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1. Introduction

Some realistic dynamical systems are not only concerned with the present and past
states but also the derivatives of the past states, which are mathematically characterized
by neutral functional differential equations (NFDEs) in [1]. Such equations have been
demonstrated to have wide applications in many fields, such as heat exchangers, chemical
reaction processes, lossless transmission lines, partial element equivalent circuits, popu-
lation dynamics and distributed networks in [1]. When environmental perturbation is
considered, NFDEs are developed into neutral stochastic functional differential equations
(NSFDEs); for more details, see [2] and the references therein. The existence, uniqueness,
stability analysis, and boundedness for the solutions of NSFDEs have been investigated
over the past few decades; see [3–6] and references therein. For example, in [5], by using
the Picard iterative method, the existence and uniqueness of the solutions of NSFDEs have
been studied under a global Lipschitz condition and a linear growth condition for the
drift term and the diffusion, as well as a contractive condition for the neutral term. In [6],
by establishing the stochastic version of the Razumikhin-type theorem, the exponential
stability in moment for NSFDEs was investigated, and under one additional condition, the
almost surely exponential stability was obtained.

Generally speaking, the explicit solutions of nonlinear stochastic differential equations
(SDEs) cannot be found. Fortunately, such difficulty can be overcome with numerical
solution of nonlinear SDEs. In [7], Mao and Yuan have contributed to present some
classical numerical schemes for nonlinear SDEs, such as the Euler–Maruyama (EM) scheme,
the stochastic θ scheme, and the Milstein scheme. More recently, in [8], Mao developed a
truncated EM method for SDEs. In [9], Nguyen et al. proved the convergence of a numerical
solution for hybrid SDEs with Markovian switching by using the tamed-Euler method.
In [10], the convergence of Euler-type methods for nonlinear SDEs was investigated. In [11],
by using the discrete Razumikhin-type technique, the stability analysis of the EM numerical
solution of SFDEs was studied.

As an important type of SDEs, NSFDEs do not have explicit solutions, and we have
found content with an approximation via a numerical approach. In recent years, some
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numerical schemes such as the EM method [12], tamed EM method [13], and stochastic θ
method [14] have been proposed to discuss the convergence and the stability analysis for a
numerical solution of NSFDEs. In [12], Wu and Mao discussed the convergence of the EM
numerical solution for NSFDEs. In [13], Deng et al. proposed two types of explicit tamed
EM schemes for NSFDEs with superlinearly growing drift and diffusion coefficients to
analyze the exponential stability in moment for the numerical solution. In [14], Li and Yang
studied the exponential stability in moment and the almost surely exponential stability of
the EM numerical solution of NSFDEs with jumps.

The stochastic Razumikhin theorem for stochastic functional differential equations
(SFDEs) was initially established in [4] and has been generalized from the continuous ver-
sion to the discrete version. For example, in [11], by establishing the discrete Razumikhin-
type theorem, the exponential stability in moment and the almost sure exponential stability
of the EM scheme of SFDEs were investigated. In [15], the discrete stochastic version of
the Razumikhin-type theorem was used to analyze the exponential stability in moment,
the almost sure exponential stability for the EM scheme, and the backward EM scheme of
nonlinear stochastic pantograph differential equations. Note that the continuous stochastic
version of the Razumikhin-type theorem was established to investigate the exponential
stability in moment for the exact solution of NSFDEs in [5], and such an excellent theorem
has been widely used to discuss the stability of NSFDEs in [16]. As far as we know, there
is no work on the discrete stochastic version of Razumikhin-type theorem to analyze the
stability of the EM scheme for NSFDEs. In this paper, we try to close this gap.

The remainder of this paper is structured as follows. In Section 2, some necessary
notations and definitions are introduced. In Section 3, some necessary assumptions and
auxiliary results are presented and the discrete Razumikhin-type theorem is established. In
Section 4, we give specific examples to reflect the reasonableness of the theorem.

