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Abstract: As an effective and efficient discriminative learning method, the broad learning system
(BLS) has received increasing attention due to its outstanding performance without large compu-
tational resources. The standard BLS is derived under the minimum mean square error (MMSE)
criterion, while MMSE is with poor performance when dealing with imbalanced data. However,
imbalanced data are widely encountered in real-world applications. To address this issue, a novel
cost-sensitive BLS algorithm (CS-BLS) is proposed. In the CS-BLS, many variations can be adopted,
and CS-BLS with weighted cross-entropy is analyzed in this paper. Weighted penalty factors are used
in CS-BLS to constrain the contribution of each sample in different classes. The samples in minor
classes are allocated higher weights to increase their contributions. Four different weight calculation
methods are adopted to the CS-BLS, and thus, four CS-BLS methods are proposed: Log-CS-BLS,
Lin-CS-BLS, Sqr-CS-BLS, and EN-CS-BLS. Experiments based on artificially imbalanced datasets of
MNIST and small NORB are firstly conducted and compared with the standard BLS. The results
show that the proposed CS-BLS methods have better generalization and robustness than the standard
BLS. Then, experiments on a real ultrasound breast image dataset are conducted, and the results
demonstrate that the proposed CS-BLS methods are effective in actual medical diagnosis.

Keywords: broad learning system; imbalanced data; cost-sensitive learning; ultrasound breast cancer
diagnosis; medical diagnosis

MSC: 68U35

1. Introduction

The broad learning system (BLS) is an efficient and effective machine learning tech-
nique, which is designed by the inspiration of the random vector functional-link neural
network (RVFLNN) [1,2]. As the pseudo-inverse algorithm is used to compute the output
weights of the standard BLS, the BLS has the characteristic of an efficient operation speed,
and thus, it is adopted in many real-world applications, such as medical data analysis [3],
fault diagnosis [4], and robotics [5]. In addition, many varieties based on BLS are developed
to adapt it to target application domains. A sparse Bayesian BLS was proposed in [6]
for probabilistic estimation. A gradient descent-based BLS was proposed in [7] for the
control of nonlinear dynamic systems, which adopted gradient descent other than the
pseudo-inverse algorithm to calculate the weight matrix in BLS iteratively.

The imbalanced classification problem that suffers from imbalanced class distributions
is encountered in many real-world domains, such as medical diagnosis [8], abnormal activ-
ity recognition [9], fault diagnosis [10], and fraud detection [11]. The difficulty with class
imbalance learning is that the common classification methods probably predict samples
in minority classes as rare occurrences, even as outliers or noise, which causes samples in
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minority classes to be misclassified. Generally, minority classes are of greater importance
and deserve more attention. Taking breast cancer diagnosis as an example [12], detecting
the minority class (i.e., the class of malignant lesions) should draw more attention, and
the accurate diagnosis of it at early stages would increase the survival rate of patients.
However, as the benign samples are far more than the malignant samples, the collected
dataset would make the learned diagnostic strategy with a large deviation.

On a broader level, researchers in different communities, such as machine learning and
medical diagnosis, devote great efforts to it to handle the imbalanced classification problem,
and various methods were proposed during the last decades [13,14]. Generally, the methods
can be grouped as data-level methods, classifier-level methods, and hybrid methods.

Data-level methods alter the distribution of the training set by artificially adding or
subtracting samples to provide a balanced distribution [15]. The key idea of these methods
is the mechanism used for sampling the original training set. The sampling mechanisms in
this area can be roughly categorized into over-sampling methods, under-sampling meth-
ods, and dynamic sampling methods [15]. Over-sampling methods randomly duplicate
the samples of the minority classes to increase their contributions, such as random over-
sampling [16], synthetic minority over-sampling technique (SMOTE) [17], and ranked
minority over-sampling in boosting (RAMOBoost) [18]. Particularly, many variants of
SMOTE were developed based on different sample weight calculation methods, such as
the adaptive synthetic sampling approach (ADASYN) [19], borderline-SMOTE [20], and
majority weighted SMOTE (MWMOTE) [21]. ADASYN adopted a density distribution as
its criterion to generate samples for different minority classes. Borderline-SMOTE only
paid attention to minority cases around the class boundary. MWMOTE first discovered the
difficult-to-learn minority class examples and then assigned them substantial weights based
on their Euclidean distance from the adjacent majority class samples. Under-sampling meth-
ods randomly select a percentage of data from the majority classes, including clustering-
based under-sampling [22], decontamination-based under-sampling [23], etc. The dynamic
sampling methods over-sample the minority classes and under-sample the majority classes,
which is a combination of the above two sampling methods, such as dynamic sampling
networks (DSN) [24] and context-guided dynamic sampling (CGDS) [25].

Classifier-level methods modify the used classifier directly or design a new classifier
to deal with imbalanced classification problems. One kind of method in this area is called
cost-sensitive methods, which design different misclassification costs for different samples,
such as weighted extreme learning machine (WELM) [26], the cost-sensitive decision tree
ensemble method [27], cost-sensitive cross-entropy for multilayer perceptron neural net-
works (CSEFMLP) [28], and cost-sensitive deep neural networks (CSDNN) [29]. WELM [26]
penalizes misclassified minority class samples more severely with a larger penalty than
misclassified majority class samples. The cost-sensitive decision tree ensemble method pro-
posed in [27] combines cost-sensitive decision trees with random subspace-based feature
space partitioning to boost the recognition rate of the minority class. CSEFMLP [28] adopts
the prior probabilities ratio of the target classes to compensate the class imbalance and thus
incorporate the prior probability ratio into the cross-entropy (CE) loss. CSDNN [29] adopts
a cost-sensitive stacked denoising autoencoder to conduct real-life applications. Another
kind of classifier-level method increases the importance of the minority class by changing
the objective function of the classifier. Wang et al. [30] developed two new loss functions,
mean false error (MFE) and mean squared false error (MSFE), that are more sensitive to the
errors from the minority class. The MSFE loss improves on the MFE loss, and it can better
capture errors from the positive class. Lin et al. [31] proposed the focal loss (FL) to battle
severe imbalances by reshaping the CE loss to decrease the influence of easily classified
data on the loss.

