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Abstract: In this paper, we consider the finite-time synchronization for drive-response BAM neural
networks with time-varying delays. Instead of using the finite-time stability theorem and integral
inequality method, by using the maximum-value method, two new criteria are obtained to ensure
the finite-time synchronization for the considered drive-response systems. The inequalities in our
paper, applied to obtaining the maximum-valued and designing the novel controllers, are different
from those in existing papers.

Keywords: drive-response BAM neural networks with time-varying delays; finite-time synchroniza-
tion; maximum-value approach; new inequalities

1. Introduction

In 1987, Kosko firstly proposed a two-way associative search for stored bipolar vector
pairs and generalized the single-layer auto-associative Hebbian correlation to a two-layer
pattern-matched hetero-associative circuit. These are a class of important neural networks,
called bidirectional associative memory (BAM) neural networks [1,2]. The dynamic behav-
iors of BAM neural networks are of significant application prospects in various fields, such
as automatic control, signal processing, pattern recognition and associative memory, which
has arisen the great interest of researchers. To date, many researchers have analyzed various
dynamical behaviors of BAM neural networks, and obtained many dynamical analysis
results of BAM neural networks [3–50]. In recent years, the global asymptotic/exponential
synchronization of BAM neural networks has been widely investigated, for example,
see [3–13] and references therein. Meanwhile, many scholars have devoted themselves
to the study of the finite-time synchronization of BAM neural networks, for example,
see [14–22,42] and references therein.

In [14], the authors developed a finite-time synchronization for the drive–response
fuzzy inertial BAM neural networks by employing integral inequality techniques and
the figure analysis approach. Furthermore, the finite-time stochastic synchronization for
memristor-based BAM neural networks with time-varying delays and stochastic distur-
bances was considered in [15]. In addition, the authors built more reasonable switching
conditions of the finite-time synchronization by using a stochastic analysis technique.
In [16], researchers introduced a different inequality, the fractional-order Gronwall in-
equality with time delays, and then dealt with the finite-time synchronization problem of
fractional-order memristor-based neural networks with time delays. Zhang and Yang [17]
studied the finite-time impulsive synchronization issue of fractional-order memristive BAM
neural networks involving switch jumps mismatch by designing two impulsive controllers
and using the properties of Gamma functions. In [18], the finite-time synchronization of
drive–response BAM fuzzy neural networks with time delays and impulsive effects was
investigated. The authors’ goal was to illustrate the effects of both impulse and time delay
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in a finite-time control area in terms of novel Lyapunov functionals and special analytical
techniques. Motivated by security applications in the image transmission, Wang et al. [19]
provided some sufficient conditions to guarantee the finite-time projective synchronization
for memristor-based BAM neural networks.

So far, the investigated results about the finite-time synchronization of BAM neural
networks and non-BAM neural networks have been acquired mainly by applying Lyapunov
functionals [15,18], analysis approaches [15,17,18], inequality approaches [14,16,19,21,22], the
finite-time stability theorem [20,21] and the integral inequality method [48–50]. Recently,
two novel sufficient conditions were obtained to guarantee the finite-time synchronization
for the considered drive–response fuzzy inertial neural networks by using the maximum-
value approach [42].

Inspired by [42], we studied the finite-time synchronization of BAM neural networks
by applying the maximum-value approach. In this paper, by using different inequality
techniques from those in [42] and designing controllers different from those in [14–22,42],
the finite-time synchronization criteria for drive–response BAM neural networks with
time-varying delays are obtained. In proving the main results, one of the two difficulties
in our paper was how to construct novel inequalities in the controllers to get V′(t) < ψ(t)
and the other one was how to establish the new inequalities in the controllers to achieve
a finite-time synchronization. Thus, the novelty of this paper is to construct some novel
inequalities to obtain the maximum value of the considered functions and to get the finite
time t1 needed to achieve synchronization. As a result, the main contribution of this paper
lies in the following three aspects:

(1) Some new inequalities which are different from those in [42] are constructed
in the process of obtaining the maximum-value of the considered functions; (2) new
inequalities described with fractional and integral functions are introduced to design the
novel controllers; (3) using the maximum-value approach and designing novel controllers,
two different conditions are attained to assure the finite-time synchronization between the
drive system and the response system.

The rest of this paper is arranged as follows. In Section 2, some necessary preliminaries
are given. In Section 3, two novel criteria to realize the finite-time synchronization are put
forward for the drive system (1) and the response system (2). In Section 4, we exhibit two
examples to validate the effectiveness and feasibility of the derived consequences.

2. Preliminaries

In this paper, we consider a class of BAM neural networks with time-varying delays
described by

dxi(t)
dt = −aixi(t) +

m
∑

j=1
cij f j(yj(t)) +

m
∑

j=1
dij f j(yj(t− τji(t))) + Ii,

dyj(t)
dt = −bjyj(t) +

n
∑

i=1
pjigi(xi(t)) +

n
∑

i=1
qjigi(xi(t− σij(t))) + Jj,

(1)

where i = 1, 2, · · · , n, j = 1, 2, · · · , m, ai > 0 and bj > 0 are constants; xi(t), yj(t) are
the states of the ith neuron and jth neuron; constants cij, dij, pji, qji denote the connection
strengths; τji(t), σij(t) are time delays, 0 < σ′ij(t) < σ∗, 0 < τ′ji(t) < τ∗; functions f j, gi
denote the activation functions; constants Ii, Jj denote the external inputs.

