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Abstract: Clustered and heterogeneous interval-censored data occur in many fields such as medical
studies. For example, in a migraine study with the Netherlands Twin Registry, the information
including time to diagnosis of migraine and gender was collected for 3975 monozygotic and dizygotic
twins. Since each study subject is observed only at discrete and periodic follow-up time points,
the failure times of interest (i.e., the time when the individual first had a migraine) are known
only to belong to certain intervals and hence are interval-censored. Furthermore, these twins come
from different genetic backgrounds and may be associated with differential risks for developing
migraines. For simultaneous subgroup identification and regression analysis of such data, we propose
a latent Cox model where the number of subgroups is not assumed a priori but rather data-driven
estimated. The nonparametric maximum likelihood method and an EM algorithm with monotone
ascent property are also developed for estimating the model parameters. Simulation studies are
conducted to assess the finite sample performance of the proposed estimation procedure. We further
illustrate the proposed methodologies by an empirical analysis of migraine data.

Keywords: clustered interval-censored data; EM algorithm; heterogeneous covariate effects; latent
Cox model; migraine data; nonparametric maximum likelihood

1. Introduction

Subgroup identification for heterogeneous data has become a ubiquitous problem in
a broad range of applications including social science, marketing, and clinical trials. For
instance, in clinical trials, heterogeneity may arise due to underlying differences among
groups of patients. For patients with similar attributes, disease progression or treatment
effects often exhibit close patterns. Therefore, it is valuable to classify the patients into a
few homogeneous groups and tailor a disease treatment specifically for each subgroup
to optimize the treatment effect. Conceptually, analyzing data from a heterogeneous
population consisting of a few homogeneous subgroups is to view data as generated from
a mixture of subgroups and leads to a finite mixture model. In unsupervised learning,
parametric mixture models have been widely used in many fields. The books [1–4] and
the review paper [5] provide a thorough introduction and applications on finite mixture
models. In addition, a mixture model can be applied in reliability analysis ([6–8]).

Interval-censored data is a common type of data in real applications. In many clinical
applications, the observations are recorded periodically, and the failure times of interest
are known between each period, which causes the difficulties on analyzing on this type
of data. Ref. [9–11] reviewed existing methods that applied the parametric models and
nonparametric estimations for survival curves based on interval-censored data. Particularly,
Ref. [12] proposed the nonparametric way for survival distribution estimation and [13]
provided the score statistics for parameter estimation for interval-censored data. However,
as for heterogeneous interval-censored data, mixture models should be considered for
subgroup classification. Only limited research studies are targeting this area. Ref. [14] pro-
posed the estimation methods for Gaussian mixtures using MCMC methodology and [15]
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proposed a semi-parametric mixture model in the field of antimicrobial resistance with
interval-censored observations. However, the methods mentioned above are density esti-
mation using a mixture model without conducting regression analysis on other observed
covariates. There exist computational difficulties on conducting group identification and
regression analysis based on mixture models in survival analysis for interval-censored data.

In this paper, motivated by the Netherlands twin study on migraines, we propose a
new latent Cox model for analyzing clustered and heterogeneous interval-censored data.
The population is separated into a few subgroups according to the covariate effects. The
baseline hazard functions for the subgroups as well as the number of subgroups are left
unspecified to avoid restrictive distributional assumptions and allow for flexibility.

Compared with existing mixture survival models ([16–18]) in the literature for right-
censored data, the proposed model aims to accomplish simultaneous subgroup identifica-
tion and regression analysis. It is important to note that compared with right-censored data,
for interval-censored survival data, the incomplete data information and computational
complexity bring greater challenges for the aforementioned tasks. Moreover, we investigate
the heterogeneity driven by unknown covariate effects without specifying the baseline
hazard functions and the number of subgroups, which make the model estimation more
challenging and the computation more intensive. Our new proposed nonparametric maxi-
mum likelihood estimation approach separates the parameters during estimation, which
greatly reduces the computational complexity. In addition, the proposed EM algorithm has
the monotone ascent property for estimating the model parameters. Numerical studies
demonstrate its good performance. A modified Bayesian information criterion is also
proposed to select the number of mixing components [19].

The rest of the paper is organized as follows. In Section 2, we present the latent
Cox model for clustered interval-censored data. In Section 3, we develop an estimation
procedure for the proposed model using the EM algorithm. Selecting the number of
subgroups and assessing the finite-sample performance of the proposed methods are
presented in Section 4. We further provide an application to migraine data to illustrate the
practical utilities of the proposed methods in Section 5.