Hybrid methods combine multiple techniques from classifier-level methods and data-
level methods. One of the most well-known methods in this group is called ensemble
learning. Liu et al. [32] proposed EasyEnsemble and BalanceCascade to train a series of
classifiers on under-sampled subsets. SMOTEBoost, on the other hand, combines boosting
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with SMOTE over-sampling [33]. A two-phase learning approach was proposed for brain
tumor segmentation, and the results showed its success [34]. The novel research field
successfully combines machine learning and swarm intelligence approaches and proved to
be able to obtain outstanding results in different areas [35,36].

The structure of BLS is shown in Figure 1. The standard BLS first processes input data
(X) with randomly initialized weights (W f i and β f i) and a series of activation functions
(φi) as its feature nodes, and then, feature nodes are mapped to enhancement nodes with
random weights (W ej and βej) and a series of nonlinear activation functions (ξ j). After that,
the pseudoinverse of all nodes with actual ouputs Y by the ridge regression approximation
is conducted to calculate the weight matrix W , which can refer to [1]. When BLS is used to
deal with imbalanced classification problems, the standard BLS is with poor performance
when dealing with imbalanced data. The reason is that the weight matrix W is calculated
based on the ridge regression approximation, while the ridge regression approximation
is derived under the minimum mean square error (MMSE) criterion. Taking a common
dataset, MNIST [37], as an example, the balanced accuracy of BLS decreases steeply as the
imbalance ratio of MNIST increases, as shown in Figure 2.

Feature 
Nodes 

Feature 
Nodes 

Feature 
Nodes …

Enhancement 
Nodes jjjj  

Enhancement 
Nodes jjjj  

Enhancement 
Nodes jjjj  …

Y
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Figure 1. Standard BLS structure. The input data (X) are firstly processed with randomly initialized
weights (W f i and β f i) and a series of activation functions (φi) to produce feature nodes. Then, feature
nodes are mapped to enhancement nodes with another set of random weights (W ej and βej) and a
series of nonlinear activation functions (ξ j).
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Figure 2. Balanced accuracy of BLS decreases as imbalance ratio increases.

To our best knowledge, only several related methods on BLS were developed to
handle this problem. A cost-sensitive rich feature combination BLS (cost-sensitive R-BLS)
was proposed in [38] for imbalanced classification. Another cost-sensitive method on
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BLS includes weighted BLS (W-BLS) [39], evolutionary-based W-BLS (EW-BLS) [40], and
weighted generalized cross-validation-based regularized BLS (WGCV-BLS) [41]. A hybrid
approach based on BLS, incremental weighted ensemble BLS (IWEBLS) [42], was developed
for imbalanced classification. The above cost-sensitive methods are based on the weighted
mean square error loss function. The maximum correntropy criterion was adopted in [43] as
the loss function of BLS to handle imbalanced data, and the corresponding results showed
its success on different application domains. However, there is no common framework
that can effectively integrate different cost-sensitive loss functions easily to improve the
performance of BLS in handling imbalanced data.

Class imbalance is an urgent problem that needs to be handled in object detection,
and weighted cross-entropy (WCE) is one of the most effective techniques in this area [44].
Inspired by this and the above analysis [7,28,43], WCE is adopted to analyze the imbalance
classification problems of the CS-BLS framework. In this paper, an improved BLS for imbal-
anced classification problems is proposed for handling imbalanced classification problems.
This BLS algorithm adopts cost-sensitive loss functions, such as WCE, rather than the stan-
dard MMSE. In addition, four CS-BLS methods are proposed, which adopted four different
methods for calculating the weighted penalty factors to constrain the contribution of each
sample in different classes. Several commonly used datasets are adopted to evaluate the
effectiveness of the proposed methods in different imbalanced ratios and broad structures
and their performance on medical applications. The main contributions of this work can be
summarized into three aspects:

• A cost-sensitive BLS framework, CS-BLS, is proposed to improve the performance of
standard BLS on imbalanced classification problems;

• Four CS-BLS approaches are proposed, and each approach adopts a different penalty
factor calculation method based on inverse class frequency or effective numbers;

• A systemic experimental study on the CS-BLS is conducted, in which two commonly
used datasets with different imbalanced ratios and a clinical ultrasound image diagno-
sis dataset are utilized.

The remainder of this paper is organized as follows. Section 2 elaborates the proposed
CS-BLS and its varieties based on different calculation methods of the weighted penalty
factors. In Section 3, a list of experiments is first presented based on two commonly used
datasets to demonstrate the effectiveness and robustness of the CS-BLS. Then, a clinical
ultrasound image diagnosis dataset is adopted to evaluate the performance of CS-BLS on
medical diagnosis. At last, a conclusion is given in Section 5.

