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Abstract: A number of solitary wave solutions for microtubules (MTs) are observed in this article by
using the modified exp-function approach. We tackle the problem by treating the results as nonlinear
RLC transmission lines, and then finding exact solutions to Nonlinear Evolution Equation (NLEE)
containing parameters of particular importance in biophysics and nanobiosciences. For this equation,
we find trigonometric, hyperbolic, rational, and exponential function solutions, as well as soliton-like
pulse solutions. A comparison with other approach indicates the legitimacy of the approach we
devised as well as the fact that our method offers extra solutions. Finally, we plot 2D, 3D and contour
visualizations of the exact results that we observed using our approach using appropriate parameter
values with the help of software Mathematica 10.

Keywords: exact solutions; nonlinear RLC transmission lines; analytical method; nonlinear evolution
equation of microtubules

MSC: 83C15; 35A20; 35C05; 35C07; 35C08

1. Introduction

Various fields of applied mathematics, engineering and mathematical physics, such as
hydrodynamics, solid state physics, fiber optics, biology, fluid mechanics, plasma physics,
geochemistry, and chemical systems confront multiple technical challenges in developing
an understanding of nonlinear phenomena. Calculating numerical and analytical solutions
of nonlinear evolution equations (NLEEs), notably solitary and travelling wave solutions,
is crucial in soliton theory [1]. Recently, symbolic software such as Maple, Mathemat-
ica, and Matlab have been popular for determining numerical solutions, exact solutions,
and analytical solutions to NLEEs. These systems make difficult and laborious algebraic
computations easier.

Numerous powerful methods have been developed for finding exact travelling wave
and solitary wave solutions of the nonlinear evolution equations, such as, rational pertur-
bation method [2], Painlevé expansion method [3], Hirota’s bilinear method [4], the (G′/G)-
expansion method [5,6], F-expansion method [7], Jacobi elliptic function method [8–10],
the Homogeneous Balance method [11], the extended Tanh-function method [12], mod-
ified Tanh-function method [13–17], exp(−φ(ξ))-expansion method [18], and the direct
method [19].

Microtubules (MTs) are nanotube-shaped cytoskeleton biopolymers that are required
for intracellular trafficking, division, cell motility, and information processing in neural
processes. Higher neuronal processes, including as memory and the formation of conscious-
ness, have also been linked to MTs. However, it is currently uncertain how MTs handle and
process electrical data. Based on polyelectrolyte characteristics of cylindrical biopolymers,
we develop a new model for ionic waves along MTs in this paper. Each microtubule duplex
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protein is a capacitive, resistive, and negative incrementally resistive electric element [20].
The role of nanopores (NPs) that exist between neighboring duplex within an MT wall,
which exhibits features comparable to ionic channels, was highlighted in [21,22]. The
behaviour of MTs as biomolecular transistors capable of magnifying electrical information
in neurons might be explained using these NPs. The origin and the derivation’s physical
characteristics of the following equation relating to the ionic currents are presented in [23].

R2C0L2uxxt + L2uxx + 2R1C0δ uut − R1C0 ut = 0, (1)

where R1 = 109 Ω and R2 = 7× 106 Ω represent transverse and longitudinal components
of the resistance of an elementary ring (ER). Also, the parameter δ (δ < 1) elucidates
the nonlinearity to an ER capacitor in microtubules. In this case, L = 8× 10−9 m, while
C0 = 1.8 × 10−15 F being the ER’s overall maximal capacitance. Using the modified
extended tanh function approach, Sekulic et al. [13] analyzed the equation of MTs as a
nonlinear RLC transmission line to get solitary wave solutions. The improved generalized
Riccati equation mapping method was used by Zayed et al. [24] to solve a nonlinear partial
differential equation representing the dynamics of ionic currents along microtubules and
construct travelling wave solutions.

The goal of this research is to use the modified exp-function approach to find new exact
solutions to nonlinear PDEs of particular relevance in nanobiosciences, such as transmission
line model of nanoionic currents along microtubules, which play a vital role in cell signaling.
Comparison of the newly obtained solutions with the existing solutions in the literature is
given in the form of the table which shows that our solutions are new and more general.