2. Data and Model

Let Tij denote the response of interest (i.e., the failure time) for the jth subject in the ith
cluster, where j = 1, . . . , ni, i = 1, . . . , n, ni is the number of subjects in the ith cluster and
n is the number of clusters in the dataset. Furthermore, Tij is interval-censored and only
known to belong to the interval (Lij, Rij]. The q-dimensional vector of covariates is denoted
by Xij = (Xij1, . . . , Xijq)

>. The observations are summarized as Yobs = {(Lij, Rij], Xij; i =
1, . . . , n, j = 1, . . . , ni}. For accommodating heterogeneous covariate effects that may exist
among subgroups, we propose a latent Cox model for simultaneous subgroup identification
and regression analysis. Specifically, the instantaneous hazard function for the jth subject
in the ith cluster

λij(t) = λ0i(t) exp (X>ijβi), i = 1, . . . , n. (1)

As in [10,20], we make the following two assumptions. (A1) Lij and Rij are random
and (A2) Tij are independent of (Lij, Rij]. It is important to note that the baseline hazard
functions and the covariate effects are allowed to vary across the clusters and accordingly
accommodate the heterogeneity. In the same spirit of mixture modeling and for extrapola-
tion and interpretation purposes, further assume that n clusters are from M subgroups with
M > 1 and the clusters in the same subgroup have the same baseline hazard and covariate
effects. In other words, let G = (G1, . . . ,GM) be a partition of {1, . . . , n}. Let the mixing
probabilities be πm, m = 1, . . . , M and π1 + . . . + πM = 1. For each cluster i = 1, . . . , n,
with probability πm, we have i ∈ Gm and λ0i(·) = λ0m(·) and βi = βm. In practice, the
number of subgroups M is unknown and will be estimated in a data-driven way. However,
in practice, it is usually reasonable to assume that M is much smaller than n. Our goal
is to estimate M and the model parameters Λ0 = (Λ01, . . . , Λ0M), β = (β1, . . . , βM) and
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Π = (π1, . . . , πM). The observed likelihood function of the i-th cluster {Lij, Rij, Xij}
ni
j=1 can

be written as

fi(Λ0, β, Π|Yobs) =
M

∑
m=1

πm · fi(m)(Λ0m, βm), (2)

where fi(m)(Λ0m, βm) denotes the likelihood function of the i-th cluster when it belongs
to the m-th subgroup. When the i-th cluster comes from the m-th subgroup, its hazard
function λij(m)(t) = λ0m(t) exp(X>ijβm) for j = 1, . . . , ni where λ0m(·) is the unspecified
baseline hazard function and Λ0m(·) is the corresponding cumulative baseline risk of the
m-th subgroup. βm is the corresponding effect of Xij in the m-th subgroup. Furthermore, we
suppose that Tij is monitored at a sequence of positive time points Uij1 < · · · < UijKij and
{Uijk : k = 1, . . . , Kij, i = 1, . . . , n, j = 1, . . . , ni} are independent of {Tij : i = 1, . . . , n, j =
1, . . . , ni} as a conventional assumption for interval-censored data. Let (Lij, Rij] be the
shortest time interval that brackets Tij, i.e., Lij = max{Uijk : Uijk < Tij, k = 0, . . . , Kij} and
Rij = min{Uijk : Uijk > Tij, k = 1, . . . , Kij + 1}, where Uij0 = 0 and Uij,Kij+1 = ∞. Then,
we have

fi(m)(Λ0m, βm) =
ni

∏
j=1

{
exp

[
−
∫ Lij

0
λ0m(tk) exp(X>ijβm)

]
− exp

[
−
∫ Rij

0
λ0m(tk) exp(X>ijβm)

]}
,

and the log-likelihood `(Λ0, β, Π|Yobs) based on the observed data {(Lij, Rij, Xij), i = 1, . . . , n, j =
1, . . . , ni} is

`(Λ0, β, Π|Yobs) =
n

∑
i=1

log
[ M

∑
m=1

πm · fi(m)(Λ0m, βm)

]
. (3)

