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Abstract: IoT is extensively used in many infrastructure applications, including telehealth, smart
homes, smart grids, and smart cities. However, IoT has the weakest link in system security since it
often has low processing and power resources. It is important to implement the necessary crypto-
graphic primitives in these devices using extremely efficient finite field hardware structures. Modular
multiplication is the core of cryptographic operators. Therefore, we present, in this work, a word-
serial modular multiplier accelerator structure that provides the system designer with the ability
to manage areas, delays, and energy consumption through selecting the appropriate embedded
processor word size l. The modularity and regularity of the suggested multiplier structure makes it
more suitable for implementation in ASIC technology. The ASIC implementation results indicates
that the offered multiplier structure achieves area reduction compared to the competitive existing
multiplier structures that vary from 76.2% to 98.5% for l = 8, from 73.1% to 98.1% for l = 16, and
from 82.9% to 98.3% for l = 32. Moreover, the energy reduction varies from 61.2% to 98.8% for l = 8,
from 67.7% to 98.3% for l = 16, and from 76.1% to 98.8% for l = 32. These results indicate that
the proposed modular multiplier structure significantly outperforms the competitive ones, in terms
of area and consumed energy, making it more suitable for utilization in resource-constrained IoT
edge devices.

Keywords: modular multipliers; embedded security; IoT network; hardware security; parallel
computing; cryptography

MSC: 11T06

1. Introduction and Related Work

The Internet of Things (IoT) is a broad network of physical devices that are equipped
with sensors, software, electronics, and a network that allows them to share data and
execute tasks. IoT is a promising technology that will shape our future by providing
intelligent solutions in different applications, such as smart homes, smart cities, self-driven
cars, smart farming, smart grids, and telehealth. To better understand how this system
works, let us look at the IoT network topology in an IoT application, such as telehealth.
It is one of the many emerging infrastructure applications that relay on IoT technology,
to provide services to remote users, such as stay-at-home patients, and providing quality
healthcare to remote communities [1,2]. Figure 1 shows a telehealth system that relies on
IoT edge devices to deliver healthcare to remote locations.

The main entities of a telehealth system are: (a) A server that could be a hospital
or medical center, and naturally considered a hardware root-of-trust (HRoT) due to the
layered security measures implemented. (b) Internet cloud, which is, in general, an insecure
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communication medium. (c) A gateway that provides an interface between the IoT edge
devices and the internet. (d) Edge IoT devices that comprise sensors and actuators to mea-
sure and deliver medications to remote patients. (e) Mobile devices that allow healthcare
practitioners (doctors/nurses) to remotely connect to the telehealth system. It is clear from
the figure that there are many opportunities for attacks due to the use of diverse hardware
platforms, diverse operating systems, insecure wireless communication media, limited
processing power for many system entities, and the sheer number of people involved in
the operation of the system [3,4].

D1 D2 Dn
...

Server

(HRoT)

Internet

Cloud

Dataset

M1 Mn
...

G

(HRoT)

Figure 1. Telehealth network model.

Securing any system (telehealth or otherwise) implies many features that include
integrity, confidentiality, authentication, non-repudiation, and availability. These security
features are implemented using fundamental encryption algorithms, such as elliptic curve
cryptography (ECC) and Rivest—Shamir—Adleman (RSA) algorithms. Given the power
and delay restrictions for most of the devices used in most IoT systems, elliptic curve cryp-
tography (ECC) is the encryption technique of choice due to its high level of security with
shorter key lengths compared to common approaches, such as RSA [5]. An essential opera-
tion in ECC arithmetic is modular multiplication. There is an extensive body of literature
covering modular multiplications in both prime fields GF(p) and binary extension fields
GF(2m). Most of the proposed multipliers possess high area and delay complexities, which
make them unsuitable for resource-constrained IoT edge devices [6–8]. To overcome these
limitations, several authors developed word-serial modular multipliers [9–12]. Systolic ap-
proaches were reported in [9,13–15] and non-systolic designs were report in [16–19]. Other
authors attempted to save power and area by merging the modular multiplication and
modular squaring operations [7,8,20]. However, the resulting structures were not suitable
for resource-constrained IoT devices due to their high area and power requirements.