2. Proposed Method
2.1. Cost-Sensitive Broad Learning System (CS-BLS)

Unlike the standard BLS [1], the proposed CS-BLS adopts a cost-sensitive loss function
as its loss function to improve the ability of BLS when handling imbalanced classification
problems. In the imbalanced training dataset {X, Y} (X ∈ RN×D, Y ∈ RN×l), the letters N,
D, and l represent the number of samples in the input dataset, the dimension of input data
and the dimension of outputs, respectively. The details are listed as follows.

Firstly, similar to BLS [1], all training data X are projected to the ith set of feature
nodes F i using a linear activation function.

F i = φi

(
XW f i + β f i

)
, (1)

where W f i and β f i are randomly generated weights with proper dimensions. Each map
has k feature nodes, and k is a hyper parameter. φi(·) indicates the ith linear activation
function. After that, feature nodes in each map are concatenated as Fn,

Fn ≡ [F1, . . . , Fn], (2)
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where n is the number of feature node maps. Fn ∈ R(N×nk) and N is the number of samples
in X.

Then, Fn is subjected to a nonlinear activation function ξ j to produce the jth set of
enhancement node map Ej,

Ej = ξ j

(
FnW ej + βej

)
, (3)

where W ej and βej are randomly generated weights with proper dimensions, and ξ j(·)
is a nonlinear activation function. Each map has q enhancement nodes, and q is a hyper
parameter. Then, enhancement nodes in all maps are concatenated as Em,

Em ≡ [E1, . . . , Em], (4)

where m is the number of enhancement node maps and Em ∈ R(N×mq).
Then, the enhancement nodes Em and feature nodes Fn are concatenated as Sn

m,

Sn
m = [Fn | Em], (5)

where Sn
m ∈ RN×(nk+mq).

Afterwards, the outputs of the broad learning system under enhancement nodes Em

and feature nodes Fn are Z,

Z = Sn
mWn

m, (6)

where Wn
m is the required weights in the BL structure.

Taking WCE loss function as an example, a softmax layer is utilized after the outputs Z
when calculating WCE loss. Supposing zr ∈ Z(r = 1, 2, . . . , N) and zr =

[
z1

r , z2
r , . . . , zC

r
]>,

the corresponding true label is yr (yr ∈ Y) and yr is a one-hot C-element vector indi-

cating the ground-truth label and yr =
[
y1

r , y2
r , . . . , yC

r
]>, in which we suppose yc

r = 1
(c = 1, 2, . . . , C). The softmax function regards each class as mutually exclusive and
calculates the probability distribution over all classes as pi = exp(zi)/ ∑C

j=1 exp
(
zj
)
,

∀i ∈ {1, 2, . . . , C}. Therefore, supposing the weight of class c is ωc, the loss function
of the proposed CS-BLS can be written as,

L = − 1
N

N

∑
r=1

C

∑
c=1

ωcyc
r log

 exp(zc
r)

∑C
j=1 exp

(
zj

r

)
, (7)

where yc
r is an indicator variable, which indicates when it is true, yc

r = 1, else yc
r = 0. ωc is a

weight in the weight vector ω = [ω1, ω2, . . . , ωC]
T , in which the value can be user-chosen

class by class and fixed or automatically adjusted during the training process of the CS-
BLS. In the CS-BLS framework, the gradient decent method is adopted to obtain trained
Wn

m, other than the ridge regression method in standard BLS. The methods of calculating
weighted penalty factors can be referred to in Section 2.2.

Suppose the above update processes cannot achieve the desired performance. In that
case, a feature map may be added to the original broad structure. The added features nodes
Fn+1 and the related enhancement nodes Eexm are produced randomly as follows,

Fn+1 = φn+1

(
XW en+1 + βen+1

)
, (8)

Eexm =
[
ξ1

(
Fn+1W ex1 + βex1

)
, . . . , ξm

(
Fn+1W exm + βexm

)]
, (9)
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where W en+1 , W exj , βen+1
, and βexj

(j = 1, 2, . . . , m) are randomly generated, and φn+1(·) is

the (n + 1)th linear activation function. By defining Sn+1
m ≡

[
Sn

m | Fn+1 | Eexm

]
,
(

Sn+1
m

)+
is upgraded as follows [1],

(
Sn+1

m

)+
=

[
(Sn

m)
+ − CBT

BT

]
, (10)

where C = (Sn
m)

+[Fn+1 | Eexm

]
, BT =

 (D)+ if D 6= 0(
1 + CTC

)−1
CT(Sn

m)
+ if D = 0

and D =

[Fn+1 | Eexm ]− Sn
mC.

An enhancement map may also be added to the original broad structure for the same
purpose. The added enhancement nodes are produced randomly as follows,

Em+1 = ξm+1

(
FnWhm+1 + βhm+1

)
, (11)

where Whm+1 , βhm+1
are randomly produced, and ξm+1(·) is the (m + 1)th nonlinear ac-

tivation function. Concatenating the previous nodes Sn
m with Em+1, Sn

m+1 is obtained by
horizontal concatenation, which is shown as follows,

Sn
m+1 ≡

[
Sn

m | Em+1
]
. (12)

Hence, according to the Moore–Penrose inverse theory for a partitioned matrix [1],(
Sn

m+1
)+ is derived as follows,

(
Sn

m+1
)+

=

[
(Sn

m)
+ − C′B′T

B′T

]
, (13)

where C′ = (Sn
m)

+Em+1, B′T =

 (D′)+ if D′ 6= 0(
1 + C′TC′

)−1
C′T(Sn

m)
+ if D′ = 0

and D′ =(
Em+1 − Sn

mC′
)
.