To estimate Λ0, β and Π, we adopt the nonparametric maximum likelihood estimation
approach. Let 0 = t0 < t1 < · · · < tK < ∞ be the ordered sequence of all Lij and Rij with
Rij < ∞. The estimator for Λ0m is a step function that jumps only at those time points with
respective jump sizes of 0, λ0m(t1), . . . , λ0m(tK). It follows that (3) can be rewritten as

n

∑
i=1

log
( M

∑
m=1

πm

ni

∏
j=1

{
exp

[
− ∑

tk6Lij

λ0m(tk) exp(X>ijβm)

]
− exp

[
− ∑

tk6Rij

λ0m(tk) exp(X>ijβm)

]})
. (4)

3. Estimation and Algorithm

The observed data with unknown subgroup memberships can be formulated as an
incomplete-data problem in the EM framework. We view the observed data
{(Lij, Rij], Xij; i = 1, . . . , n, j = 1, . . . , ni} as being incomplete and introduce the unobserved
Bernoulli random variables Zim ∼ Bernoulli(πm) for m = 1, . . . , M,

Zim =

{
1, if the i-th cluster {(Lij, Rij], Xij}

ni
j=1 belongs to the m-th subgroup,

0, otherwise,
(5)

and Poisson random variables Wmijk (k = 1, . . . , K) with means λ0m(tk) exp(X>ijβm). De-
fine Amij = ∑tk6Lij

Wmijk and Bmij = I(Rij < ∞)∑Lij6tk6Rij
Wmijk. Since the probabil-

ity of observing Amij = 0 and Bmij > 0 is exp[−∑tk6Lij
λ0m(tk) exp(X>ijβm)] − I(Rij <

∞) exp[−∑tk6Rij
λ0m(tk) exp(X>ijβm)], the likelihood from the observations {(Lij, Rij], Xij,

Amij = 0, Bmij > 0 : i = 1 . . . , n; j = 1, . . . , ni, m = 1, . . . , M} is the same as (4). Therefore,
we develop an EM algorithm to maximize (4) by treating Wmijk(tk 6 R∗ij), Zim as missing
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data, where R∗ij = Lij I(Rij = ∞) + Rij I(Rij < ∞). Then, the complete-data log-likelihood
is proportional to

`com(Λ0, β, Π) ∝
n

∑
i=1

M

∑
m=1

Zim

{
log(πm) + I(tk 6 R∗ij)

K

∑
k=1

ni

∑
j=1

[
Wmijk log(λ0m(tk))

+ WmijkX>ijβm − λ0m(tk) exp(X>ijβm)

]}
. (6)

In the M-step, we maximize (6) for any given βm, then we have

π̂m =
n

∑
i=1

Zim/n, (7)

λ̂0m(tk) =
∑n

i=1 ∑ni
j=1 I(tk 6 R∗ij)ZimWmijk

∑n
i=1 ∑ni

j=1 I(tk 6 R∗ij)Zim exp(X>ijβm)
, (8)

where m = 1, . . . , M; k = 1, . . . , K. After incorporating (8) into (6), we obtain

`com(β)∝
M

∑
m=1

n

∑
i=1

ni

∑
j=1

K

∑
k=1

I(tk 6 R∗ij)ZimWmijk

X>ijβm− log
{ n

∑
i′=1

ni′

∑
j′=1

I(tk 6 R∗i′ j′ )Zi′m exp(X>i′ j′βm)

}.

To update βm, we employ the following Newton–Raphson algorithm

β(t+1)
m = β(t)

m + I−1(β(t)
m )∇`com(β(t)

m ) (9)

where

∇`com(β(t)) =
n

∑
i=1

ni

∑
j=1

K

∑
k=1

I(tk 6 R∗ij)ZimWmijk ×
[

X>ij

−
∑n

i′=1 ∑
ni′
j′=1 I(tk 6 R∗i′ j′)Zi′m exp(X>i′ j′β

(t)
m )Xi′ j′

∑n
i′=1 ∑

ni′
j′=1 I(tk 6 R∗i′ j′)Zi′m exp(X>i′ j′β

(t)
m )

]
,

I−1(β(t))=
n

∑
i=1

ni

∑
j=1

K

∑
k=1

I(tk 6 R∗ij)ZimWmijk

[ n

∑
i′=1

ni′

∑
j′=1

I(tk 6 R∗i′ j′ )Zi′m exp(X>i′ j′β
(t)
m )Xi′ j′X

>
i′ j′

n

∑
i′=1

ni′

∑
j′=1

I(tk 6 R∗i′ j′ )Zi′m exp(X>i′ j′β
(t)
m )

−

{ n

∑
i′=1

ni′

∑
j′=1

I(tk 6 R∗i′ j′ )Zi′m exp(X>i′ j′β
(t)
m )Xi′ j′

}{ n

∑
i′=1

ni′

∑
j′=1

I(tk 6 R∗i′ j′ )Zi′m exp(X>i′ j′β
(t)
m )X>i′ j′

}
{ n

∑
i′=1

ni′

∑
j′=1

I(tk 6 R∗i′ j′ )Zi′m exp(X>i′ j′β
(t)
m )
}2

]
.