Most of the reported modular multiplier structures are classified as one-of-a kind struc-
tures. Ad hoc approaches are adopted with no consideration on how the structure can be
modified to optimize system performance parameters, such as latency, throughput, power,
and area requirements. The authors of this article presented a systematic methodology for
implementing the modular multiplication algorithm based on the algebraic approach first
proposed by the first author [21]. The systematic methodology applied linear mappings to
obtain modular multiplier structures. However, linear mappings have limited abilities, both
in terms of the number of parallel processing elements (PE) and also the timing strategies
that could be developed.
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This paper proposes using nonlinear techniques for mapping the algorithm onto
parallel PEs and to obtain more flexible timing strategies. The goal of the paper is to obtain
a word-serial processor accelerator for modular multiplication operations. The resulting
structure gives the designer the ability to control the PE workload and the algorithm latency.
The experimental results confirm that the proposed multiplier outperforms the efficient
word-serial ones previously reported on in the literature, in terms of area and consumed
energy for various embedded word-sizes. These design features make the proposed design
more suitable for embedded applications and other resource-constrained IoT applications.

The outlining of the paper is as follows. Section 2 briefly describes the adopted mod-
ular multiplication algorithm and exhibits the details of its dependency graph. Section 3
presents the followed approach to extract the modular multiplier word-serial accelerator
structure with its related logic details. Section 4 shows the realized implementation results.
Section 5 concludes the recommended work.

2. Algorithm of Interleaved Modular Multiplication

We can perform modular multiplication over GF(2m) by multiplying two polynomials
P(γ) and Q(γ) and reducing the result using the reduction polynomial T(γ) as:

S(γ) = P(γ)Q(γ) mod T(γ) (1)

the general polynomial format of P(γ), Q(γ), and T(γ) can be given as:

P(γ) =
m−1

∑
j=0

pjγ
j = (p0 + p1γ1 + · · ·+ pm−1γm−1) (2)

Q(γ) =
m−1

∑
j=0

qjγ
j = (q0 + q1γ1 + · · ·+ qm−1γm−1) (3)

T(γ) =
m

∑
j=0

tjγ
j = (t0 + t1γ1 + · · ·+ tmγm) (4)

with pj, qj, tj ∈ GF(2).
By replacing Q(γ) in Equation (1) with its polynomial format given in Equation (3),

Equation (1) can be represented as follows:

S(γ) = P(γ)(q0 + q1γ1 + · · ·+ qm−1γm−1) mod T(γ) (5)

we can arrange Equation (1) in the interleaved form as:

S(γ) = q0[P(γ) mod T(γ)] + q1[γ
1P(γ) mod T(γ)] +

+ · · ·+ qm−1[γ
m−1P(γ) mod T(γ)] (6)

We choose to drop γ from polynomials P(γ), Q(γ), S(γ), and T(γ) to simplify the
upcoming expressions. Investigating Equation (6), we notice that the multiplication product
can be produced by accumulating the terms qi[Pγi mod T], with 0 ≤ i ≤ m− 1.

Suppose Pi = Pγi mod T, we can represent Pi+1 in terms of Pi as Pi+1 = Pγi+1 mod
T = [Pγi]γ mod T = Piγ mod T. Thus, the recursive form of Pi+1 can be represented as:
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Pi+1 = Piγ mod T
m−1

∑
j=0

pi+1
j γj = (

m−1

∑
j=0

pi
jγ

j)γ mod T

=
m−1

∑
j=0

(pi
jγ

j+1) mod T

= pi
m−1[γ

m mod T] +
m−2

∑
j=0

pi
jγ

j+1

= pi
m−1

m−1

∑
j=0

tjγ
j +

m−1

∑
j=0

pi
j−1γj (7)

with the initialization condition P0 = P. The term γm mod T in Equation (7) is equivalent
to ∑m−1

j=0 tjγ
j as proved by [7]. Moreover, the term ∑m−2

j=0 pi
jγ

j+1 represents a polynomial of
order less than m.

The recursive Equation (7) can be expressed in the bit-level form as:

pi+1
j = pi

j−1 + pi
m−1tj, 0 ≤ j ≤ m− 1 (8)

with pi
−1 = 0 for 0 ≤ i ≤ m− 1.

The recursive form of partial product Si+1, 0 ≤ i ≤ m− 1 can be given from accumu-
lating Pi terms as:

Si+1 = Si + qiPi

m−1

∑
j=0

si+1
j γj =

m−1

∑
j=0

si
jγ

j + qi

m−1

∑
j=0

pi
jγ

j (9)

with S0 = 0 and Sm represents the final result S. Recursive Equation (9) can be expressed
in the bit-level form as:

si+1
j = si

j + qi pi
j (10)

with 0 ≤ i ≤ m− 1 , 0 ≤ j ≤ m− 1, and s0
j = 0 for 0 ≤ j ≤ m− 1.