The initial values of system (1) are given as follows:

xi(s) = φxi(s), s ∈ [−σ, 0], yj(s) = ψyj(s), s ∈ [−τ, 0],

where σ = max
1≤i≤n,1≤j≤m

{σij(t)}, τ = max
1≤i≤n,1≤j≤m

{τji(t)}, φxi(s), ψyj(s) are bounded continu-

ous functions.
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Throughout this paper, for system (1), we always assume that
Zhen: have modified. (H1) There exist constants Fj > 0, Gi > 0 such that

| f j(x)− f j(y)| ≤ Fj|x− y|, |gi(x)− gi(y)| ≤ Gi|x− y|,

for all x, y ∈ R, i = 1, 2, · · · , n, j = 1, 2, · · · , m, |.| is the norm of the Euclidean space R.
For simplicity, we refer to (1) as the drive system, and consider the response BAM

neural networks with time-varying delays described as follows:
dui(t)

dt = −aiui(t) +
m
∑

j=1
cij f j(vj(t)) +

m
∑

j=1
dij f j(vj(t− τji(t))) + Ii + Pi(t),

dvj(t)
dt = −bjvj(t) +

n
∑

i=1
pjigi(ui(t)) +

n
∑

i=1
qjigi(ui(t− σij(t))) + Jj + Qj(t),

(2)

where ui(t), vj(t) denote the states, the parameters are the same as those in system (1)
and Pi(t), Qj(t) are the controllers to realize finite-time synchronization between the drive
system (1) and the response system (2).

The initial values of system (2) are given as follows:

ui(s) = φui(s), s ∈ [−σ, 0], vj(s) = ψvj(s), s ∈ [−τ, 0],

where σ = max
1≤i≤n,1≤j≤m

{σij(t)}, τ = max
1≤i≤n,1≤j≤m

{τji(t)}, φui(s), ψvj(s) are bounded continu-

ous functions.

Definition 1. drive–response systems (1) and (2) are said to be finite-time synchronized if for
arbitrary solutions of system (1) and system (2) denoted by [x1(t), x2(t), · · · , xn(t), y1(t), y2(t),
· · · , ym(t)]T and [u1(t), u2(t), · · · , un(t), v1(t), v2(t), · · · , vm(t)]T , under a suitable designed
controller, there exists a time T > 0 which is related to the initial condition, such that for i =
1, 2, · · · , n; j = 1, 2, · · · , m,

lim
t→T
|ui(t)− xi(t)| = 0; lim

t→T
|vj(t)− yj(t)| = 0;

|ui(t)− xi(t)| = 0, t > T; |vj(t)− yj(t)| = 0, t > T.

Lemma 1 ([51]). If x > 0, y > 0, p > 1, 1
p + 1

k = 1, k is a constant, then

xy ≤ xp

p
+

yk

k
.

Lemma 2. If a > 1, b > 1, and 1
a +

1
b = 1, when t > 3

4 , the following inequality holds:

ln(4t + 1) + 1− 2 ln 2 <
1
a
(t +

1
4
)a +

1
b

.

Proof. Let f (t) = 1
a (t +

1
4 )

a + 1
b − ln(4t + 1)− 1 + 2 ln 2, t > 3

4 . Then f ′(t) = (t + 1
4 )

a−1 −
4

4t+1 , t > 3
4 . Thus, f ′′(t) = 16

(4t+1)2

[
(a− 1)(t + 1

4 )
a+1
]
> 0, t > 3

4 . So f ′(t) is a mono-

tonically increasing function on ( 3
4 ,+∞) and then f ′(t) > f ′( 3

4 ) = 0. Therefore, when
t > 3

4 , f (t) is also a monotonically increasing function and f (t) > f ( 3
4 ) = 0. Finally,

ln(4t + 1) + 1− 2 ln 2 < 1
a (t +

1
4 )

a + 1
b holds.

Lemma 3. If t ≥ 1
e , a∗ > 1+e

e
1
e −1

, then t + 1 + a∗t− a∗tet < 0.

Proof. We only need to prove max
{

1+t
t(et−1)

}
≤ 1+e

e
1
e −1

.
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Denote F(t) = 1+t
t(et−1) . Then, we have F′(t) = 1−et−t2et−tet

t2(et−1)2 < 0, t ≥ 1
e .

Hence, F(t) is a monotonically decreasing function on [ 1
e ,+∞).

Furthermore, F(t) ≤ F( 1
e ) =

1+e
e

1
e −1

< a∗.

Lemma 4 ([42]). Assume that z = f(x) defined on (−∞,+∞), and x0 is a unique local maximum
value point. Then, max

x∈(−∞,+∞)
f (x) = max{ f (x0); f (−∞); f (+∞)}.

Proof. The proof is well-known and it is omitted.

3. Main Results

Let ei(t) = ui(t)− xi(t), rj(t) = vj(t)− yj(t), then the error system can be described
as follows:

dei(t)
dt = −aiei(t) +

m
∑

j=1
cij

[
f j(vj(t))− f j(yj(t))

]
+

m
∑

j=1
dij

[
f j(vj(t− τji(t)))

− f j(yj(t− τji(t)))
]
+ Pi(t),

drj(t)
dt = −bjrj(t) +

n
∑

i=1
pji

[
gi(ui(t))− gi(xi(t))

]
+

n
∑

i=1
qji

[
gi(ui(t− σij(t)))

−gi(xi(t− σij(t)))
]
+ Qj(t).