2. Notations and Preliminaries

Unless otherwise indicated in this paper, some notations are used. Let | · | be the
Euclidean norm in Rd. If A is a vector or matrix, AT is the transpose of A. If A is a matrix,
its trace norm is denoted by |A| =

√
trace(ATA). The inner product of x, y in Rd is denoted

by 〈x, y〉 or xTy. If x, y ∈ R, x ∧ y = min{x, y} and x ∨ y = max{x, y}. M represents the set
of the non-negative integer numbers, namely, M = {0, 1, . . . , }, and for a positive integer
M0, M−M0 = {0,−1,−2, . . . ,−M0}.

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space satisfying the usual conditions
(i.e., it is right continuous and increasing while F0 contains all P-null sets). Let
B(t) = (B1(t), . . . , Bm(t))T be an m-dimensional Brownian motion defined on this prob-
ability space. For any r0 > 0, C := C([−r0, 0], Rd) denotes the family of bounded contin-
uous functions ϕ from [−r0, 0] to Rd with uniform norm ‖ϕ‖ := sup−r0≤υ≤0 |ϕ(υ)|. Let
Cb
F0
([−r0, 0];Rd) denote the family of all F0-measurable and C -valued random processes.

L2
Ft
([−r0, 0];Rd) be the family of all Ft-measurable random processes ϕ = {ϕ(υ) : −r0 ≤

υ ≤ 0} such that E||ϕ||p := E sup−r0≤υ≤0 |ϕ(υ)|p < ∞. If x(t) is an Rd-valued random
process on t ∈ [−r0, ∞), we let xt = {x(t + υ) : −r0 ≤ υ ≤ 0} for any t ≥ 0.

In this paper, we shall consider the following d-dimensional NSFDEs:

d[x(t)− D(xt)] = f (xt)dt + g(xt)dB(t), t ≥ 0, (1)

with initial value x0 = ξ ∈ Cb
F0
([−r0, 0]; Rd), namely, where the state x(t) ∈ Rd, xt =

{x(t + υ) : −r0 ≤ υ ≤ 0}, the neutral term D(·) : C → Rd, the drift term f (·, ·) : [0,+∞)×
C → Rd and the diffusion term g(·, ·) : [0,+∞)× C → Rd×m are some appropriate Borel
measurable functions. Denote by C2(Rd; [0,+∞)) the family of all nonnegative functions
V(x) on Rd, which are continuously twice differentiable. For ϕ ∈ C , let ϕ̃ = ϕ(0)− D(ϕ).
Give V ∈ C2(Rd; [0,+∞)), we define an operator LV from R+ × C to R by’:

LV(ϕ̃) = Vx(ϕ̃) f (t, ϕ) +
1
2

trace[gT(t, ϕ)Vxx(ϕ̃)g(t, ϕ)]. (2)



Mathematics 2022, 10, 866 3 of 11

We often write x(t) by x(t, ξ) to represent the dependence on the initial data ξ.

3. Stability Analysis of the EM Numerical Solution of NSFDEs

In the following, we impose some hypotheses that are necessary.

(H1) For all ϕ, ϕ̄ ∈ C , assume there exists a positive constant L such that:

| f (ϕ)− f (ϕ̄)|2 ∨ |g(ϕ)− g(ϕ̄)|2 ≤ L‖ϕ− ϕ̄‖2.

(H2) For all ϕ ∈ C , there exists a constant K > 0, such that:

| f (ϕ)|2 ∨ |g(ϕ)|2 ≤ K(1 + ‖ϕ‖2).

(H3) Assume D(0) = 0 and there exists a constant a ∈ (0, 1) such that for all ϕ, ϕ̄ ∈ C ,

|D(ϕ)− D(ϕ̄)| ≤ a‖ϕ− ϕ̄‖. (3)

(H1)–(H3) are called the local Lipschitz condition, the linear growth condition, and the
contractive condition, respectively. By [5] (Theorem 2.5, p. 209), these conditions guarantee
the existence and uniqueness of the exact solution of NSFDEs (1). For the purpose of
stability analysis, it is assumed that f (0) = 0 and g(0) = 0. This implies that Equation (1)
admits a trivial solution x(t, 0) ≡ 0.