2.2. Methods for Calculating Weighted Penalty Factors

This section introduces four methods for calculating weighted penalty factors based
on inverse class frequency and effective numbers.

2.2.1. Calculation Methods Based on Inverse Class Frequency

Class frequency allows the classifier to use information from different classes. It
is regarded as an inter-class factor. To reflect the important level of each class, inverse
class frequency is a good solution to it. There are three common methods of inverse class
frequency, which are logarithmic inverse class frequency, linear inverse class frequency, and
square root inverse class frequency [45]. In this paper, the above three kinds of methods of
inverse class frequency are adopted to calculate the weighted penalty vector ω, which are
defined as follows,

ωLog =

[
ln

N
N1

, ln
N
N2

, . . . , ln
N
NC

]T
, (14)

ωLin =

[
N
N1

,
N
N2

, . . . ,
N
NC

]T
, (15)

ωSqr =

[√
N
N1

,

√
N
N2

, . . . ,

√
N
NC

]T

, (16)
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where ωLog, ωLin, and ωSqr are the logarithmic weighted penalty vector, linear weighted
penalty vector, and square root weighted penalty vector, respectively. N is the total number
of samples in the imbalanced training set. Nc is the number of classes c (c = 1, 2, . . . , C)
in the imbalanced training set. Thus, the CS-BLS based on ωLog, ωLin, and ωSqr are called
Log-CS-BLS, Lin-CS-BLS, and Sqr-CS-BLS, respectively.

2.2.2. Calculation Methods Based on Effective Numbers

An effective weighted penalty factor calculation method was proposed in [46], which
re-balanced the classification loss using the effective number of samples for each class. The
volume of samples defines the effective number of class c, which can be computed as,

εc =
1− βNc

1− β
, (17)

where εc is the effective number of class c, and β ∈ [0, 1) is a hyper-parameter. Thus, the
effective number based weighted penalty vector ωEN is obtained as follows,

ωEN =

[
1
ε1

,
1
ε2

, . . . ,
1

εC

]T
. (18)

Thus, the CS-BLS based on calculation methods of ωEN is called EN-CS-BLS.

3. Experiments and Results

Experiments are conducted to evaluate the effectiveness of the proposed CS-BLS
methods based on three widely used datasets. To verify the robustness and generalization
of four CS-BLS methods on different imbalance ratios, the MNIST dataset and small
NORB dataset are artificially reconstructed to different imbalance ratios. Since the broad
structure is significant to the performance of the BLS, a series of experiments are conducted
on different broad structures to verify the performance of the CS-BLS methods and the
standard BLS. A clinical breast ultrasound dataset is adopted to evaluate the performance
of CS-BLS methods on medical applications. We performed all experiments on Legion
R7000 2020, equipped with GPU NVIDIA 1660Ti, CPU AMD Ryzen 5 4600H @3.0 GHz,
and 32G RAM. The PyTorch framework was adopted to build models, and all methods
were implemented in Python.

3.1. Evaluation Metrics

The metrics used in imbalanced classification problems are quite different from those
used in standard classification problems. In this paper, six widely used evaluation metrics
in imbalanced classification problems are utilized, which are Balanced Accuracy (B_ACC),
Recall, Precision, Area Under the Receiver Operating Characteristics Curve (AUC), F1-score,
and Matthews correlation coefficient (MCC). It calculates the average percentage of positive
and negative class instances that are correctly classified. Recall, also known as True Positive
Rate or Sensitivity, is the percentage of the positive group that the classifier properly
classifies as positive. Precision is the proportion of positively classified samples that are
actually positive. AUC is a summary metric form of the Receiver Characteristics Curve
(ROC), and it can be used to compare the performance between models. F1-score attempts to
measure the trade-off between Precision and Recall by generating a single value that reflects
the effectiveness of a classifier in the presence of rare classes. The MCC is a coefficient of
correlation between observed and predicted classes. It ranges from −1 to +1. When the
MCC = −1, it indicates that there is no consistency between the observed and predicted
categories. A number of 0 indicates that the classifier is no better than a random prediction,
while a value of +1 indicates that the classifier is ideal. The Precision, Recall, B_ACC,
F1-score, and MCC are defined as follows,
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Precision =
TP

TP + FP
, (19)

Recall =
TP

TP + FN
, (20)

B_ACC =
TP

2( TP + FN)
+

TN
2(TN + FP)

, (21)

F1 =
2× Precision · Recall

Precision + Recall
, (22)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (23)

where TP, FN, TN, and FP represent the number of true positive, false negative, true
negative, and false positive results, respectively.

Usually, the metric of class imbalance, called the imbalance ratio (IR), is defined as
Equation (24), which is a ratio between the number of samples in the majority class and the
number of samples in the minority class to indicate the maximum inter-class imbalance
level [14].

IR =
max

i
{Ni}

min
i
{Ni}

, (24)

where Ni is a set of examples in class i (i = 2, 3, . . . , C) and max
i
{Ni} and min

i
{Ni} return

the maximum and minimum class size over all C classes, respectively. The higher the IR
value, the larger degree of class imbalance is. Considering that it is a ratio between the
maximum and minimum numbers of examples among all classes, the numbers of samples
in the remaining classes are interpolated linearly when we artificially reconstruct a dataset,
such that the difference between consecutive pairs of classes is constant. An example of
linear imbalance distribution with IR = 10 is shown in Figure 3.
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Figure 3. An example of linear imbalance distribution with IR = 10. The number of class samples in
class 10 (i.e., 5000) is ten times the number of class samples in class 1 (i.e., 500).