2. The Description of the Method

In this part of the research article, we will momentarily present the main steps of the
proposed modified exp-function method [25]. Consider a general NLPDE of the form

T(U, Ux, Ut, Uxx, Utt, Utx . . .) = 0, (2)

where T is polynomial in U(x,t) and its partial derivatives, which contains the nonlinear
terms and higher order derivatives, and U = U(x,t) is an unrevealed function. The main
steps of this method are:

Step 1: The following change of variable,

U(x, t) = u(θ), θ =
x
L
− c

τ
t , (3)

where τ = R1C0 = 1.32× 10−6 s, and c is the non-dimensional wave velocity, converts
Equation (2) into a nonlinear ordinary differential equation:

R
(
u, u′, u′′ , u′′′ , . . .

)
= 0, (4)

where the superscripts indicate the ordinary derivatives with regard to θ, while R is a
polynomial of u and its derivatives.

Step 2: Assume that the travelling wave solution of Equation (4) can be expressed
as follows:

u(θ) =
∑M

i=0 Ai[exp(−Φ(θ))]i

∑N
j=0 Bj[exp(−Φ(θ))]j

=
A0 + A1 exp (−Φ(θ)) + . . . + AM exp (M(−Φ(θ)))

B0 + B1exp (−Φ(θ)) + . . . + BNexp (N(−Φ(θ)))
,

(5)
where Ai, Bj, (0 ≤ i ≤ M , 0 ≤ j ≤ N) are the constants to be calculated later, such that AM 6= 0,
BN 6= 0, and also Φ = Φ(θ) satisfies the following ordinary differential equation (ODE);

Φ′(θ) = exp(−Φ(θ)) + a exp(Φ(θ)) + b. (6)
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Equation (6) has the following solution sets:
a: When a 6= 0, b2 − 4a > 0,

Φ(θ) = ln

(
−
√

b2 − 4a
2a

tanh

(√
b2 − 4a

2
(θ + E)

)
− b

2a

)
. (7)

b: When a 6= 0, b2 − 4a < 0,

Φ(θ) = ln

(√
−b2 + 4a

2a
tan

(√
−b2 + 4a

2
(θ + E)

)
− b

2a

)
. (8)

c: When a = 0, b 6= 0, b2 − 4a > 0,

Φ(θ) = − ln
(
− b

exp(b(θ + E))− 1

)
. (9)

d: When a 6= 0, b 6= 0, b2 − 4a = 0,

Φ(θ) = ln
(
−2b(θ + E) + 4

b2(θ + E)

)
. (10)

e: When a = 0, b = 0, b2 − 4a = 0,

Φ(θ) = ln(θ + E). (11)

such that A0, A1, A2, . . . AM, B0, B1, B2, . . . BN, E, a, b are the constants to be calculated
later. By using the homogeneous balance principle between the highest order nonlinear
term and highest order linear term occurring in Equation (5), we can find the positive
integers M and N.

Step 3: Substituting the Equations (6)–(11) into Equation (5), we get a polynomial in dif-
ferent powers of the exp (−Φ(θ)) and equating all coefficients to zero, yields a system of al-
gebraic equations which can be solved to find A0, A1, A2, . . . AM, B0, B1, B2, . . . BN , E, a, b
by using Maple 18. Substituting the values of A0, A1, A2, . . . AM, B0, B1, B2, . . . BN , E, a, b
in the Equation (5), the general solutions of the Equation (5) complete the fortitude of the
solution of Equation (1).

Remark 1. If we put B0 = 1, B1 = 0, and A3 = 0, then our solution (14) coincides with the trial
solution (14) of Alam and Alam [18].

3. Applications

This section discusses the use of the modified exp-function method to obtain new
analytical solutions for nonlinear RLC transmission lines such as a new hyperbolic function
solution and a complex function solution. The travelling wave variable Equation (4)
converts Equation (1) into the following NLODE:

U′′ (θ)− α1

c
(
U′(θ)

)
+

α2U(θ)2

2
− α3U(θ) = 0, (12)

where α1 = τ
R2C0

, α2 = 2R1δ
R2

, α3 = R1
R2

.
The following equation is derived using the balance principle to determine the link

between U2 and U′′ :
M = N + 2. (13)

We can obtain several new analytical solutions for Equation (1) utilizing this relation-
ship, as follows:
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Let us say N = 1 and M = 3, and we will be able to write:

