2,C_g}\left(\delta_{\rho}(C), \varepsilon_0\right)\right) < \delta_{\rho}(C) > 0$$

Therefore the proof of Proposition 5 is complete. \Box

Putting all this together, we are ready to prove the main fixed-point result of our work.

Theorem 3. Consider the vector space $\ell_{p(.)}$ such that $p^- = 1$ and $p(\cdot)$ are not identically equal to 1. Let C be a nonempty ρ -closed convex ρ -bounded subset of $\ell_{p(.)}$, which satisfies the condition (UD). Any ρ -nonexpansive mapping $T : C \to C$ has a fixed point.

Proof. Since *C* satisfies the condition (*UD*), Proposition 2 secures the existence of a nondecreasing function $f : (0, +\infty) \rightarrow (1, 2]$ such that *C* is a subset of C_f . The conclusion is trivial if *C* is reduced to one point. Therefore, we will assume that *C* is not reduced to one point, i.e., $\delta_{\rho}(C) > 0$. Consider the family

$$\mathcal{F} = \{K \subset C, K \neq \emptyset, \rho - closed \ convex \ and \ T(K) \subset K\}$$

The family \mathcal{F} is not empty since $C \in \mathcal{F}$. Since *C* is bounded, we use Remark 1 to be able to use Zorn's lemma and conclude that \mathcal{F} contains a minimal element K_0 . Let us show that K_0 is reduced to one point. Assume not, i.e., K_0 contains more than one point. Set $co(T(K_0))$ to be the intersection of all ρ -closed convex subset of *C* containing $T(K_0)$. Hence $co(T(K_0)) \subset K_0$ since $K_0 \in \mathcal{F}$. Moreover, we have

$$T(co(T(K_0))) \subset T(K_0) \subset co(T(K_0)),$$

which implies that $co(T(K_0)) \in \mathcal{F}$. K_0 being a minimal element of \mathcal{F} we deduce that $K_0 = co(T(K_0))$. Using Proposition 5, we deduce the existence of $x_0 \in K_0$ such that

$$r_0 = \sup_{y \in K_0} \rho(x_0 - y) < \delta_\rho(K_0).$$

Define the subset $K = \left\{ x \in K_0, \sup_{y \in K_0} \rho(x - y) \le r_0 \right\}$. *K* is not empty since $x_0 \in K$. Note that we have $K = \bigcap_{y \in K_0} B_\rho(y, r_0) \cap K_0$. Using the properties of modular balls, *K* is a ρ -closed and convex subset of K_0 . Next, we prove that $T(K) \subset K$. Indeed, let $x \in K$. Since *T* is ρ -nonexpansive, we have

$$\rho(T(x) - T(y)) \le \rho(x - y) \le r_0,$$

for all $y \in K_0$. So we have $T(y) \in B_\rho(T(x), r_0) \cap K_0$, which implies $T(K_0) \subset B_\rho(T(x), r_0)$. Since $K_0 = co(T(K_0))$, we conclude that $K_0 \subset B_\rho(T(x), r_0)$, which implies

$$\rho(T(x)-y)\leq r_0,$$

for all $y \in K_0$. Hence $T(x) \in K$. Since x was taken as arbitrary in K, we obtain $T(K) \subset K$. The minimality of K_0 will force $K = K_0$. Hence

$$r_0 < \delta_{\rho}(K_0) = \delta_{\rho}(K) \le r_0.$$

This is a contradiction. Therefore, K_0 is reduced to one point and it is a fixed point of *T* because $T(K_0) \subset K_0$. \Box

Remark 2. *In Theorem 3, the condition* (*UD*) *can be replaced by the following condition which is slightly more general:*

there exists $x_0 \in \ell_{p(.)}$ such that $x_0 + C$ satisfies the condition (UD).

Author Contributions: A.E.A. and M.A.K. contributed equally on the development of the theory and their respective analysis. All authors have read and agreed to the published version of the manuscript.

Funding: Khalifa University research project No. 8474000357.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The second author was funded by Khalifa University, UAE, under grant No. 8474000357. The authors, therefore, gratefully acknowledge, with thanks, Khalifa University's technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

- MDPI Multidisciplinary Digital Publishing Institute
- DOAJ Directory of open access journals
- TLA Three letter acronym
- LD linear dichroism

References

- 1. Orlicz, W. Über konjugierte Exponentenfolgen. Studia Math. 1931, 3, 200–211. [CrossRef]
- 2. Musielak, J. *Orlicz Spaces and Modular Spaces*; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1983; Volume 1034.
- 3. Rajagopal, K.; Ružička, M. On the modeling of electrorheological materials. Mech. Res. Commun. 1996, 23, 401–407. [CrossRef]
- 4. Ružička, M. *Electrorheological Fluids: Modeling and Mathematical Theory;* Lecture Notes in Mathematics 1748; Springer: Berlin/Heidelberg, Germany, 2000.
- 5. Bachar, M.; Bounkhel, M.; Khamsi, M.A. Uniform Convexity in $\ell_{p(.)}$. J. Nonlinear Sci. Appl. 2017, 10, 5292–5299. [CrossRef]
- 6. Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. *Lebesgue and Sobolev Spaces with Variable Exponents*; Lecture Note in Mathematics 2017; Springer: Berlin/Heidelberg, Germany, 2011.
- Khamsi, M.A.; Kozlowski, W.K.; Reich, S. Fixed point theory in modular function spaces. *Nonlinear Anal.* 1990, 14, 935–953. [CrossRef]
- 8. Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen Co.: Tokyo, Japan, 1950.
- 9. Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhauser: New York, NY, USA, 2015.
- 10. Kozlowski, W.M. *Modular Function Spaces;* Series of Monographs and Textbooks in Pure and Applied Mathematics; Dekker: New York, NY, USA; Basel, Switzerland, 1988; Volume 122.
- 11. Nakano, H. Topology of Linear Topological Spaces; Maruzen Co., Ltd.: Tokyo, Japan, 1951.
- 12. Waterman, D.; Ito, T.; Barber, F.; Ratti, J. Reflexivity and Summability: The Nakano $\ell(p_i)$ spaces. *Stud. Math.* **1969**, 331, 141–146. [CrossRef]
- Bachar, M.; Khamsi, M.A.; Mendez, O.; Bounkhel, M. A geometric property in ℓ_{p(.)} and its applications. *Math. Nachr.* 2019, 292, 1931–1940. [CrossRef]
- 14. Clarkson, J.A. Uniformly Convex Spaces. Trans. Am. Math. Soc. 1936, 40, 396–414. [CrossRef]
- 15. Sundaresan, K. Uniform convexity of Banach spaces $\ell(\{p_i\})$. Stud. Math. 1971, 39, 227–231. [CrossRef]