3.2. Experiments on Imbalanced MNIST

To verify the generalization and robustness of the proposed CS-BLS, MNIST is adopted
in this section. MNIST is a simple dataset and can be used to solve problems that involve
digit image classification. The dataset is composed of grayscale images of size 28× 28, and
it has ten classes corresponding to digits 0 to 9. In the original training dataset, the number
of samples per class varies from 5421 in class 5 to 6742 in class 1 [37]. Some example figures
of MNIST are shown in Figure 4.

The original training dataset is randomly divided into the training set and validation
set. The validation set occupies 10% of the dataset. In an artificially imbalanced version, we
uniformly and randomly under-sample each class to contain no more than 5000 examples.
The hyperparameters in the experiments are set as follows, which are shown in Table 1.
Experiments on the MNIST dataset are conducted on the following imbalance ratios. For
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linear imbalance, we test values of IR ∈ {5, 10, 25, 50, 100, 250, 500, 1500}. The test set of
the reconstructed imbalanced dataset has an equal number of instances from each class.
We do not alter the test set to match the artificially imbalanced training set. The reason for
this is that the score obtained by each classifier on the same test set is straightforward to
compare and thus offers accurate performance evaluation.

Figure 4. Example figures in the MNIST dataset. The dataset consists of grayscale images of size
28× 28, and there are ten classes corresponding to digits from 0 to 9.

Table 1. Hyperparameter settings of CS-BLS and BLS.

Hyperparameter Value

Imbalance ratio (IR) 5, 10, 25, 50, 100, 250, 500, 1500
Weight decay 0.0005
Learning rate 0.001

Maximum epoch 100
Broad structure (20, 5, 100), (50, 5, 100), (50, 15, 100), (50, 30, 100), (50, 15, 200)

Nonlinear activation function tanh

In the model training process of the CS-BLS methods, we set the weight decay as
0.0005 and the learning rate as 0.001. The classifiers of the CS-BLS methods are iteratively
trained with a maximum of 100 epochs, and an early stopping mechanism is used in each
classifier. When training CS-BLS methods and the standard BLS method, the number of
feature nodes in each set (k), the number of sets of feature nodes (n), and the number of
enhancement nodes (p) are set to different numbers, and they are grouped together as (k, n,
p) to represent broad structures. The nonlinear activation function ξ j(·) is a tanh function.

In order to validate the imbalance classification performance of CS-BLS methods on
the MNIST dataset with different imbalance ratios, a list of experiments is conducted on
the same BLS structure, i.e., (50, 15, 500), and the results are shown in Figure 5. To compare
with standard BLS, the results of the standard BLS with the same condition as CS-BLS
methods are also shown in Figure 5. From Figure 5, the following findings can be observed.

(1) Comparison of the standard BLS under different imbalance ratios demonstrates that
the performance of the standard BLS gradually decreases as IR increases. Taking
B_ACC as an example, it drops from 84.66% (IR = 5) to 74.06% (IR = 100). The other
evaluation metrics of standard BLS, as shown in Figure 5, have the same trend as the
increase of IR.

(2) The proposed CS-BLS methods have better performance than the standard BLS
on different values of IR. Taking B_ACC and MCC as examples, on average, the
B_ACC of the proposed four CS-BLS methods is higher than the standard BLS by
12.30% (5.68–15.74%), and the MCC of the CS-BLS methods and the BLS are 0.8774
(0.8285–0.8974) and 0.7453 (0.7163–0.8312), respectively. The other evaluation metrics
of the CS-BLS methods and the BLS show the same pattern as B_ACC and MCC. The
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results demonstrate the superiority of the CS-BLS methods over the standard BLS in
handling imbalanced data.

(3) It can be found that the performance of different CS-BLS methods is relatively close,
and no unique CS-BLS method can achieve the best performance for all the metrics
and imbalance ratios.

(a) B_ACC (b) MCC (c) F_1  

(d) Recall (e) Precision (f) AUC

Figure 5. Performance comparison among CS-BLS methods and BLS on the MNIST dataset with
different IRs. Six evaluation metirics are compared separately among the five methods.

Furthermore, to verify the performance of the CS-BLS on different broad structures,
represented as (k, n, q), several experiments are further conducted for the proposed CS-BLS
methods and the standard BLS under different broad structures and the same imbalance
ratio (IR = 50). The results are shown in Table 2. From Table 2, the following findings can
be observed.

(1) In general, the performance of the CS-BLS has improved as the number of feature
nodes and enhancement nodes increases to a finite number. Taking B_ACC as an
example again, the average B_ACC of the CS-BLS methods increases from 85.56%
(84.29–86.69%) on the broad structure (20, 5, 100) to 90.02% (88.38–90.82%) on the
broad structure (50, 15, 500). However, the performance of BLS is quite stable at a
relatively low value (74.36% on average).

(2) The proposed CS-BLS has better performance than the standard BLS on each compared
broad structure. Taking B_ACC and MCC as examples, on average, the B_ACC of the
proposed CS-BLS methods is higher than the standard BLS by 14.31% (11.32–15.74%),
and the MCC values of the CS-BLS methods and BLS are 0.8760 (0.8416–0.8904)
and 0.7234 (0.7222–0.7239), respectively. The other evaluation metrics of the CS-BLS
methods and the BLS show the same pattern as B_ACC and MCC.