(3)

The controllers in system (3) are designed as follows for i = 1, 2, · · · , n, j = 1, 2, · · · , m:
Pi(t) = sign[ei(t)]k1 + k2ei(t) + sign[ei(t)]|ei(t)|1−pk3, ei(t) 6= 0,

Qj(t) = sign[rj(t)]l1 + l2rj(t) + sign[rj(t)]× |rj(t)|1−p φ(t)
p +

sign[rj(t)]|rj(t)|1−pl3, rj(t) 6= 0
(4)

or 
Pi(t) = [ei(t)]−1w1 + w2ei(t) + [ei(t)]

1−2qw3, ei(t) 6= 0,
Qj(t) = [rj(t)]−1z1 + z2rj(t) +

[
rj(t)

]1−2q ψ(t)
2q +[

rj(t)
]1−2qz3, rj(t) 6= 0

(5)

where p ≥ 1, φ(t) = 4
4t+1 − (t + 1

4 )
a−1 − 1, t ≥ 3

4 , a > 1, b > 1, and 1
a + 1

b = 1, pk3 +

kp
1(

p−1
−Ai

)p−1 < 0, pl3 + lp
1 (

p−1
−Bj

)p−1 < 0, k1 > 0, k2 < 0, k3 < 0, l1 > 0, l2 < 0, l3 < 0; q ≥

1, ψ(t) = 1 + a∗ − a∗(et + tet) − et − 3M(0), t ≥ 1
e , a∗ ≥ 1+e

e
1
e −1

, 2qw3 + wq
12q( q−1

−Ci
)2q−1 <

0, 2qz3 + zq
12q( q−1

−Di
)q−1 < 0, w1 > 0, w2 < 0, w3 < 0, z1 > 0, z2 < 0, z3 < 0, Ai, Bj are

defined in Theorem 1, Ci, Dj, M(t) are defined in Theorem 2 and M(0) is the value when
t = 0 in M(t).

Notation 1. In (4), φ(t) is independent of the initial values of the error systems, while in (5), ψ(t)
is dependent on the initial values of the error systems, so the controllers (4) and the controllers (5)
are different. Under these two controllers, the finite-time synchronization for the drive system (1)
and the response system (2) are achieved under some conditions.

Theorem 1. Assume the condition (H1) holds. Then, the drive system (1) and the response
system (2) are finite-time synchronized under the controllers (4) in a finite time t1, where t1 =

max
{

3
4 , V(0)

m + 2 ln 2− 1 + 1
b +

1
a ·

1
4a

}
if there exists a positive constant p ≥ 1 such that the

following conditions hold:
(H2)

Ai = (k2 − ai)p + (p− 1)
m

∑
j=1

Fj(|cij|+ |dij|) + Gi

m

∑
j=1

(|pji|+
1

1− σ∗
|qji|) < 0;
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(H3)

Bj = (l2 − bj)p + (p− 1)
n

∑
i=1

Gi(|pji|+ |qji|) + Fj

n

∑
i=1

(|cij|+
1

1− τ∗
|dij|) < 0.

Proof. Without loss of generalization, we assume that ei(t) 6= 0, rj(t) 6= 0 (If ei(t) =
0, rj(t) = 0, then the finite-time synchronization has been proved (if ei(t) = 0 or rj(t) = 0,
then the proof is a special case of the following proof).

We construct a Lyapunov function as follows:

V(t) = V1(t) + V2(t),

where,

V1(t) =
n

∑
i=1
|ei(t)|p +

m

∑
j=1
|rj(t)|p,

V2(t) =
1

1− τ∗

n

∑
i=1

m

∑
j=1
|dij|Fj

∫ t

t−τji(t)
|rj(s)|pds +

1
1− σ∗

n

∑
i=1

m

∑
j=1
|qji|Gi

∫ t

t−σij(t)
|ei(s)|pds.

From system (3), Lemma 1, assumption (H1) and the controller (4), we have

dV1(t)
dt

=
n

∑
i=1

d((sign[ei(t)])pep
i (t))

dt
+

m

∑
j=1

d((sign[rj(t)])prp
j (t))

dt

=
n

∑
i=1

(sign[ei(t)])p pep−1
i (t)

{
− aiei(t) +

m

∑
j=1

cij

[
f j(vj(t))− f j(yj(t))

]
+

m

∑
j=1

dij ×

[
f j(vj(t− τji(t)))− f j(yj(t− τji(t)))

]
+ Pi(t)

}
+

m

∑
j=1

(sign[rj(t)])p prp−1
j (t)

{
− bjrj(t) +

n

∑
i=1

pji

[
gi(ui(t))− gi(xi(t))

]
+

n

∑
i=1

qji

[
gi(ui(t− σij(t)))

−gi(xi(t− σij(t)))
]
+ Qj(t)