U =
A0 + A1 exp(−Φ) + A2 exp(2(−Φ)) + A3 exp(3(−Φ))

B0 + B1 exp(−Φ)
, (14)

such that A3 6= 0 and B1 6= 0. Substituting Equation (14) along with Equation (6) into
Equation (12), we obtain a polynomial including exp (−Φ(θ)) and its numerous powers.
Consequently, we have a system of algebraic equations from the coefficients of polynomial
of exp(−Φ(θ)). After solving this system with Maple 18, we get the following values for
the coefficients:

Case 1:

b = 1
6
√

144a− 6α3 , c = I
5

√
6α1√
α3

, A0 =
B0(I

√
144a−6α3

√
6α3−72a+6α3)

6α2
,

A1 = − 1
α2

(
B1α3

√
144a−6α3√
−6α3

+ 12B0α3√
−6α3

+ 2B0
√

144a− 6α3 + 12aB1 − B1α3

)
,

A2 = 1
α2

(
2B1
√
−6α3 − 2B1

√
144a− 6α3 − 12B0

)
, A3 = − 12B1

α2
.

(15)

Case 2:

a = 1
4 b2 − 1

24 α3 , c = 1
5

√
6 α1√
α3

, A0 = − 1
2
(2b
√

α3+
√

6 (b2− 1
12 α3)) B0

√
6

α2
, A3 = − 12B1

α2

A1 = 1
2
−2
√

6 (bB1+2B0)
√

α3+(−6b2+3α3)B1−24bB0
α2

, A2 = − 2(B1
√

α3+(bB1+B0)
√

6)
√

6
α2

.
(16)

Substituting Equations (7)–(11) along with the value of the coefficients from Equation (15)
into Equation (14), we obtained the following travelling wave solutions for Equation (1),
as follows:

When a 6= 0, b2 − 4a > 0,

U1(x, t) = 1
B0−

B1√
b2−4atanh( 1

2

√
b2−4a(θ+E))

2a + b
2a

(A0− A1√
b2−4atanh( 1

2

√
b2−4a(θ+E))

2a + b
2a

− A2(√
b2−4atanh( 1

2

√
b2−4a(θ+E))

2a + b
2a

)2 − A3(√
b2−4atanh( 1

2

√
b2−4a(θ+E))

2a + b
2a

)3 ),
(17)

When a 6= 0, b2 − 4a < 0,

U2(x, t) = 1
B0+

B1

1
2

√
−b2+4a tan( 1

2

√
−b2+4a(θ+E))

a − b
2a

(A0+
A1

1
2

√
−b2+4a tan( 1

2

√
−b2+4a(θ+E))

a − b
2a

+ A2(
1
2

√
−b2+4a tan( 1

2

√
−b2+4a(θ+E))

a − b
2a

)2 +
A3(

1
2

√
−b2+4a tan( 1

2

√
−b2+4a(θ+E))

a − b
2a

)3 ),
(18)

When a = 0, b 6= 0, b2 − 4a > 0,

U3(x, t) =
1

B0 +
B1b

eb(θ+E)−1

(
A0

(
b

eb(θ+E) − 1

)
+ A1

(
b

eb(θ+E) − 1

)
+ A2

(
b

eb(θ+E) − 1

)2
+ A3

(
b

eb(θ+E) − 1

)3
)

, (19)

When a 6= 0, b 6= 0, b2 − 4a = 0,

U4(x, t) =
1

B0 − B1b2(θ+E)
2b(θ+E)+4

(
A0 −

A1 b2(θ + E)
2b(θ + E) + 4

+
A2 b2(θ + E)2

(2b(θ + E) + 4)2 −
A3 b2(θ + E)3

(2b(θ + E) + 4)3

)
(20)

When a = 0, b = 0, b2 − 4a = 0,
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U5(x, t) =
θ3 A0 + (3 E A0 + A1) θ2 +

(
3E2 A0 + 3 E A1 + A2

)
θ + E3 A0 + E2 A1 + EA2 + A3

(E B0 + θ B0 + B1)(θ + E)2 , (21)

where θ = x
L −

c
τ t and the value of coefficients A0, A1, A2, A3, b, and c are given in

Equation (15).
Similarly, substituting Equations (7)–(11) along with the value of the coefficients from