(3) With different broad structures, the performance of the four CS-BLS methods is quite
close with a slight variance.

The proposed CS-BLS provides a common framework adopting a cost-sensitive loss
function with different calculating methods for penalty weights. Regardless of the methods,
all the CS-BLS methods have a better generalization and robustness than the standard BLS.
Thus, the proposed framework, i.e., CS-BLS, is effective in imbalanced MNIST.
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Table 2. Comparison of proposed CS-BLS methods and standard BLS on imbalanced MNIST with
IR = 50 on different broad structures.

Structure Method B_ACC MCC F1-
Score Recall Precision AUC

(20, 5, 100)

BLS 74.24% 0.7222 0.7110 74.25% 70.32% 0.9766
Log-CS-BLS 84.29% 0.8276 0.8445 84.29% 85.31% 0.9869
Lin-CS-BLS 86.47% 0.8517 0.8667 86.47% 86.59% 0.9877
Sqr-CS-BLS 84.78% 0.8331 0.8504 84.78% 85.54% 0.9865
EN-CS-BLS 86.69% 0.8541 0.8690 86.69% 87.00% 0.9880

(50, 5, 100)

BLS 74.55% 0.7251 0.7134 74.54% 70.10% 0.9765
Log-CS-BLS 88.60% 0.8743 0.8871 88.60% 88.79% 0.9907
Lin-CS-BLS 88.14% 0.8697 0.8820 88.14% 88.33% 0.9901
Sqr-CS-BLS 88.40% 0.8722 0.8850 88.40% 88.69% 0.9905
EN-CS-BLS 88.99% 0.8794 0.8905 88.99% 89.15% 0.9909

(50, 15, 100)

BLS 74.32% 0.7230 0.7118 74.32% 70.23% 0.9760
Log-CS-BLS 89.57% 0.8852 0.8969 89.57% 89.72% 0.9915
Lin-CS-BLS 88.72% 0.8774 0.8891 88.72% 89.17% 0.9909
Sqr-CS-BLS 89.83% 0.8884 0.8994 89.83% 89.90% 0.9916
EN-CS-BLS 89.97% 0.8913 0.9011 89.97% 90.23% 0.9917

(50, 30, 100)

BLS 74.41% 0.7239 0.7126 74.41% 70.17% 0.9757
Log-CS-BLS 89.74% 0.8885 0.8984 89.74% 90.11% 0.9926
Lin-CS-BLS 88.38% 0.8733 0.8856 88.38% 89.01% 0.9912
Sqr-CS-BLS 89.23% 0.8821 0.8937 89.23% 89.49% 0.9914
EN-CS-BLS 87.72% 0.8671 0.8795 87.72% 88.57% 0.9903

(50, 15, 200)

BLS 74.31% 0.7230 0.7119 74.31% 70.27% 0.9760
Log-CS-BLS 89.72% 0.8868 0.8981 89.72% 89.78% 0.9919
Lin-CS-BLS 89.10% 0.8806 0.8914 89.10% 89.31% 0.9913
Sqr-CS-BLS 89.28% 0.8820 0.8942 89.28% 89.47% 0.9917
EN-CS-BLS 88.83% 0.8785 0.8893 88.83% 89.21% 0.9915

Remark: Bold means the best result.

3.3. Experiments on Imbalanced Small NORB

The small NORB dataset is commonly used in 3D object image recognition, and some
example figures are shown in Figure 6. It includes images of 50 toys from five general
categories: four-legged animals, human figures, airplanes, trucks, and cars. Two cameras
captured images of the objects under six different illumination conditions, nine different
altitudes (30 to 70 degrees with an interval of 5 degrees), and 18 different azimuths (0 to 340
with an interval of 20 degrees). As the small NORB dataset is a more complex dataset than
MNIST, it is adopted to further evaluate the performance of the proposed CS-BLS methods
and the standard BLS.

The whole dataset contains ten instances of each category. The training set contains
five instances of each category, and the original test set contains the remaining five instances.
The original test set is randomly divided into a validation set and test set. The validation set
occupies 10% of the original dataset. In artificially imbalanced versions, we uniformly and
randomly under-sample each class to contain no more than 4500 examples. Experiments on
the small NORB dataset are performed on the following imbalance parameters. For linear
imbalance, we test the values of IR ∈ {5, 10, 25, 50, 100, 250, 500, 1500}. The test set has an
equal number of examples in each class.

In the model training process of the CS-BLS methods, all parameters are set the same
as the parameters in the previous MNIST experiments, as shown in Table 1. We also use
a parameter group (k, n, p), the same as the previous MNIST experiments, to represent
broad structures.
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1

Figure 6. Example figures in the small NORB dataset, and they are four-legged animals, human
figures, airplanes, trucks, and cars, respectively.

In order to evaluate the imbalance classification performance of the CS-BLS methods
and standard BLS on the small NORB dataset with different imbalance ratios, a list of
experiments are conducted on the same broad structure, i.e., (50, 15, 500), and the results
are shown in Figure 7. From Figure 7, the following findings can be observed.

(a) B_ACC (b) MCC (c) F_1  

(d) Recall (e) Precision (f) AUC

Figure 7. Performance comparison among CS-BLS methods and BLS on the small NORB dataset with
different IRs. Six evaluation metirics are compared separately among the five methods.
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(1) The results demonstrate that the performance of the standard BLS gradually decreases
as IR increases. Taking B_ACC as an example, it drops from 74.91% (IR = 5) to 62.78%
(IR = 100). The other evaluation metrics of standard BLS, as shown in Figure 7, have
the same trend as the increase of IR.