In the E-step, we evaluate the conditional expectations of Zim and Wmijk involved in
the M-step. The posterior mean of Zim is

Ê(Zim) =
πm · fi(m)(Λ0m, βm)

∑n
i=1 πm · fi(m)(Λ0m, βm)

, (10)
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where

fi(m)(Λ0m, βm) =
ni

∏
j=1

{
exp

[
−∑

tk6Lij

λ0m(tk) exp(X>ijβm)

]
− exp

[
−∑

tk6Rij

λ0m(tk) exp(X>ijβm)

]}
.

In addition, the conditional expectation of Wmijk for tk 6 R∗ij is

Ê(Wmijk) = I(Lij < tk 6 Rij < ∞)
λ0m(tk) exp(X>ijβm)

1− exp
{
−∑Lij<tk′6Rij

λ0m(tk′) exp(X>ijβm)
} . (11)

Now, we summarize iteration processes between the E-step and M-step for the pro-
posed algorithm as follows.

Step 1. Give initial values of β, Π, and Λ0.
Step 2. Calculate the conditional expectations of Zim and Wmijk via (10) and (11).
Step 3. Replace Zim in (7) by Ê(Zim) and update the estimate of Π via (7).
Step 4. Replace Zim and Wmijk in (8) by Ê(Zim) and Ê(Wmijk), then update the estimate

of Λ0 via (8).
Step 5. Replace Zim and Wmijk in (9) by Ê(Zim) and Ê(Wmijk), then update the estimate

of β via (9).
Step 6. Iterate steps 2 to 5 until convergence.
We iterate between the E-step and M-step until the sum of the absolute differences of

the estimates at two iterations is less than ε, i.e., the stopping criterion is set to be

||β(t+1) − β(t)||1 + ||Π(t+1) −Π(t)||1 + ||Λ
(t+1)
0 −Λ

(t)
0 ||1 < ε,

where ||α||1 indicates the L1 norm for α, i.e., ||α||1 = ∑
q
i=1 |αi| with α = (α1, . . . , αq).

In the following section, we let ε = 10−3, and simulation studies are conducted to
assess the finite sample performance of the proposed method and in particular, we propose
a modified BIC criterion to select the number of subgroups M.

4. Simulation Study

As in the mixture model [21], the number of subgroups M in the proposed model
is unknown and will be estimated in a data-driven manner. Here, we use the modified
Bayesian information criterion (BIC [19]) to choose the number of components M by
minimizing the criterion function

BIC(M) = −2`(Λ̂0, β̂, Π̂) + M ∗ q ∗ log(N), (12)

where β̂ = (β̂1, . . . , β̂M), N = ∑n
i=1 ni is the sample size, and q is the dimension of βi.

In the following, we conduct a set of simulation studies to assess the finite sample
performance of our proposed method.

Example 1. We generate clustered interval-censored data from a latent Cox model with two
covariates and three subgroups

λij(t) = λ0i(t) exp (X>ijβi), i = 1, . . . , n. (13)

where the covariates Xij1 and Xij2 are independent and both follow the standard normal distribution.
The n clusters are randomly assigned into three subgroups with equal probabilities, i.e., we let
P(i ∈ G1) = P(i ∈ G2) = P(i ∈ G3) = 1/3, so that βi = (0.5, 3), Λ0i(t) = (t/4)2 for i ∈ G1,
βi = (−2,−1), Λ0i(t) = log(1 + t/8) for i ∈ G2 and βi = (2,−3), Λ0i(t) = 2t for i ∈ G3.
The cluster size is set to be m for each cluster. We consider different combinations of the number of
clusters (n) and the cluster size (m) to assess the performance of the proposed estimation procedure.