Dependency Graph

Using reference [21], the dependence graph DG describing the modular multiplication
can be obtained from Equations (8) and (10). The indices i and j in the two equations
designate that the DG can be defined in a two-dimensional integer domain. Index i denotes
the rows, and index j denotes the columns. Figure 2 presents the DG for the field size m = 5.
The circled nodes compute the operations depicted by Equations (8) and (10). The vertical
lines represent the partial product signal si

j, the multiplier signal pi
j, and the irreducible

polynomial coefficient tj. The horizontal lines represent the broadcast multiplicand signal
qi. The diagonal lines represent the signal pi

j−1. Signals pi+1
j and si+1

j requires signals pi
j−1

and pi
j to be computed. The last column nodes produce signal pi

m−1, which is used inside
the column nodes, and broadcasted to the remaining row nodes as indicated in Figure 2.

As we observe from Figure 2, the input signals s0
j , p0

j are fed at the upper row of the
DG, and the output signals sm

j are produced from the lower row.
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Figure 2. DG of the polynomial modular multiplication algorithm for the case m = 5.

3. Word-Serial Accelerator Structure Exploration

We will follow a formal and systematic methodology that we previously developed
in [19,21–23] to map the recursive–iterative multiplier algorithm to a processor array and
assign an execution schedule to each processing element (PE) in the resulting array.

3.1. Scheduling Function

Consider the two-dimensional dependence graph for the polynomial modular multi-
plication algorithm shown in Figure 2. We assume the processor array we would like to
develop has l-bit digit or word size.

A valid nonlinear scheduling function assigns an execution time value to each node or
point P in Figure 2 according to the nonlinear expression:

Γ(P) = i
⌈m

l

⌉
+

⌊
m− 1− j

l

⌋
+ 1 (11)

Γ(P) is the function that assigns a time instance to node P(i, j) in the DG.
Figure 3 shows the time index values after applying the nonlinear scheduling function

in Equation (11) for the case when m = 5 and l = 3. The figure shows the DG points are
being grouped horizontally in l-bit groups having the same execution time value. This
ensures that all the bits in a single processor word are executed at the same time. An extra
column of nodes is added at the left side of the DG to ensure that the number of columns in
the DG is an integer multiple of l. For the general case, we need to add extra θ = l

⌈m
l
⌉
−m

columns, with zero inputs, at the left side of the DG. As we notice from Figure 3, the output
of the multiplier will be available after m

⌈m
l
⌉

computation steps.
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Figure 3. DG scheduling for the case m = 5 and l = 3.

An important feature of the proposed scheduling function is to provide the system
designer with the ability to control the workload of the entire processor array system. For
the nonlinear scheduling formula in Equation (11), we note that only one group of l bits
is active at any given time instance. Therefore, the PE workload is equal in that case to
the system workload. Of course, the system designer could choose another scheduling
function to choose a different system workload.

3.2. Projection Function

The projection function approach discussed in [21] projects several nodes in the DG
of Figure 3 to a single node. This operation is necessary since each l group of nodes in
Figure 3 operates only once. Therefore, to reuse the processing elements, we map several
groups into one PE. The system workload in Figure 3 implies that we need to map all the
nodes of the DG into one PE only. We propose the following nonlinear projection function
to map a node P(i, j) to a new node P(x, y):

P(x, y) = Pserial P(i, j) (12)

x = i (13)

y = m− 1− j mod l (14)

Pserial = [ 1 . mod l ] (15)

where “·” is a place holder for the argument [21].
Figure 4 shows the resulting word-serial accelerator structure after applying the

assumed projection function to Figure 3. The system consists of the following components:

1. A processor array block whose word size is l;
2. Three input registers T, P and PL;
3. One output register S;
4. Three shift-right registers SHR-S, SHR-pd and SHR-P (which is inside the processor

array block);
5. Rotate-right register ROR-T;
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6. Four three-input MUXes (two of them inside the processor array block) to select
between the inputs and partial results of variables P and T.

Register P passes bit values starting from bit p0
m−1, while register PL passes the bit

values of the word variable starting from bit p0
m−2.