(2) The proposed CS-BLS methods have better performance than the standard BLS
on different values of IR. Taking B_ACC and MCC as examples, on average, the
B_ACC of the proposed CS-BLS methods is higher than the standard BLS by 12.62%
(5.24–17.07%), and the MCC of the CS-BLS and BLS are 0.7350 (0.6222–0.8195) and
0.5869 (0.5552–0.6906), respectively. The other evaluation metrics of the CS-BLS and
the BLS show the same pattern as B_ACC and MCC.

(3) The performance of the four different CS-BLS methods is relatively close, and no
unique CS-BLS method can achieve the best performance for all the mentioned imbal-
ance ratios.

Furthermore, to evaluate the performance of the CS-BLS on different broad structures,
several experiments are further conducted for the proposed CS-BLS methods and the
standard BLS method under different broad structures and the same imbalance ratio
(IR = 50). In addition, the corresponding experiments of the standard BLS with the same
broad structure and initial parameters are conducted for comparison. The results are shown
in Table 3. From Table 3, the following findings can be observed.

Table 3. Comparison of proposed CS-BLS methods and standard BLS on imbalanced small NORB
with IR = 50 on different broad structures.

Structure Method B_ACC MCC F1-
Score Recall Precision AUC

(20, 5, 100)

BLS 56.33% 0.4750 0.5051 56.33% 47.93% 0.8597
Log-CS-BLS 59.67% 0.5204 0.5560 58.85% 73.43% 0.9175
Lin-CS-BLS 66.75% 0.5946 0.6658 66.59% 72.09% 0.9252
Sqr-CS-BLS 59.47% 0.5156 0.5669 58.71% 71.12% 0.9175
EN-CS-BLS 67.12% 0.5991 0.6701 66.91% 72.86% 0.9255

(50, 5, 100)

BLS 63.07% 0.5604 0.5653 63.07% 52.40% 0.9125
Log-CS-BLS 76.87% 0.7165 0.7631 77.18% 78.37% 0.9530
Lin-CS-BLS 77.16% 0.7146 0.7716 77.08% 77.43% 0.9525
Sqr-CS-BLS 78.40% 0.7340 0.7822 78.68% 79.66% 0.9528
EN-CS-BLS 76.34% 0.7063 0.7647 76.19% 77.93% 0.9508

(50, 15, 100)

BLS 62.80% 0.5563 0.5602 62.80% 51.53% 0.9161
Log-CS-BLS 80.41% 0.7573 0.7996 80.32% 80.62% 0.9581
Lin-CS-BLS 75.35% 0.6960 0.7496 75.15% 76.51% 0.9464
Sqr-CS-BLS 78.81% 0.7418 0.7843 78.81% 80.81% 0.9562
EN-CS-BLS 77.04% 0.7171 0.7695 77.11% 78.67% 0.9537

(50, 30, 100)

BLS 63.51% 0.5658 0.5664 63.51% 52.10% 0.9165
Log-CS-BLS 85.31% 0.8176 0.8515 85.18% 85.66% 0.9710
Lin-CS-BLS 74.53% 0.6900 0.7414 74.05% 77.74% 0.9561
Sqr-CS-BLS 80.49% 0.7598 0.7957 80.05% 81.08% 0.9691
EN-CS-BLS 76.01% 0.7037 0.7581 75.66% 77.48% 0.9519

(50, 15, 200)

BLS 62.77% 0.5560 0.5599 62.77% 51.50% 0.9165
Log-CS-BLS 79.88% 0.7502 0.7964 79.70% 80.28% 0.9594
Lin-CS-BLS 77.45% 0.7249 0.7644 77.40% 78.51% 0.9583
Sqr-CS-BLS 82.18% 0.7803 0.8217 82.12% 83.35% 0.9649
EN-CS-BLS 79.47% 0.7453 0.7910 79.32% 79.76% 0.9591

Remark: Bold means the best result.

(1) In general, the performance of the CS-BLS has improved as the number of feature
nodes and enhancement nodes increases to a finite number. Taking B_ACC as an
example again, the average B_ACC of the CS-BLS increases from 63.25% (59.67–67.12%)
on broad structure (20, 5, 100) to 79.74% (77.45–82.18%) on broad structure (50, 15,
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200). However, the performance of BLS is quite stable at a relatively low value (61.88%
on average).

(2) The proposed CS-BLS methods have better performance than the standard BLS on
each compared broad structure. Taking B_ACC and MCC as examples, the aver-
age B_ACC of the proposed CS-BLS methods is higher than the standard BLS by
14.12% (6.92–16.97%), and the MCC of the CS-BLS (on average) and BLS are 0.7060
(0.5574–0.7502) and 0.5449 (0.4750–0.5658), respectively. The other evaluation metrics
of the CS-BLS and the BLS show the same pattern as B_ACC and MCC.

(3) With different broad structures, the performance of the four CS-BLS methods is quite
close with a slight variance.

The above results on the small NORB dataset show the same pattern as the experi-
ments on MNIST. As the problem of 3D object recognition on the small NORB dataset is
significantly more difficult than the problem of digit image classification on MNIST, the
overall performance of the proposed CS-BLS methods and the standard BLS on the small
NROB dataset is worse than that on the MNIST dataset. However, we can still draw a
conclusion that the proposed CS-BLS framework can improve the performance of BLS
on imbalanced classification, and it also demonstrates that the proposed framework, i.e.,
CS-BLS, is effective.