We identify the number of subgroups M by minimizing the modified BIC given in (12). Table 1
presents the mean, median, and standard error (s.d.) of the estimated number of subgroups, denoted
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by M̂, and the empirical percentage of M̂ equal to the true number of subgroups based on 100
replications. It can be seen from Table 1 that for (n, m) = (400, 4) and (n, m) = (800, 2), the
BIC identifies the true number of subgroups among all 100 replications, indicating its favorable
performance. Table 2 reports the estimation results for the regression coefficients β̂1, β̂2, and β̂3,
and the mixing probabilities π̂1 and π̂2, based on 100 replications. The proposed method preforms
well and yields the estimators with small biases for the case of (n, m) = (400, 4). However, as we
increase the number of clusters to 800 and decrease the number of subjects within each cluster to 2,
the biases of some estimators become larger even though the total sample sizes are the same for the
two cases.

Table 1. The sample mean, median, and standard error (s.d.) of M̂ and the empirical percentage (per)
of M̂ equal to the true number of subgroups based on 100 replications in Example 1.

(n, m) Mean Median s.d. Per

(400, 4) 3 3 0 1
(800, 2) 3 3 0 1

Table 2. The empirical bias and sample standard error (s.d.) of the estimators π̂1, π̂2, β̂1, β̂2, and β̂3
based on 100 replications in Example 1.

(n, m) π1 π2
β1 β2 β3

β11 β12 β21 β22 β31 β32

(400, 4)
True 1/3 1/3 0.5 3 −2 −1 2 −3
Bias −0.0210 0.0123 0.0194 0.1204 0.2007 0.1023 0.1131 −0.0868
s.d. 0.0425 0.0278 0.1823 0.3687 0.2379 0.1926 0.2407 0.2273

(800, 2)
True 1/3 1/3 0.5 3 −2 −1 2 −3
Bias −0.0192 0.0154 0.1039 0.1790 0.3054 0.1789 0.2167 −0.1255
s.d. 0.0487 0.0302 0.2097 0.4058 0.3331 0.2723 0.2745 0.2339

Example 2. We simulate data from a latent Cox model with three covariates and two subgroups

λij(t) = λ0i(t) exp (X>ijβi), i = 1, . . . , n. (14)

where the covariates Xij = (Xij1, Xij2, Xij3)
> are generated from a multivariate normal distribution

with mean zero and a first-order autoregressive covariance structure Σ = (σst) with σst = 0.5|s−t|

for s, t = 1, 2, 3. The clusters are randomly assigned into two subgroups with equal probabilities,
i.e., we let P(i ∈ G1) = P(i ∈ G2) = 1/2, and βi = (−0.5,−1,−2), Λ0i(t) = 4t2 for i ∈ G1,
βi = (0.5, 1, 2), Λ0i(t) = log(1 + t/8) for i ∈ G2. The cluster size is set to be m for all n clusters.
We consider the cases of (n, m) = (400, 3) and (600, 2). As in Example 1, we estimate the number
of subgroups M by minimizing the modified BIC given in (12). Table 3 reports the mean, median,
and standard error (s.d.) of the estimator M̂ and the empirical percentage of M̂ equal to the true
number of subgroups based on 100 replications. We observe that the median of M̂ is equal to the
true number of subgroups 2, and the mean also gets closer to 2 as the number of clusters increases.
Moreover, the empirical percentage of correctly identifying the true number of subgroups is close
to 1 as the cluster number becomes moderately large. The estimation results for the regression
coefficients β and mixing probabilities Π are summarized in Table 4. It can be seen that in terms
of the estimation accuracy, the proposed estimation procedure performs quite well and yields the
estimators with small biases for (n, m) = (400, 3). Similar with Example 1, as we increase the
number of clusters to 600 and decrease the number of subjects within each cluster to 2, the biases of
some estimators become larger even though the total sample sizes are the same for the two cases.
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Table 3. The sample mean, median, and standard error (s.d.) of M̂ and the empirical percentage (per)
of M̂ equal to the true number of subgroups based on 100 replications in Example 2.

(n, m) Mean Median s.d. Per

n = (400, 3) 2.02 2 0.14 0.98
n = (600, 2) 2 2 0 1

Table 4. The empirical bias and standard error (s.d.) of the estimators π̂1, β̂1, and β̂2 based on 100
replications in Example 2.