The partial results stored in S and P are cycled through the shift registers SHR-S
and SHR-P, respectively. The fixed words of T are rotated through the rotate-right
register ROR-T.

l1

Processor Array

qi

l

r

l

01

l

C

T

P

P
in

T
in

S
in

l

1

P
O

S
O

l

S

S
H

R
-S

TO

l

ROR-T

r

l

01

l

C

l

l

P T

1
SHR-pd

r-1

pd

1

l

l

PL

v
1

pd

l

PL

PL
in

e1

1
p
0

m-1

Figure 4. word-serial accelerator structure.

Observation of Figures 3 and 4 indicates that the rightmost bit pd of register P is
transferred diagonally to the following node after delayed by r − 1 time steps, where
r = dm/le, while the remaining vertical and slanted word bits of P are transferred to
the following bottom nodes after being blocked by r time steps. Therefore, bit Pd should
be passed through the shift-right register, SHR-pd, that has depth size r− 1 as shown in
Figure 4. Shift-right registers SHR-P and SHR-S, and rotate-register RoT-T all have the same
width and depth sizes of l and r, respectively.

Figure 5 displays the details of the processor array block for the case l = 3 bits. The
processor array contains two types of PEs. Figures 6 and 7 depict the design details of the
PEs. All the PEs are interconnected in a pipeline structure to perform computing at the
same time. The yellow PE in Figure 3 has two more tri-state buffers managed by the control
signal e. We will discuss below the role of these extra buffers.

The operation details of the explored multiplier accelerator can be summarized for
generic filed size m and word size l as follows:

1. Control signal C, controlling the selection of all MUXes, activates (C = 1) during
the the first dm/le clock cycles to feed the input words of operands T, P, and PL
to all PEs of the processor array block. The words are fed starting with the most
significant words. Moreover, the most significant bit p0

m−1 is passed to the last PE,
PEl , and broadcasted to the remaining PEs. At the first clock cycle, SHR-S is cleared
to initialize the S variable with zero values.
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2. Control signal C of all MUXes deactivates (C = 0) during the remaining clock cycles
to feed the resulted intermediate words of P and fixed words of T to all PEs of the
processor array block. These words are passed through shift-registers SHR-P, SHR-pd,
and RoT-T, respectively. Moreover, the resulted intermediate words of S are fed to all
PEs of the processor array block through the shift-register SHR-S.

3. Control signal e activates (e = 1) at the clock cycles T = (i)dm
l e+ 1, 0 ≤ i ≤ m, to

enable the tri-state buffer Tr1 shown in Figure 6 to horizontally feed the bits of pi
m−1,

0 ≤ i ≤ m, to the remaining PEs. Moreover, qi input bits are broadcasted during
the same clock cycles to all PEs in the processor array block. The control signal e
deactivates (e = 0) during the remaining clock cycles to enable the tri-state buffer Tr2,
displayed in Figure 6, to feed the bits of pd through the shift-register SHR-pd to the
input of the processor array block as shown in Figure 4.

4. Control signal v, shown in Figure 5, deactivates (v = 0) at clock cycles T = (i + 1)dm
l e,

0 ≤ i ≤ m, to force zero bit values to the P words shown at the leftmost side of the
DG, Figure 3. Control signal v activates (v = 1) at the remaining clock cycles to feed
the Pd signal through the leftmost MUX of the processor array shown in Figure 5.

5. The resulting output words S are available at the output bus, through register S shown
in Figure 4, during clock cycles T ≥ (m− 1)

⌈m
l
⌉
+ 1.

PE
3

t2

PE
2

p0
3s03

PE
1

p0
2s02

si
4

t
4

s0
4 p

0

4 p
0

4
p
0

3
p
0

2

q
i

3
t

t
1s0

1 p
0

1

0
1

t
0s0

0 p
0

0
t
-1

s0
-1

p
0

-1 p
0

0
p
0

-1

p
0

1

p
0

-2

0
1

si
1

0
1

v

si
3

si
0

si
2

0

p
i
4

p
i
4

q
i

q
i

pl
int

i

pl
i

pl
in

pl
in

pl
in

t
in

p
in

s
int

in
p
in

s
in

t
in

p
in

s
in

so

p
0

4
p
0

4

pl
i

pl
int

i
pl

int

i

pl
i

C

t
4

t
1

p
i
4

p
i
1

pi
3 3

t

t
0p

i
0

t2p0
2

-1p
0

-1
t

so
sopo

po poto
to to

CC

pdpd

Figure 5. Details of the processor array block for word-size l = 3.
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4. Complexities Analysis

The area, delay, and consumed energy complexities of the proposed multiplier are
reported and compared to other efficient word-serial multipliers reported in [9–12]. Table 1
summarizes the area and delay complexities of recommended multiplier and the previously
reported efficient word-serial ones. The total count of logic gates/components in the
accelerator structure estimates the area complexity. The entire number of clock cycles
needed to produce the product represents the latency (L) of the multiplier. The whole gate
delays in the longest path of the logic circuit represent the critical path delay (CPD) of the
multiplier structure. The product of latency and critical path delay (CPD) estimates the
delay complexity. We can represent the delays of the 2-input AND, 2-input XOR, and 2-to-1
MUX by τA, τX , and τMUX symbols, respectively.