}
≤

n

∑
i=1

{
(k2 − ai)p|ei(t)|p + k1 p|ei(t)|p−1 + p|ei(t)|p−1

( m

∑
j=1
|cij|| f j(vj(t))− f j(yj(t))|

+
m

∑
j=1
|dij|| f j(vj(t− τji(t)))− f j(yj(t− τji(t)))|

)
+ pk3

}
+

m

∑
j=1

{
(l2 − bj)p|rj(t)|p

+l1 p|rj(t)|p−1 + p|rj(t)|p−1
( n

∑
i=1
|pji||gi(ui(t))− gi(xi(t))|+

n

∑
i=1
|qji| ×

|gi(ui(t− σij(t)))− gi(xi(t− σij(t)))|
)
+ φ(t) + pl3

}
≤

n

∑
i=1

{
(k2 − ai)p|ei(t)|p + k1 p|ei(t)|p−1 + p|ei(t)|p−1

( m

∑
j=1
|cij|Fj|rj(t)|+

m

∑
j=1
|dij|Fj ×

|rj(t− τji(t))|
)
+ pk3

}
+

m

∑
j=1

{
(l2 − bj)p|rj(t)|p + l1 p|rj(t)|p−1 + p|rj(t)|p−1

( n

∑
i=1
|pji|Gi|ei(t)|+

n

∑
i=1
|qji|Gi|ei(t− σij(t))|

)
+ φ(t) + pl3

}
. (6)
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Since p > 1, applying Lemma 1 gives

|ei(t)|p−1|rj(t)| ≤
(p− 1)|ei(t)|p

p
+
|rj(t)|p

p
, (7)

|ei(t)|p−1|rj(t− τji(t))| ≤
(p− 1)|ei(t)|p

p
+
|rj(t− τji(t))|p

p
, (8)

|rj(t)|p−1|ei(t)| ≤
(p− 1)|rj(t)|p

p
+
|ei(t)|p

p
, (9)

and

|rj(t)|p−1|ei(t− σij(t))| ≤
(p− 1)|rj(t)|p

p
+
|ei(t− σij(t))|p

p
. (10)

Substituting (7)–(10) into (6), it follows that

V′1(t)

≤
n

∑
i=1

{
(k2 − ai)p|ei(t)|p + k1 p|ei(t)|p−1 +

m

∑
j=1

(
|cij|[(p− 1)|ei(t)|p + |rj(t)|p] +

|dij|[(p− 1)|ei(t)|p + |rj(t− τji(t))|p]
)

Fj + pk3

}
+

m

∑
j=1

{
(l2 − bj)p|rj(t)|p

+l1 p|rj(t)|p−1 +
n

∑
i=1

(
|pji|[(p− 1)|rj(t)|p + |ei(t)|p] + |qji|[(p− 1)|rj(t)|p +

|ei(t− σij(t))|p]
)

Gi + φ(t) + pl3
}

. (11)

On the other hand, we have

dV2(t)
dt

=
1

1− τ∗

n

∑
i=1

m

∑
j=1
|dij|Fj

(
|rj(t)|p − (1− τ′ji(t))|rj(t− τji(t))|p

)
+

1
1− σ∗

n

∑
i=1

m

∑
j=1
|qji|Gi

(
|ei(t)|p − (1− σ′ij(t))|ei(t− σij(t))|p

)
≤ 1

1− τ∗

n

∑
i=1

m

∑
j=1
|dij|Fj|rj(t)|p +

1
1− σ∗

n

∑
i=1

m

∑
j=1
|qji|Gi|ei(t)|p

−
( n

∑
i=1

m

∑
j=1
|dij|Fj|rj(t− τji(t))|p +

n

∑
i=1

m

∑
j=1
|qji|Gi|ei(t− σij(t))|p

)
. (12)

From (11) and (12), we have

V′(t) = V′1(t) + V′2(t)

≤
n

∑
i=1

{
(k2 − ai)p|ei(t)|p + k1 p|ei(t)|p−1 +

m

∑
j=1

(
|cij|[(p− 1)|ei(t)|p + |rj(t)|p]

+|dij|[(p− 1)|ei(t)|p +
1

1− τ∗
|rj(t)|p]

)
Fj + pk3

}
+

m

∑
j=1

{
(l2 − bj)p|rj(t)|p
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+l1 p|rj(t)|p−1 +
n

∑
i=1

(
|pji|[(p− 1)|rj(t)|p + |ei(t)|p] + |qji|[(p− 1)|rj(t)|p

+
1

1− σ∗
|ei(t)|p]

)
Gi + φ(t) + pl3

}
=

n

∑
i=1

{[
(k2 − ai)p + (p− 1)

m

∑
j=1

Fj(|cij|+ |dij|) + Gi

m

∑
j=1

(|pji|+
1

1− σ∗
|qji|)

]
|ei(t)|p

+k1 p|ei(t)|p−1 + pk3

}
+

m

∑
j=1

{[
(l2 − bj)p + (p− 1)

n

∑
i=1

Gi(|pji|+ |qji|) + Fj

n

∑
i=1

(|cij|

+
1

1− τ∗
|dij|)

]
|rj(t)|p + l1 p|rj(t)|p−1 + φ(t) + pl3

}
=

n

∑
i=1

(Ai|ei(t)|p + k1 p|ei(t)|p−1 + pk3) +
m

∑
j=1

(Bj|rj(t)|p + l1 p|rj(t)|p−1 + pl3) + mφ(t). (13)

Let
F(|ei(t)|) = Ai|ei(t)|p + k1 p|ei(t)|p−1 + pk3,

G(|rj(t)|) = Bj|rj(t)|p + l1 p|rj(t)|p−1 + pl3.