3.1. The EM Numerical Solutions of NSFDEs

The EM numerical solutions of SFDEs and NSFDEs were first introduced by Mao [4]
and Hu et. al. [17], respectively. Let us recall the EM numerical scheme for NSFDE (1). Let
the step size h be a fraction of the delay r0, that is, h = r0/M0 for some integer M0. After
that, by using the EM method, (1) has the following approximation:{

Y(nh) = ξ(nh), −M0 ≤ n ≤ 0

Y((n + 1)h)− D(Ynh) = Y(nh)− D(Y(n−1)h) + f (Ynh)h + g(Ynh)∆Bn, n ≥ 0,
(4)

where ∆Bn = B((n + 1)h)− B(nh) is the Brownian motion increment and Ynh = {Ynh(υ) :
−r0 ≤ υ ≤ 0} is a C -valued random variable defined by piecewise linear interpolation:

Ynh(υ) = Y((n + l)h) +
υ− lh

h
[Y(n + l + 1)h−Y(n + l)h] (5)

for lh ≤ υ ≤ (l + 1)h, l = −M0,−M0 + 1, . . . ,−1. In order for Y−h to be well defined, we
set Y(−(M0 + 1)h) = ξ(−M0h). Equation (5) can be written as:

Ynh(υ) =
h− (υ− lh)

h
Y((n + l)h) +

υ− lh
h

Y((n + l + 1)h), (6)

which yields that:

‖Y−h‖ ≤ ‖Y0‖ and ‖Ynh‖ = max
−M0≤l≤0

|Y((n + l)h)|, ∀n ≥ 0. (7)

In order to use continuous-time approximation in the future, we now introduce the
C -valued step process:

Yt =
∞

∑
n=0

Ynh I[nh,(n+1)h)(t), (8)

and define the continuous EM approximate solution as follows:

(i) for −r0 ≤ t ≤ 0 , Y(t) = ξ(t);

(ii) for t ∈ [nh, (n + 1)h], n ≥ 0,
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Y(t) = ξ(0) + D
(

Y(n−1)h +
t− nh

h
(Ynh −Y(n−1)h)

)
− D(Y−h)

+
∫ t

0
f (Ys)ds +

∫ t

0
g(Ys)dB(s).

(9)

Clearly, (9) can also be written as:

Y(t) = Y(nh) + D
(

Y(n−1)h +
t− nh

h
(Ynh −Y(n−1)h)

)
− D(Y(n−1)h)

+
∫ t

nh
f (Ys)ds +

∫ t

nh
g(Ys)dB(s).

(10)

Especially, one can see that Y(nh) = Y(nh), which illustrates the coincidence of the
continuous and discrete EM approximate solutions at the grid points. Because we know
that Y(t) is not computable, not only just its h-increments, but it also requires knowledge
of the entire Brownian path. However, Y(nh) = Y(nh), thus the error bound for Y(t) will
automatically imply the error bound for Y(nh). Then, it is quite obvious that:

‖Yt‖ ≤ sup
−r0≤s≤t

|Y(s)| and ‖Ynh|| ≤ ‖Ynh‖, ∀n ≥ 0. (11)

These properties will frequently be applied to later proofs, without more explanation.
The following definition is needed for the stability of the EM scheme.

Definition 1. Given step size h > 0 and any bounded initial sequence {ξ(nh)}n∈M−M0
if

lim
n→∞

sup
1

nh
logE|Y(nh)|2 < 0,

then the EM scheme is said to be exponentially stable in the mean square, and if

lim
n→∞

sup
1

nh
log |Y(nh)| < 0, a.s.

then the EM scheme is said to be is exponentially almost surely stable.

3.2. Stability of Numerical Solutions of NSFDEs

In this subsection, we establish the discrete version of the Razumikhin-type theorem
on exponential stability of the EM scheme (4).

Lemma 1. Let Assumption (H3) hold. Then for t ∈ [nh, (n + 1)h] and n ∈ M ∪M−M0 . It
holds that: ∣∣∣∣D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

∣∣∣∣2 ≤ a2
(
‖Ynh‖2 ∨ ‖Y(n−1)h‖2

)
,

and ∣∣∣∣Ynh − D(Y(n−1)h +
t− nh

h
(Ynh −Y(n−1)h))

∣∣∣∣2 ≤ (1 + a)2 sup
−r0≤s≤0

|Y(s)|2.

Since the proof of the Lemma is standard, we omit it here.