(n, m) π1
β1 β2

β11 β12 β13 β21 β22 β23

(400, 3)
True 0.5 −0.5 −1 −2 0.5 1 2
Bias 0.0068 −0.0173 −0.0395 −0.0663 −0.0124 −0.0431 −0.1016
s.d. 0.0313 0.2585 0.2483 0.2980 0.1174 0.1603 0.2289

(600, 2)
True 0.5 −0.5 −1 −2 0.5 1 2
Bias −0.0048 −0.0253 −0.0467 −0.0983 −0.0299 −0.0528 −0.1121
s.d. 0.0311 0.2415 0.2617 0.2921 0.1525 0.1840 0.2219

Example 3. We next generate data from the Cox model with two covariates

λij(t) = λ0(t) exp (X>ijβ), i = 1, . . . , n. (15)

where the covariates Xij = (Xij1, Xij2)
> are generated from a multivariate normal distribution with

mean zero and a first-order autoregressive covariance structure Σ = (σ)st with σst = 0.5|s−t| for
s, t = 1, 2. We set β = (1, 3), Λ0(t) = t2/16 and consider (n, m) = (200, 4) or (400, 2). Note
that the model corresponds to the latent Cox model with the true number of subgroups M being 1.

Based on the BIC criterion given in (12), we estimate the number of subgroups M and report
the sample mean, median, and standard error (s.d.) of the estimated number of subgroups M̂ and
the empirical percentage of M̂ equal to the true number of subgroups M based on 100 replications.
We consider (n, m) = (200, 4) and (400, 2). The results are given in Table 5. We observe that
for each replication, the number of subgroups is correctly identified to be 1. The estimation results
are summarized in Table 6. We find that the regression coefficients are estimated accurately with
small biases for (n, m) = (200, 4). Similar with Examples 1 and 2, as we increase the number
of clusters to 400 and decrease the number of subjects within each cluster to 2, the biases of some
estimators become larger even though the total sample sizes are the same for the two cases. To
assess the estimation accuracy of the cumulative baseline hazard rate function, by plotting them in
Figure 1, we show the difference between the true cumulative hazard rate function Λ0(t) and the
estimated baseline cumulative hazard curves Λ̂0(t). From Figure 1, it can be seen that two curves
are quite close to each other during the time periods of (0, 2) and (6, 12). However, because there are
no sample points falling in the time period of (2, 6), the two curves exhibit a significant difference
during this time period.

Table 5. The sample mean, median, and standard error (s.d.) of M̂ and the empirical percentage (per)
of M̂ equal to the true number of subgroups M based on 100 replications in Example 3.

(n, m) Mean Median s.d. Per

n = (200, 4) 1 1 0 1
n = (400, 2) 1 1 0 1
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Table 6. The empirical bias and sample standard error (s.d.) of the estimator β̂11, β̂12 and Λ̂0(8) based
on 100 replications in Example 3.

(n, m) β11 β12 Λ0(8)

(200, 4)
True 1 3 4
Bias 0.0021 −0.0074 −0.0710
s.d. 0.1180 0.2327 0.63830

(400, 2)
True 1 3 4
Bias 0.0099 0.0166 −0.2143
s.d. 0.1447 0.2348 0.6849
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(a)  (n,m) = (200, 4)
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(b)  (n,m) = (400, 2)

Figure 1. The dotted and solid lines plot the true and estimated baseline cumulative hazard functions,
respectively. The estimated baseline cumulative hazard function is the empirical average of the
estimated baseline cumulative hazard functions based on 50 replications with (n, m) = (200, 4) or
(400, 2) in Example 3.

5. An Application to the Netherlands Twin Study on Migraine

We now apply the proposed model to analyze the Netherlands twin migraine data.
The participants were volunteer members of the Netherlands Twin Registry, which is
maintained by the Department of Biological Psychology at the Vrije Universiteit in Amster-
dam [22]. The data were collected between 1991 and 2002 as part of an ongoing study of
health, lifestyle, and genetics involving a large cohort of Dutch twins and their relatives.
The primary response of interest in the migraine study is the time when the individual first
had a migraine. Since the individuals were followed up on a periodic basis, the time to
event may be known only to belong to intervals and hence be interval-censored. The twins
form into the clusters with the cluster size 2 and come from different genetic backgrounds,
which naturally can be classified into heterogeneous subgroups based on the genetic pro-
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files of the twin families, which are not directly observed. Our analysis is based on 3975
monozygotic and dizygotic twin pairs. The left and right endpoints of the interval in which
the individual had migraine (in years) are denoted by Lij and Rij, respectively, for the jth
individual in the ith cluster. In this dataset, Lij and Rij are random and are independent of
the event time. Furthermore, two covariates included in the model are gender (1 = male,
0 = female) and the type of twins (1 = monozygotic, 0 = dizygotic).