Then d[F(|ei(t)|)]
d|ei(t)|

= |ei(t)|p−2 p[Ai|ei(t)|+ k1(p− 1)]. From d[F(|ei(t)|)]
d|ei(t)|

= 0, we have |ei(t)| =
k1(p−1)
−Ai

= x0. Since when |ei(t)| < x0, d[F(|ei(t)|)]
d|ei(t)|

> 0 and when |ei(t)| > x0, d[F(|ei(t)|)]
d|ei(t)|

< 0,

then x0 is the local maximum-value point. It is clear that F(x0) =
kp

1 (p−1)p−1

(−Ai)
p−1 + pk3 < 0.

Because Ai < 0, then we have lim
|ei(t)|→+∞

F(|ei(t)|) = −∞ < 0. So, from Lemma 4, we

get max{F(|ei(t)|} < 0. Then, F(|ei(t)|) < 0. Similarly, we can prove G(|rj(t)|) < 0.
Substituting F(|ei(t)|) < 0 and G(|rj(t)|) < 0 into (13) yields

V′(t) < mφ(t). (14)

Integrating (14) over [0, t] gives

V(t) < V(0) + m
[

ln(4t + 1)− 1
a
(t +

1
4
)a +

1
a
· 1

4a − t
]
(t >

3
4
)

= V(0) + m(ln(4t + 1) + 1− 2 ln 2− 1
a
(t +

1
4
)a − 1

b
)

+m(2 ln 2− 1 +
1
b
+

1
a
· 1

4a − t). (15)

It is clear that when t > V(0)
m + 2 ln 2− 1 + 1

b +
1
a ·

1
4a ,

V(0)−m
[

2 ln 2− 1 +
1
b
+

1
a
· 1

4a

]
< 0. (16)

According to Lemma 2, we have

ln(4t + 1) + 1− 2 ln 2− 1
a
(t +

1
4
)a − 1

b
< 0, t >

3
4

. (17)

Substituting (16) and (17) into (15), it follows that when t > t1 = max
{

3
4 , V(0)

m + 2 ln 2− 1

+ 1
b +

1
a ·

1
4a

}
,

0 ≤ V(t) ≤ 0, t ≥ t1,

that is, limt→t1 |ei(t)| = 0, limt→t1 |rj(t)| = 0, |ei(t)| = 0, |rj(t)| = 0, t ≥ t1.
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Namely,
lim
t→t1
|ui(t)− xi(t)| = 0, |ui(t)− xi(t)| = 0, t ≥ t1;

lim
t→t1
|vj(t)− yj(t)| = 0, |vj(t)− yj(t)| = 0, t ≥ t1.

The proof of Theorem 1 is finished.

Theorem 2. Assume that (H1) holds. Then, the drive system (1) and the response system (2) are
finite-time synchronized under the controllers (5) in a finite time t2, where t2 = max{ 1

3m , 1
e } if

there exists a positive constant q ≥ 1 such that the following conditions hold:
(H4)

Ci = (w2 − ai)2q + (2q− 1)
m

∑
j=1

Fj(|cij|+ |dij|) + Gi

m

∑
j=1

(|pji|+
1

1− σ∗
|qji|) < 0;

(H5)

Dj = (z2 − bj)2q + (2q− 1)
n

∑
i=1

Gi(|pji|+ |qji|) + Fj

n

∑
i=1

(|cij|+
1

1− τ∗
|dij|) < 0.

Proof. Without loss of generalization, we assume that ei(t) 6= 0, rj(t) 6= 0 (if ei(t) =
0, rj(t) = 0, then the finite-time synchronization has been proved; if ei(t) = 0 or rj(t) = 0,
then the proof is a special case of the following proof).

We construct a Lyapunov function as follows:

M(t) = M1(t) + M2(t),

where,

M1(t) =
n

∑
i=1

[ei(t)]2q +
m

∑
j=1

[rj(t)]2q,

M2(t) =
1

1− τ∗

n

∑
i=1

m

∑
j=1
|dij|Fj

∫ t

t−τji(t)
[rj(s)]2qds +

1
1− σ∗

n

∑
i=1

m

∑
j=1
|qji|Gi

∫ t

t−σij(t)
[ei(s)]2qds.

From system (3), Lemma 1, assumption (H1) and the controllers (5), we have

dM1(t)
dt

=
n

∑
i=1

2q[ei(t)]2q−1 dei(t)
dt

+
m

∑
j=1

2q[rj(t)]2q−1 drj(t)
dt

=
n

∑
i=1

2q[ei(t)]2q−1
{
− aiei(t) +

m

∑
j=1

cij

[
f j(vj(t))− f j(yj(t))

]
+

m

∑
j=1

dij

[
f j(vj(t− τji(t)))

− f j(yj(t− τji(t)))
]
+ Pi(t)

}
+

m

∑
j=1

2q[rj(t)]2q−1
{
− bjrj(t) +

n

∑
i=1

pji

[
gi(ui(t))

−gi(xi(t))
]
+

n

∑
i=1

qji

[
gi(ui(t− σij(t)))− gi(xi(t− σij)(t))

]
+ Qj(t)

}
≤

n

∑
i=1

{
(w2 − ai)2q[ei(t)]2q + 2qw1[ei(t)]2q−2 + 2q|ei(t)|2q−1

( m

∑
j=1
|cij|| f j(vj(t))
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− f j(yj(t))|+
m