Lemma 2. Let n∗ be any positive integer and 0 < λh < r−1
0 log( 1

3a2 ). If:

eλhnhE
∣∣∣∣Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

∣∣∣∣2 ≤ (1 + a)2E‖ξ(s)‖2 (12)

holds for t ∈ [nh, (n + 1)h), all 0 ≤ n ≤ n∗ and n ∈M∪M−M0 , then:

eλhnhE|Y(nh)|2 ≤ (1 + a)2 + 1

(1−
√

3ae
λhr0

2 )2
E‖ξ(s)‖2, ∀0 ≤ n ≤ n∗.
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Proof. Since 0 < λh < r−1
0 log( 1

3a2 ), we can choose an ε such that 3a2eλhr0 < ε < 1. For
0 ≤ n ≤ n∗, n ∈M, noting that:∣∣∣∣Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

∣∣∣∣2
≥ |Y(nh)|2 − 2

(
|Y(nh)||D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))|
)

+

∣∣∣∣D(Y(n−1)h +
t− nh

h
(Ynh −Y(n−1)h))

∣∣∣∣2
≥ (1− ε)|Y(nh)|2 − (ε−1 − 1)

∣∣∣∣D(Y(n−1)h +
t− nh

h
(Ynh −Y(n−1)h))

∣∣∣∣2,

(13)

we have:

|Y(nh)|2

≤ 1
1− ε

∣∣∣∣Ynh − D(Y(n−1)h +
t− nh

h
(Ynh −Y(n−1)h))

∣∣∣∣2 + a2

ε

(
‖Ynh‖2 ∨ ‖Y(n−1)h‖2

)
.

(14)

By the condition (12), we then derive that for all 0 ≤ n ≤ n∗:

E sup
0≤n≤n∗

eλhnh|Y(nh)|2

≤ 1
1− ε

E sup
0≤n≤n∗

[
eλhnh

∣∣∣∣Ynh − D(Y(n−1)h +
t− nh

h
(Ynh −Y(n−1)h))

∣∣∣∣2
]

+
a2

ε
E sup

0≤n≤n∗

[
eλhnh

(
‖Ynh‖2 ∨ ‖Y(n−1)h‖2

)]
≤ (1 + a)2

1− ε
sup

−r0≤s≤0
E‖ξ‖2

+ E sup
0≤n≤n∗

[
a2

ε

(
sup

−r0≤υ≤0
eλhnh|Y(nh + υ)|2 ∨ sup

−r0≤υ≤0
eλhnh|Y((n− 1)h + υ)|2

)]

≤ (1 + a)2

1− ε
sup

−r0≤s≤0
E‖ξ‖2 + E sup

0≤n≤n∗

[
a2

ε

(
sup

−r0≤υ≤0
eλh((nh+υ)−υ)|Y(nh + υ)|2

∨ sup
−r0≤υ≤0

eλh((n−1)h+υ+h−υ)|Y((n− 1)h + υ)|2
)]

≤ (1 + a)2

1− ε
sup

−r0≤s≤0
E‖ξ‖2 + E sup

0≤n≤n∗

[
a2

ε
eλhr0

(
sup

−r0≤υ≤0
eλh(nh+υ)|Y(nh + υ)|2

∨ sup
−r0≤υ≤0

eλh((n−1)h+υ)eλhh|Y((n− 1)h + υ)|2
)]

≤ (1 + a)2

1− ε
sup

−r0≤s≤0
E‖ξ‖2

+
a2

ε
eλhr0 E

(
sup

−r0≤n≤n∗
eλhnh|Y(nh)|2

)
+

a2eλhh

ε
eλhr0 E

(
sup

−r0≤n≤n∗
eλhnh|Y(nh)|2

)

≤
[
(1 + a)2

1− ε
+

a2

ε
eλhr0(1 + eλhh)

]
sup

−r0≤s≤0
E‖ξ(s)‖2

+
a2

ε
eλhr0(1 + eλhh)E

(
sup

0≤n≤n∗
eλhnh|Y(nh)|2

)
.

Moreover, this holds for all −M0 ≤ n ≤ 0 as well. Therefore,
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E sup
−M0≤n≤n∗

eλhnh|Y(nh)|2

≤ (1 + a)2

1− ε
sup

−r0≤s≤0
E‖ξ(s)‖2

+
a2

ε
eλhr0(1 + eλhh)E sup

−M0≤n≤n∗
eλhnh|Y(nh)|2.