Equation (16) into Equation (14), we obtained the following travelling wave solutions for
Equation (1):

When a 6= 0, b2 − 4a > 0,

U6(x, t) = 1
B0+

B1

− 1
2

√
b2−4atanh( 1

2

√
b2−4a(θ+E))

a − b
2a

(A0+
A1

− 1
2

√
b2−4atanh( 1

2

√
b2−4a(θ+E))

a − b
2a

+ A2(
− 1

2

√
b2−4atanh( 1

2

√
b2−4a(θ+E))

a − b
2a

)2 +
A3(

− 1
2

√
b2−4atanh( 1

2

√
b2−4a(θ+E))

a − b
2a

)3 ),
(22)

When a 6= 0, b2 − 4a < 0,

U7(x, t) = 1
B0+

B1

1
2

√
−b2+4a tan( 1

2

√
−b2+4a(θ+E))

a − b
2a

(A0+
A1

1
2

√
−b2+4a tan( 1

2

√
−b2+4a(θ+E))

a − b
2a

+ A2(
1
2

√
−b2+4a tan( 1

2

√
−b2+4a(θ+E))

a − b
2a

)2 +
A3(

1
2

√
−b2+4a tan( 1

2

√
−b2+4a(θ+E))

a − b
2a

)3 ),
(23)

When a = 0, b 6= 0, b2 − 4a > 0,

U8(x, t) =
1

B0 +
B1b

eb(θ+E)−1

(
A0

(
b

eb(θ+E) − 1

)
+ A1

(
b

eb(θ+E) − 1

)
+ A2

(
b

eb(θ+E) − 1

)2
+ A3

(
b

eb(θ+E) − 1

)3
)

, (24)

When a 6= 0, b 6= 0, b2 − 4a = 0,

U9(x, t) =
1

B0 − B1b2(θ+E)
2b(θ+E)+4

(
A0 −

A1b2(θ + E)
2b(θ + E) + 4

+
A2b2(θ + E)2

(2b(θ + E) + 4)2 −
A3b2(θ + E)3

(2b(θ + E) + 4)3

)
(25)

When a = 0, b = 0, b2 − 4a = 0,

U10(x, t) =
θ3 A0 + (3 E A0 + A1) θ2 +

(
3E2 A0 + 3 E A1 + A2

)
θ + E3 A0 + E2 A1 + EA2 + A3

(E B0 + θ B0 + B1) (θ + E)2 , (26)

where θ = x
L −

c
τ t and the value of coefficients A0, A1, A2, A3, a, and c are given in

Equation (16).