∑
j=1
|dij|| f j(vj(t− τji(t)))− f j(yj(t− τji(t)))|

)
+ 2qw3

}
+

m

∑
j=1

{
(z2 − bj)

×2q[rj(t)]2q + 2qz1[rj(t)]2q−2 + 2q|rj(t)|2q−1
( n

∑
i=1
|pji||gi(ui(t))− gi(xi(t))|

+
n

∑
i=1
|qji||gi(ui(t− σij(t)))− gi(xi(t− σij(t)))|

)
+ ψ(t) + 2qz3

}
≤

n

∑
i=1

{
(w2 − ai)2q[ei(t)]2q + 2qw1[ei(t)]2q−2 + 2q|ei(t)|2q−1

( m

∑
j=1
|cij|Fj|rj(t)|

+
m

∑
j=1
|dij|Fj|rj(t− τji(t))|

)
+ 2qw3

}
+

m

∑
j=1

{
(z2 − bj)2q[rj(t)]2q + 2qz1[rj(t)]2q−2

+2q|rj(t)|2q−1
( n

∑
i=1
|pji|Gi|ei(t)|+

n

∑
i=1
|qji|Gi|ei(t− σij(t))|

)
+ ψ(t) + 2qz3

}
. (18)

Since q ≥ 1, applying Lemma 1 gives

|ei(t)|2q−1|rj(t)| ≤
(2q− 1)[ei(t)]2q

2q
+

[rj(t)]2q

2q
, (19)

|ei(t)|2q−1|rj(t− τji(t))| ≤
(2q− 1)[ei(t)]2q

2q
+

[rj(t− τji(t))]2q

2q
, (20)

|rj(t)|2q−1|ei(t)| ≤
(2q− 1)[rj(t)]2q

2q
+

[ei(t)]2q

2q
, (21)

and

|rj(t)|2q−1|ei(t− σij(t))| ≤
(2q− 1)[rj(t)]2q

2q
+

[ei(t− σij(t))]2q

2q
. (22)

Substituting (19)–(22) into (18), it follows that

M′1(t)

≤
n

∑
i=1

{
(w2 − ai)2q[ei(t)]2q + 2qw1[ei(t)]2q−2 +

m

∑
j=1

(
|cij|[(2q− 1)[ei(t)]2q + [rj(t)]2q]

+|dij|[(2q− 1)[ei(t)]2q + [rj(t− τji(t))]2q]
)

Fj + 2qw3

}
+

m

∑
j=1

{
(z2 − bj)2q[rj(t)]2q

+2qz1[rj(t)]2q−2 +
n

∑
i=1

(
|pji|[(2q− 1)[rj(t)]2q + [ei(t)]2q] + |qji|[(2q− 1)[rj(t)]2q

+[ei(t− σij(t))]2q]
)

Gi + ψ(t) + 2qz3

}
. (23)

On the other hand, we have

dV2(t)
dt

=
1

1− τ∗

n

∑
i=1

m

∑
j=1
|dij|Fj

(
[rj(t)]2q − (1− τ′ji(t))[rj(t− τji(t))]

2q
)
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+
1

1− σ∗

n

∑
i=1

m

∑
j=1
|qji|Gi

(
[ei(t)]2q − (1− σ′ij(t))[ei(t− σij(t))]

2q
)

≤ 1
1− τ∗

n

∑
i=1

m

∑
j=1
|dij|Fj[rj(t)]2q +

1
1− σ∗

n

∑
i=1

m

∑
j=1
|qji|Gi[ei(t)]2q

−
( n

∑
i=1

m

∑
j=1
|dij|Fj[rj(t− τji(t))]

2q +
n

∑
i=1

m

∑
j=1
|qji|Gi[ei(t− σij(t))]

2q
)

. (24)

From (23) and (24), we have

M′(t) = M′1(t) + M′2(t)

≤
n

∑
i=1

{
(w2 − ai)2q[ei(t)]2q + 2qw1|[ei(t)]2q−2 +

m

∑
j=1

(
|cij|[(2q− 1)[ei(t)]2q + [rj(t)]2q] +

|dij|[(2q− 1)[ei(t)]2q +
1

1− τ∗
[rj(t)]2q]

)
Fj + 2qw3

}
+

m

∑
j=1

{
(z2 − bj)2q[rj(t)]2q

+2qz1[rj(t)]2q−2 +
n

∑
i=1

(
|pji|[(2q− 1)[rj(t)]2q + [ei(t)]2q] + |qji|[(2q− 1)[rj(t)]2q

+
1

1− σ∗
[ei(t)]2q]

)
Gi + ψ(t) + 2qz3

}
=

n

∑
i=1

{[
(w2 − ai)2q + (2q− 1)

m

∑
j=1

Fj(|cij|+ |dij|) + Gi

m

∑
j=1

(|pji|+
1

1− σ∗
|qji|)

]
[ei(t)]2q +

2qw1[ei(t)]2q−2 + 2qw3

}
+

m

∑
j=1

{[
(z2 − bj)2q + (2q− 1)

n

∑
i=1

Gi(|pji|+ |qji|) + Fj

n

∑
i=1

(|cij|

+
1

1− τ∗
|dij|)

]
[rj(t)]2q + 2qz1[rj(t)]2q−2 + ψ(t) + 2qz3

}
=

n

∑
i=1

(
Ci[ei(t)]2q + 2qw1[ei(t)]2q−2 + 2qw3

)
+

m

∑
j=1

(
Dj[rj(t)]2q + 2qz1[rj(t)]2q−2 + 2qz3

)
+mψ(t). (25)

Denote
F̂(e2

i (t)) = Ci[e2
i (t)]

q + 2qw1[e2
i (t)]

q−1 + 2qw3,

Ĝ(r2
j (t)) = Dj[r2

j (t)]
q + 2qz1[r2

j (t)]
q−1 + 2qz3.