Table 1. Estimation of area and delay for the adopted word-serial multipliers.

Multiplier Tri-State AND XOR MUXes Flip-Flops Latency CPD

Xie [10] 0 2ml 2ml + 6m− 6 m
l + 6 0 4ml + 4m + 2l 2dm/le+ 2dlog2 le 2DX

Pan [9] 0 m
√

m
√

ml(2 + l) + l 0 R1 2d
√

m/le η1

Hua [11] 0 l2 l2 + 4− 5l + 1(1) 0 R2 6ldm/le2 η2

Chen [12] 0 l2 + l l2 + 2l 2l(2) R3 D1 η3

Proposed 2 3l + 2 3l 2l 4l(dm/le+ 1)− 1 mdm/le η4

(1) The three-input logic XOR area is estimated as 1.5× the area of the two-input logic XOR. (2) The switches in
Multiplier of [12] have the same area as the 2-to-1 MUX as it has the same number of transistors.

The following formulas describe the remaining notations in Table 1:

• R1 = 7m + m(dlog me) + l + 3
• R2 = 2l2 + 2l(dm/le) + 4l + 1
• R3 = 2l2 + 3l(dm/le) + 2l
• D1 = l + dm/le2 + dm/le
• η1 = τA + (dlog2 le+ 1)τX
• η2 = τA + 2τX
• η3 = τA + τX
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• η4 = 2τA + τX + τMUX

Input and output flip-flops of each multiplier structure are added to the total estimated
number of its flop-flops. As we notice from Table 1, the proposed multiplier structure has a
significant reduction in the area compared to other multiplier structures due to having area
complexity of order O(l).

To quantify the results obtained in Table 1, we modeled the proposed multiplier
structure and the adopted ones using VHDL hardware language and synthesized them
for the recommended field size n = 409 and embedded word sizes of l = 8, l = 16,
and l = 32. The synthesis was performed using NanGate Open Cell Library (15nm, 0.8V)
and Synopsys tools version 2005.09-SP2. The following describes the synthesis design
parameters obtained in Table 2:

1. Area (A) results are obtained in terms of the two-input NAND gate and are repre-
sented in units of kilo-gates kgates.

2. Total computation time (T) is represented in nano-second ns time unit.
3. Consumed power (P) is obtained at a frequency of 1 KHz in units of milliwatt mW.
4. Consumed energy (E) is obtained as the product of P and T in units of femtojoule f J
5. Area–time product (AT) is obtained as the product of A and T in units of kgates–

nanosecond Kgates.ns

Table 2. Performance parameters of the adopted word-serial multipliers for n = 409 and different
values of l.

Multiplier l A T P E AT %A %AT %P %E
[Kgates] [ns] [mW] [fJ]

Xie [10] 8 92.9 18.3 225.6 4.1 1698.7 97.9 31.8 99.5 76.5

16 147 9.7 375.5 3.6 1425.9 98.1 15.0 99.4 75

32 195.1 5.5 477.4 2.6 1078.9 98.3 31.8 99.4 76.1

Pan [9] 8 130.5 9.9 252.9 2.5 1291.6 98.5 −27.3 99.6 61.2

16 153.9 8.8 320.1 2.8 1354.6 98.2 10.5 99.3 67.7

32 194.3 6.8 425.1 2.9 1317.6 98.3 44.2 99.3 78.1

Hua [11] 8 7.9 19,053.5 4.4 82.9 152,237.2 76.2 98.9 74.3 98.8

16 10.4 9526.7 5.9 55.7 99,077.9 73.1 98.8 64.1 98.4

32 19.9 4763.3 11.2 53.1 94,838.7 82.9 99.2 73.9 98.8

Chen [12] 8 10.2 659.4 5.1 3.4 6699.7 81.3 75.5 78.1 71.2

16 13.5 203.0 8.4 1.7 2742.9 79.3 55.8 74.9 46.5

32 26.6 86.8 15.9 1.4 2306.3 87.2 68.1 81.8 54.3

Proposed 8 1.9 865.6 1.1 0.97 1644.6 - - - -

16 2.8 432.8 2.1 0.91 1211.8 - - - -

32 3.4 216.4 2.9 0.6 735.8 - - - -

Charts of Figures 8–11 compare the obtained results of area (A), area–time product (AT),
consumed power (P), and consumed energy (E), respectively, of the proposed multiplier
structure with the adopted ones.