(15)

Choosing h to be sufficiently small such that eλhnh < 2 and noting 1 > 3a2eλhr0 /ε, we
obtain that:

sup
−M0≤n≤n∗

eλhnhE|Y(nh)|2

≤ E sup
−M0≤n≤n∗

eλhnh|Y(nh)|2

≤ ε(1 + a)2

(1− ε)(ε− a2eλhr0(1 + eλhh))
sup

−r0≤s≤0
E|Y(s)|2

≤ ε(1 + a)2

(1− ε)(ε− 3a2eλhr0)
sup

−r0≤s≤0
E|Y(s)|2.

(16)

Finally, the required assertion follows by taking ε =
√

3ae
λhr0

2 .

Theorem 1. Let Assumptions (H1)–(H3) hold. Fix h > 0. Let ζh, ph, a, γ all be positive
constants, qh > 1, hζh < 1, a ∈ (0, 1) and 0 < γ < r−1

0 log( 1
3a2 ). For t ∈ [nh, (n + 1)h], n ∈M,

assume that there exists a function Vh : Rd → R+ such that V(x) ≤ ch|x|2 and the following
conditions hold:

(1) for all l ∈M−M0 ,

EVh

(
Y(n + l)h− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
≤ qhEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
implies that:

EVh

(
Y(n + 1)h− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
≤ (1− ζh)EVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
.

(2) for some l ∈M−M0 − {0},

EVh

(
Y(n + l)h− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
> eλhhEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
implies that:

EVh

(
Y(n + 1)h− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
≤ 1

qh
max

l∈M−M0

{
EVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)}
,

where λh = [
log qh

((M0+1)h) ] ∧ [
log(1−ζhh)−1

h ].

Then, for any bounded initial data ξ, there exists q > (1−
√

3a)−2 such that:

E|Y(nh)|2 ≤ q(1 + a)2e−λhnhE||ξ||2, (17)
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for all n ≥ 0, namely, the sequence {Y(nh)}n≥1 is exponentially stable in terms of the mean square.

Proof. For any n ∈M, define the sequence:

un = max
l∈M−M0

{
eλh(n+l)hEVh

(
Y(n + l)h− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)}
and:

l = l(n) = max{l ∈M−M0 : ul = un}.

This implies:

un = eλh(n+l)hEVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
.

It will be shown that un+1 ≤ un.
When l ≤ −1, for any l ∈M−M0 − {0},

eλh(n+l+1)hEVh

(
Y((n + l + 1)h)− D(Y(n+l)h +

t− (n + l + 1)h
h

(Y(n+l+1)h −Y(n+l)h))

)
≤ eλh(n+l)hEVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
,

(18)

which implies that:

max
l∈M−M0−{0}

{ul,n}

≤ eλh(n+l)hEVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
= un,

(19)

where:
ul.n = eλh(n+l+1)hEVh

(
Y((n + l + 1)h)− D(Y(n+l)h +

t−(n+l+1)h
h (Y(n+l+1)h −Y(n+l)h))

)
.

Additionally, we can show that,

eλh(n+1)hEVh

(
Y((n + 1)h)− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
≤ eλh(n+l)hEVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
= un.

(20)

In fact, by the definition of l,

un = eλh(n+l)hEVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)

> eλhnhEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
.

This, together with l ≤ −1, yields that:
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EVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)

> e−λh lhEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
≥ eλhhEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
.

By the definition of λh and condition in (2), we obtain:

max
l∈M−M0

EVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
≥ qhEVh

(
Y((n + 1)h)− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
≥ eλh(M0+1)hEVh

(
Y((n + 1)h)− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
.

Immediately, one can see that:

eλh(n+1)hEVh

(
Y((n + 1)h)− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
≤ eλh(n+1)he−(M0+1)λhh max

l∈M−M0

{
EVh(Y((n + l)h)

−D(Y(n+l−1)h +
t− (n + l)h

h
(Y(n+l)h −Y(n+l−1)h))

}
≤ max

l∈M−M0

{
eλh(n−M0)hEVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)}
≤ max

l∈M−M0

{
eλh(n+l)hEVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)}
= un.