Then d[F̂(e2
i (t)|)]

d(e2
i (t))

= [e2
i (t)]

q−22q[Cie2
i (t) + w1(q − 1)]. From d[F̂(e2

i (t))]
d(e2

i (t))
= 0, we have

e2
i (t) =

2w1(q−1)
−Ci

= x∗. Since when e2
i (t) > x∗,

d[F̂(e2
i (t))]

d(e2
i (t))

< 0, e2
i (t) > x∗,

d[F̂(e2
i (t))]

d(e2
i (t))

< 0, then

x∗ is a unique local maximum point of F̂(e2
i (t)|). It is clear that F̂(x∗) =

wq
12q(q−1)q−1

(−Ci)
q−1 +

2qw3 < 0.
In addition, because Ci < 0, then we have lim

ei(t)→−∞
F̂(e2

i (t)) = lim
ei(t)→+∞

F̂(e2
i (t)) =

−∞ < 0. So, from Lemma 4, we get max{F̂(e2
i (t)} < 0. Then, F̂(e2

i (t)) < 0. Similarly, we
can prove Ĝ(r2

j (t)) < 0.

Substituting F̂(e2
i (t)) < 0 and Ĝ(r2

j (t)) < 0 into (25) yields

M′(t) < mψ(t). (26)
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Integrating (26) over [0, t] gives

M(t)

< M(0) + m
[
t− a∗tet + a∗t + 1− et − 3M(0)t

]
, (t ≥ 1

e
)

< m
[
t− a∗tet + a∗t + 1

]
+ (1− 3mt)M(0). (27)

According to Lemma 3, we have

t + 1 + a∗t− a∗tet < 0, t ≥ 1
e

. (28)

It is clear that when t > 1
3m ,

(1− 3mt)M(0) < 0. (29)

Substituting (28) and (29) into (27) yields that when t > t2 = max{ 1
3m , 1

e },

0 ≤ M(t) ≤ 0, t > t2,

that is, lim
t→t2
|ei(t)| = 0, lim

t→t2
|rj(t)| = 0, |ei(t)| = 0, |rj(t)| = 0, t > t2.

Namely,
lim
t→t2
|ui(t)− xi(t)| = 0, |ui(t)− xi(t)| = 0, t > t2;

lim
t→t2
|vj(t)− yj(t)| = 0, |vj(t)− yj(t)| = 0, t > t2.

Remark 1. Without applying some finite-time stability theorems, the inequality approach used
in [14–19,21,22] or the integral inequality method used in [48–50], in this paper, by applying the
maximum-value approach used in [42], we studied the finite-time synchronization of BAM neural
networks. However, the concrete inequality techniques via the maximum-value approach in our
paper are different from those in [42].

Remark 2. When τ′ji(t) > 1, σ′ij(t) > 1, then τ∗ > 1, σ∗ > 1. Thus, V(t) and M(t) are not
positive so the results obtained do not hold. When delays are equal to 1, the derived conditions
become delay-independent.

Remark 3. The controllers in our paper are different from those in [42]. Firstly, the error items in
the controllers in our paper are different from those in [42]; namely, fractional-type functions are
designed in the error items of the controllers in our paper, while exponential- and logarithm-type
functions are designed in the error items in the controllers from [42]. Secondly, the time t items
are different from those in [42]; namely, fractional- and exponential-type functions are designed for
the time items of the controllers in our paper, while logarithm-, fractional- and exponential-type
functions are designed for the time items in the controllers from [42].

4. Numerical Examples

A BAM neural network composed of neurons arranged in two layers possesses good
applications in the field of pattern recognition and artificial intelligence, since BAM neural
networks have the capability to learn from a process. Hence, the study of synchronization
in practical application for the drive–response BAM neural networks is very necessary. In
this section, we give two examples to illustrate our theoretical results by intuitive images.

Example 1. We consider system (1), response system (2) and error system (3) with controllers (4)
for i = 1, 2; j = 1, 2, where c11 = 3, c12 = −2, c21 = 4, c22 = −5; d11 = 1, d12 = −4, d21 =
−2, d22 = 3; p11 = −1, p12 = 3, p21 = 0.9, p22 = −2; q11 = 4, q12 = −3, q21 = −5, q22 = 2.
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a1 = 3, a2 = 1, b1 = 4, b2 = 2, p = 2 > 1, a = 3 > 1, k1 = 1 > 0, k2 = −16 < 0, k3 =
−3 < 0, l1 = 2 > 0, l2 = −8 < 0, l3 = −5 < 0, φ(t) = 4

4t+1 − (t + 1
4 )

a−1 − 1, I1 = 1, I2 =
−2, J1 = 1, J2 = 2, f j(yj(t)) = 0.5|yj(t)| − 1, gi(xi(t)) = 0.7|xi(t)|+ 1, τji(t) = 0.5 sin t and
σij(t) = 0.5 cos t. The initial conditions are given as: x1(0) = 320.5, x2(0) = 220, y1(0) =
−103.7, y2(0) = 160.4, u1(0) = −150.8, u2(0) = −470, v1(0) = 180.7, v2(0) = −207.6. Thus,
we have A1 = −19.07 < 0, A2 = −16.5 < 0, B1 = −9.8 < 0, B2 = −2.57 < 0 and

pk3 + kp
1

(
p− 1
−A1

)p−1
= −5.9476 < 0, pk3 + kp

1

(
p− 1
−A2

)p−1
= −5.9394 < 0,

pl3 + lp
1

(
p− 1
−B1

)p−1
= −9.5918 < 0, pl3 + lp

1

(
p− 1
−B2

)p−1
= −8.4436 < 0.