4. Physical Expression of the Problem

The modified Exp-function method has been effectively used to solve nonlinear partial
differential equation such as the nonlinear RLC transmission line model of nano-ionic
currents along MTs in this paper. We have obtained new travelling wave solutions of the
model of specific interest in biophysics using this method. Solitons, kink, singular kinks,
and periodic solutions are among the solutions obtained. It’s worth mentioning that the
new solutions acquired using the modified Exp-function method validate the accuracy of
the previous ones. The findings demonstrate that the modified Exp-function approach is
a powerful mathematical tool that is both simple and concise, and that it may be used to
solve other nonlinear evolution equations in physics. By selecting specific parameter values
and charting the exact solutions generated using the mathematical software Mathematica
10, we examine the nature of numerous solutions obtained using the model of microtubules
as nonlinear RLC transmission lines. Figures 1–8 illustrate the outcomes. Following these
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research results, we discovered that Equations (17)–(26) show kink, singular kink, solitons,
singular solitons, and periodic solutions.
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Graphical representations are a useful tool for discussing and articulating problem
solutions in a clear and concise manner. A graph is a visual representation of quantitative
or qualitative solutions or other data that is frequently compared. When performing
computations, we need to have a fundamental comprehension of graphs. A kink wave
is represented by Equation (17). Kink waves are waves that travel from one asymptotic
state to the next. At infinity, the kink solutions approach a constant. Figure 1 pageants the
shape of kink type exact solution for 3D, 2D, and contour plots of U1(x,t), for the unknown
constants R1 = 109 Ω, R2 = 106 Ω, C0 = 1.8× 10−15 F, L = 8× 10−9 m, a = 1, b = 3,
E = 2, B0 = 2, B1 = 1, within the interval −10 ≤ x, t ≤ 10 for 3D graph and t = 1 for the
2D graph. Equation (18) represents the exact periodic travelling wave solution. Periodic
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wave solution is represented by Equation (18). Periodic wave solution is a travelling wave
solution that is periodic in nature like cos(x−t). The 3D, 2D and contour plots for U2(x,t) are
shown in Figure 2 for unknown parameters R1 = 109 Ω, R2 = 106 Ω, C0 = 1.8× 10−15 F,
L = 8× 10−9 m, a = 1, b = 1, E = 1, B0 = 2, B1 = 1, and within the interval −5 ≤ x, t ≤ 5
for the 3D graph and t = 1 for 2D graph. Figure 3 represents the 3D, 2D, and contour plots
for singular kink type wave solution of U3(x,t) for parameters R1 = 109 Ω, R2 = 106 Ω,
C0 = 1.8× 10−15 F, L = 8× 10−9 m, a = 0, b = 1, E = 5, B0 = 2, B1 = 1, and within the
interval −5 ≤ x, t ≤ 5 for the 3D graph and t = 1 for the 2D graph. Figure 4 displays the
3D, 2D, and contour plots for singular soliton type solution of U4(x,t) for R1 = 109 Ω,
R2 = 106 Ω, C0 = 1.8× 10−15 F, L = 8× 10−9 m, a = 0, b = 1, E = 5, B0 = 2, B1 = 1, and
within the interval −5 ≤ x, t ≤ 5 for the 3D graph and t = 1 for the 2D graph. Figure 5
shows the 3D, 2D and contour plots of the rational function solution U5(x,t) that act like
The bright multiple soliton solution for the unknown constants R1 = 109 Ω, R2 = 106 Ω,
C0 = 1.8× 10−15 F, L = 8× 10−9 m, a = 0, b = 0, E = 2, B0 = 1, B1 = 2, and within the
interval −15 ≤ x, t ≤ 15 for the 3D graph and t = 1 for the 2D graph. The trigonometric
function solution in Figure 6 demonstrates the periodic soliton solutions of U7(x,t) for the
unknown constant R1 = 109 Ω, R2 = 106 Ω, C0 = 1.8× 10−15 F, L = 8× 10−9 m, a = 1,
b = 1, E = 1, B0 = 2, B1 = 1, to the interval, −20 ≤ x, t ≤ 20, for 3D graph and t = 1
for 2D graph. Figure 7 shows the exact travelling wave solution for U9(x,t) for unknown
constants R1 = 109 Ω, R2 = 106 Ω, C0 = 1.8× 10−15 F, L = 8× 10−9 m, a = 1, b = 2, E = 5,
B0 = 2, B1 = 1, for 3D graph within the interval of −10 ≤ x, t ≤ 10 and t = 1 for 2D graph.
Figure 8 represents the periodic trajectory of U10(x,t) for the known parameters R1 = 109 Ω,
R2 = 106 Ω, C0 = 1.8× 10−15 F, L = 8× 10−9 m, a = 0, b = 0, E = 5, B0 = 1, B1 = 2, for
3D graph and t = 0.5 for the 2D graph within the intervals −1 ≤ x ≤ 1, 0 ≤ t ≤ 1.
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5. Conclusions

By modelling soliton-like signals in microtubules as nonlinear RLC transmission lines,
we were able to do analytical and numerical research on their propagation. These models
are based on the structure of microtubule proteins. New analytical solutions, such as the
solitary wave solutions depicted in Figures 1–8, were made possible by the modified exp-
function approach. Here, we have considered only one case for the values of the positive
integers M = 3 for N = 1. If we consider M = 4 for N = 2, then we can get more general
solutions, which shows the novelty of our work. All the exact solutions attained in this
article have been checked by using Maple 18 to the RLC transmission line model and found
correct. This method has given numerous coefficients for Equations (15) and (16). This
method proved useful for generating new analytical solutions to the solitary wave solutions
exposed in Figures 1–8. It has been shown that the applied method is effective because it
provides a lot of new solutions. We have also plotted 3D, 2D and contour graphs of the
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obtained solutions. We found trigonometric, hyperbolic, exponential, and rational function
solutions in this study. The solutions obtained by Alam and Alam [18] are re-derived when
parameters are given some specific values.
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