Figure 8 depicts that the proposed multiplier structure saves a significant amount of
area ranging from 76.2% to 98.5% at l = 8, 73.1% to 98.1% at l = 16, and 82.9% to 98.3%
at l = 32 compared with the adopted word-serial multipliers. As we mentioned before,
the saving in the area is due to the lower area complexity O(l) of the proposed design
compared to the other designs. It is worth noting that the area of the proposed design
has a slight difference at the different word sizes. This is due to the reverse relationship
between the number of flip-flops and the word size l as indicated in Table 1. Therefore,
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as l increase, the number of flip-flops decrease and the number of basic logic components
increase as it is directly proportional to the word-size l. The area complexity of the flip-flop
is much higher than that of the other gates. As a result, the area reduction of flip-flops will
have a significant impact on the overall area reduction of the proposed multiplier. Thus,
the net result is a slight increase in the proposed design area as its word size increases. The
proposed multiplier structure saves a significant amount of area ranging from 76.2% to
98.5% at l = 8, 73.1% to 98.1% at l = 16, and 82.9% to 98.3% at l = 32 compared with the
adopted word-serial multipliers.
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Figure 11. Consumed energy experimental results.

Figure 9 displays the obtained area–time (AT) results of the proposed design and the
adopted word-serial ones. We can read the results based on the different word-sizes l
as follows:

(i) At word-size l = 8, the multiplier that achieves the lowest AT is the multiplier of
Pan [9]. It outperforms the proposed design by %27.8 at this word size. On the other
hand, the proposed multiplier outperforms the other multipliers in AT at this word
size, achieving a maximum reduction of 98.9% over the design of Hua [11].

(ii) At word-sizes l = 16 and l = 32, the proposed multiplier achieves the lowest AT
than the other multiplier structures due to the significant reduction of its latency and
computation time at these word sizes. As we notice from Table 1, the latency of the
proposed multiplier is inversely proportional to the word size l. As a result, the latency
significantly decreases as the word size l increases.

Figure 10 shows that proposed multiplier structure achieves a significant reduction
in power consumption ranging from 74.3% to 99.6% at l = 8, 64.1% to 99.44% at l = 16,
and 73.9% to 99.4% at l = 32 compared to the other multiplier designs. The reduction of
power is attributed to the lower area complexity of the proposed design over the other
designs. The reduction in area reduces the total amount of parasitic capacitances, resulting
in a significant reduction in switching activities, which is one of the primary sources of
consuming power.

Figure 11 shows that the proposed multiplier structure achieves a magnified reduction
in energy ranging from 61.2% to 98.8% at l = 8, 67.7% to 98.3% at l = 16, and 76.1% to
98.8% at l = 32 compared to the adopted word-serial multipliers. The energy reduction
is mainly attributed to the magnified reduction of the consumed power of the proposed
design over the adopted ones.

From the previous analysis, we can conclude that the recommended word-serial
multiplier structure outperforms the other competitor multiplier structures in terms of
area and consumed energy for the different embedded word sizes. This indicates that the
proposed multiplier is suitable for IoT devices in resource-constrained IoT applications.

5. Summary and Conclusions

This paper proposes a word-serial accelerator multiplier structure that performs
multiplication in GF(2m). The multiplier was extracted based on a systematic methodology
that uses non-linear scheduling and projection functions to map the nodes of the algorithm
dependency graph on to parallel processing elements. The main features of the proposed
multiplier involve its flexibility in managing the accelerator workload and the required
total computation time steps to produce the output results. The regularity and modularity
of the extracted processor array block of the multiplier accelerator make it more suitable
for implementation using ASIC technology. The experimental results confirm that the
proposed multiplier outperforms the efficient word-serial ones previously reported on in
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the literature, in terms of area and consumed energy for various embedded word sizes,
making it more suitable for embedded applications and other resource-constrained IoT
applications. In the future, we will use the obtained multiplier structure as a building block
for the ECC cryptographic processor to evaluate the overall reduction of the cryptographic
processor in terms of area and consumed energy.
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