The controllers from (4) for Example 1 are different from those in the literature [14–22,42].
It is not difficult to verify that the parameters do not satisfy the conditions of finite-time
synchronization from the above papers. Therefore, the finite-time synchronization of the
drive system (1) and response system (2) cannot be verified with the results in [14–22,42].
It is easy to verify that (H1)–(H3) in Theorem 1 in our paper are satisfied. Hence, by
Theorem 1 in our paper, the drive system (1) and the response system (2) are finite-time
synchronized under controllers (4).The curves of variables x1(t), x2(t), u1(t) and u2(t) are
shown in Figure 1, the curves of variables y1(t), y2(t), v1(t) and v2(t) are shown in Figure 2
and the error curves of the drive–response system e1(t), e2(t), r1(t) and r2(t) are shown in
Figure 3.
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Figure 1. The curves of x1(t), x2(t), u1(t), u2(t) from Example 1.
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Figure 2. The curves of y1(t), y2(t), v1(t), v2(t) from Example 1.
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Figure 3. The curves of e1(t), e2(t), r1(t), r2(t) from Example 1.

Example 2. We consider drive system (1), response system (2) and error system (3) with controllers
(5) for i = 1, 2; j = 1, 2, where c11 = 0.3, c12 = −0.2, c21 = 0.4, c22 = −0.5; d11 = 0.6, d12 =
−0.4, d21 = −0.2, d22 = 0.3; p11 = −0.1, p12 = 0.6, p21 = 0.8, p22 = −0.2; q11 = 0.8, q12 =
0.3, q21 = 0.5, q22 = 0.9. a1 = 1, a2 = 2, b1 = 2, b2 = 1, q = 2 > 1, b = −5 < −3, w1 =
1 > 0, w2 = −10 < 0, w3 = −3 < 0, z1 = 2 > 0, z2 = −5 < 0, z3 = −3 < 0, ψ(t) =
1 + a∗ − a∗(et + tet)− et − 3M(0), t ≥ 1

e , a∗ = 10, I1 = −1, I2 = 2, J1 = 3, J2 = −2, f j(yj) =
0.5 sin(yj) + 0.5, gi(xi) = 0.25 cos(xi)− 1, τji(t) = 0.4 cos t and σij(t) = 0.6 sin t. Furthermore,
the initial conditions are defined as: x1(0) = −350.5, x2(0) = −371.63, y1(0) = 136.48, y2(0) =
130.4, u1(0) = −1450.8, u2(0) = 1060.63, v1(0) = 320.73 and v2(0) = −238.82. Hence, we
have C1 = −40.7125 < 0, C2 = −44.9500 < 0, D1 = −25.6333 < 0, D2 = −21.2667 < 0 and

2qw3 + 2qwq
1

(
q− 1
−C1

)q−1
= −11.9996 < 0, 2qw3 + 2qwq

1

(
q− 1
−C2

)q−1
= −11.9997 < 0,

2qz3 + 2qzq
1

(
q− 1
−D1

)q−1
= −11.9744 < 0, 2qz3 + 2qzq

1

(
q− 1
−D2

)q−1
= −11.9551 < 0.

The controllers from (5), are different from those in [14–22,42]. We can easily verify
that the parameters do not satisfy the conditions on finite-time synchronization from the
above literature. Hence, the finite-time synchronization of drive system (1) and response
system (2) cannot be verified with the results from [14–22,42]. We can verify that (H1), (H4)
and (H5) are satisfied. As a result, by Theorem 2, the drive system (1) and the response
system (2) are finite-time synchronized under controllers (5).

The curves of variables x1(t), x2(t), u1(t) and u2(t) are shown in Figure 4, the curves
of variables y1(t), y2(t), v1(t) and v2(t) are shown in Figure 5 and the error curves of the
drive–response system e1(t), e2(t), r1(t) and r2(t) are shown in Figure 6.
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Figure 4. The curves of x1(t), x2(t), u1(t), u2(t) from Example 2.
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Figure 5. The curves of y1(t), y2(t), v1(t), v2(t) from Example 2.
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Figure 6. The curves of e1(t), e2(t), r1(t), r2(t) from Example 2.

5. Conclusions

In this paper, we focused on the finite-time synchronization for a class of drive–
response BAM neural networks with time-varying delays. Furthermore, two novel finite-
time synchronization conditions of the above BAM neural networks were derived to assure
the finite-time synchronization between the drive system and the response system. In that
process, we applied the maximum-value approach and introduced two new inequalities,
which were different from those in the existing papers. In the future, we will study the
fixed-time synchronization of neural networks.
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