Hence, (20) holds. This, together with (19), yields that:

un+1 ≤ un, when l ≤ −1. (21)

If l = 0, by the definition of l, then for any l ∈M−M0 ,

eλh(n+l)hEVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
≤ eλhnhEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
.

Hence, by the definition of λh,
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EVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
≤ e−λh lhEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
≤ eλh M0hEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
≤ eλh(M0+1)hEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
≤ qhEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
.

(22)

The condition (1) gives:

EVh

(
Y((n + 1)h)− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
≤ (1− ζhh)EVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
.

(23)

Therefore,

eλhnhEVh

(
Y(nh)− D(Y(n−1)h +

t− nh
h

(Ynh −Y(n−1)h))

)
≥ eλhnh(1− ζhh)−1EVh

(
Y((n + 1)h)− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
= eλhnhe

hlog(1−ζhh)−1

h EVh

(
Y((n + 1)h)− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
≥ eλh(n+1)hEVh

(
Y((n + 1)h)− D(Ynh +

t− (n + 1)h
h

(Y(n+1)h −Ynh))

)
.

Thus un+1 ≤ un also holds for l = 0. Therefore, combining with (21) yields un+1 ≤ un
for all n ∈M. This yields:

u0 ≥ eλh(n+l)hEVh

(
Y((n + l)h)− D(Y(n+l−1)h +

t− (n + l)h
h

(Y(n+l)h −Y(n+l−1)h))

)
,

By the definitions of Vh(Yn) and Lemma (1), for all l ∈M−M0 ,

u0 = max
l∈M−M0

{
eλh lhEVh

(
Y(lh)− D(Y(l−1)h +

t− lh
h

(Ylh −Y(l−1)h))

)}

≤ max
l∈M−M0

{
E
∣∣∣∣Y(lh)− D(Y(l−1)h +

t− lh
h

(Ylh −Y(l−1)h))

∣∣∣∣2
}

≤ (1 + a)2 sup
−r0≤s≤0

E|ξ(s)|2.

Hence, by Lemma 2,

eλh lhE|Y(lh)|2 ≤ (1 + a)2

(1−
√

3ae
λhr0

2 )2
sup

−r0≤s≤0
E|ξ(s)|2

≤ (1 + a)2

(1−
√

3ae
λhr0

2 )2
E||¸||2.

Therefore,

E|Y(nh)|2 ≤ (1 + a)2

(1−
√

3ae
λhr0

2 )2
e−λhnhE||ξ||2.
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Taking q > (1−
√

3a)−2, we then have:

E|Y(nh)|2 ≤ (1 + a)2

(1−
√

3ae
λhr0

2 )2
e−λhnhE||¸||2

≤ q(1 + a)2e−λhnhE||¸||2,

as required.

The following theorem reveals that the EM scheme for (4) is exponentially almost
surely stable.

Theorem 2. Let the assumptions of Theorem 1 hold. Then we have:

lim
n→∞

sup
1

nh
log|Y(nh)| ≤ −λh

2
.

Since the proof is similar to that of [11], we omit it here.

4. Example

We now illustrate the theoretical results in Theorem 1 by the following example.

Example 1. Let us think about the neutral stochastic delay differential equation as follows:

d[y(t)− 0.1y(t− 1)] = −y(t)dt + 0.5y(t− 1)dB(t), t ≥ 0, (24)

with initial value y0 = ξ(v) = 1, v ∈ [−τ, 0], τ = 1.
Denote f (yt, t) = −y(t) and g(yt, t) = 0.5y(t − 1), so assumptions (H1–H2) hold. In

addition, u(yt) = 0.1y(t− 1), so assumptions (H3) holds. We plot the EM method of Equation (24)
for step size h = 0.001. It can be seen that with the increase in n, yn gradually stabilizes, the
equation has unique global solution, and the solution for the Euler–Maruyama method is stable.

This clearly shows the efficiency of our numerical method. Owing to the convergence of
Euler–Maruyama method, Figure 1 illustrates that the numerical solution has stability properties.

Figure 1. The simulation of the EM numerical solution of Equation (24).
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