To explore the heterogeneity across the twins as indicated by their initial health status,
household lifestyle, disease progression, and genetic profiles, we assume that the twins
can be classified into a few homogeneous subgroups for each of which the conditional
hazard function is postulated by a Cox model. We fit the migraine data by the proposed
model with varying M, and the number of subgroups M is estimated by minimizing the
BIC criterion function in (12). We found that by the BIC criterion, the optimal M is 3. In
Table 7, for the number of subgroups M = 1, 2, 3, 4, we report the maximum log-likelihood
values (LL), the BIC values (BIC), and the estimated parameters. We found that the model
with three subgroups yields the best fit. The twins can be classified into three homogeneous
subgroups with mixing probabilities of 77%, 19%, and 4%, respectively. The estimated
regression coefficients for three subgroups are also detailed in Table 7. In addition, the
baseline cumulative hazard functions for three subgroups are plotted in Figure 2.

Table 7. Estimation results for migraine data with M = 1, 2, 3, 4: the number of subgroups (M), the
maximum log-likelihood values (LL), the BIC values (BIC), and the estimated parameters.

M LL BIC Estimated Parameters

1 −6600.132 13,218.23 β̂ = (−0.5325,−0.1151)

2 −6579.397 13,194.72 π̂1 = 0.2003, β̂1 = (−0.3968, 0.1302)
π̂2 = 0.7997, β̂2 = (−0.6769, 0.2541)

3 −6559.832 13,173.55
π̂1 = 0.1881, β̂1 = (−0.9552, 0.1364)
π̂2 = 0.0383, β̂2 = (0.3508, 0.5495)
π̂3 = 0.7736, β̂3 = (−0.4493,−0.2817)

4 −6597.269 13,266.39

π̂1 = 0.0211, β̂1 = (−0.3509, 0.5877)
π̂2 = 0.0193, β̂2 = (1.1539, 0.3783)
π̂3 = 0.7893, β̂3 = (−0.2949,−0.2022)
π̂4 = 0.1703, β̂4 = (−0.5758, 0.1578)

For the optimal model selected by BIC criterion, we calculate the empirical standard
error and 95%CI of the parameters by the bootstrap method. We repeatedly generated
bootstrap samples for G times and obtained bootstrap estimates (Π̂g, β̂g), g = 1, . . . , G with
G = 500. Then, the normal-based 100(1− α)% bootstrap interval for π1 is

[π̄1 − zα/2 ŝe(π1), π̄1 + zα/2 ŝe(π1)] (16)

where π̄1 = (∑G
g=1 π̂1g)/G, ŝe(π1) =

√
[∑G

g=1(π̂1g − π̄1)2]/(G− 1). The bootstrap 100(1−
α)% percentile interval for π1 is [π̂1L, π̂1U ]; here, π̂1L and π̂1U are the (α/2)G-th and
(1− α/2)G-th order statistics of {π̂1g}G

g=1. The confidence intervals and the empirical
standard errors for other parameters can be calculated in a similar way, and the results are
reported in Table 8.
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Table 8. The estimated parameters for the optimal model.

Parameters SE 95% Bootstrap CI † 95% Bootstrap CI ‡

π1 0.0307 [0.1174, 0.2379] [0.1116, 0.2374]
π2 0.0044 [0.0231, 0.0404] [0.0232, 0.0406]
π3 0.0301 [0.7315, 0.8495] [0.7058, 0.8308]
β11 0.2428 [−1.3256, −0.3735] [−1.3017, −0.5147]
β12 0.1384 [−0.1210, 0.4218] [−0.1386, −0.1386]
β21 0.0613 [0.2426, 0.4829] [0.2412, 0.4811]
β22 0.0571 [0.4279, 0.6518] [0.4266, 0.6503]
β31 0.0584 [−0.5606, −0.3314] [−0.5538, −0.3549]
β32 0.0622 [−0.3997, −0.1557] [−0.4247, −0.1747]

Notes: SE, the empirical standard error based on the bootstrap samples; CI †, normal-based bootstrap CI; CI ‡,

percentile bootstrap CI.
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Figure 2. The estimated baseline cumulative hazard functions for migraine data in the optimal model
with three subgroups.
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