3.4. Experiments on Breast Ultrasound Cancer Diagnosis

Breast cancer is a serious disease that has become the first most frequent type cancer
and the fourth leading cause of cancer-related deaths worldwide, resulting in over 2 million
new cases and over 684,000 deaths per year [47]. Breast cancer is a potentially curable
disease if it is diagnosed and treated early. The five-year survival rate ranged from 100%
(stage I) to 26.5% (stage IV) for female breast cancer [48]. Breast cancer screening is an
essential secondary prevention technique for achieving early detection, early diagnosis,
and early treatment, due to a lack of effective etiological prevention. Breast ultrasonogra-
phy produces an image of the interior of the breast using sound waves, and it has been
regraded as an effective diagnostic tool because it may detect breast abnormalities, such as
fluid-filled cysts.

In this section, an open breast ultrasound dataset [12] is adopted to evaluate the pro-
posed CS-BLS on different evaluation metrics. The dataset contains 250 breast ultrasound
images, 150 for benign samples and 100 for malignant samples. Example figures in this
dataset are shown in Figure 8. The dataset is divided randomly into three parts, 70% for
training, 10% for validation, and 20% for testing. To reduce the complexity of the breast
ultrasound data, all images are directly resized to 28 × 28. All the hyperparameters on the
CS-BLS models are the same as previous settings, as shown in Table 1.

(a) Benign samples

(b) Malignant samples

Figure 8. Example figures in the US breast diagnosis dataset. The dataset contains 250 breast
ultrasound images, 150 for benign samples and 100 for malignant samples.
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To evaluate the performance of the CS-BLS methods on different broad structures,
experiments are conducted under different broad structures. The results are shown in
Table 4. From Table 4, the following findings can be observed.

(1) In general, the performance of the CS-BLS is improved as the number of hidden nodes
increases to a finite number. Taking B_ACC as an example again, the average B_ACC
of the CS-BLS increases from 85.00% (82.00–86.00%) on broad structure (20, 5, 100) to
96.50% (96.00–98.00%) on broad structure (50, 30, 100). The other evaluation metrics
show the same pattern with B_ACC.

(2) With different broad structures, the performance of the four CS-BLS methods is quite
close with little variance.

Table 4. Comparison among the proposed CS-BLS methods on breast ultrasound diagnosis dataset
on different broad structures.

Structure Method B_ACC MCC F1-Score Recall Precision

(20, 5, 100)

BLS 78.00% 0.5618 0.7726 79.17% 77.05%
Log-CS-BLS 86.00% 0.7290 0.8553 87.85% 85.10%
Lin-CS-BLS 86.00% 0.7290 0.8553 87.85% 85.10%
Sqr-CS-BLS 86.00% 0.7005 0.8498 85.42% 84.63%
EN-CS-BLS 82.00% 0.6281 0.8108 82.29% 80.54%

(50, 5, 100)

BLS 82.00% 0.6003 0.7896 77.43% 82.85%
Log-CS-BLS 88.00% 0.7622 0.8750 89.41% 86.85%
Lin-CS-BLS 86.00% 0.7290 0.8553 87.85% 85.10%
Sqr-CS-BLS 92.00% 0.8335 0.9151 92.53% 90.83%
EN-CS-BLS 92.00% 0.8335 0.9151 92.53% 90.83%

(50, 15, 100)

BLS 86.00% 0.7005 0.8498 85.42% 84.63%
Log-CS-BLS 92.00% 0.8335 0.9151 92.53% 90.83%
Lin-CS-BLS 92.00% 0.8335 0.9151 92.53% 90.83%
Sqr-CS-BLS 96.00% 0.9132 0.9566 95.66% 95.66%
EN-CS-BLS 92.00% 0.8335 0.9151 92.53% 90.83%

(50, 30, 100)

BLS 84.00% 0.6528 0.8264 82.64% 82.64%
Log-CS-BLS 96.00% 0.9186 0.9576 96.88% 95.00%
Lin-CS-BLS 98.00% 0.9580 0.9785 98.44% 97.37%
Sqr-CS-BLS 96.00% 0.9132 0.9566 95.66% 95.66%
EN-CS-BLS 96.00% 0.9132 0.9566 95.66% 95.66%

(50, 15, 200)

BLS 88.00% 0.7396 0.8698 86.98% 86.98%
Log-CS-BLS 92.00% 0.8335 0.9151 92.53% 90.83%
Lin-CS-BLS 94.00% 0.8722 0.9356 94.10% 93.12%
Sqr-CS-BLS 94.00% 0.8722 0.9356 94.10% 93.12%
EN-CS-BLS 96.00% 0.9132 0.9566 95.66% 95.66%

Remark: Bold means the best result.

To evaluate the proposed CS-BLS methods on diagnosis results, four ROC figures of
CS-BLS methods are demonstrated on different broad structures, as shown in Figure 9. The
specificity in Figure 9 is a measure of how well a test can identify TNs. The results show
the good performance of the proposed CS-BLS methods, especially when larger feature
nodes and enhancement nodes are set. The results also indicate that the CS-BLS methods
enable an accurate and reliable breast ultrasound cancer diagnosis.
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(a) Log-CS-BLS (b) Lin-CS-BLS

(c) Sqrt-CS-BLS (d) EN-CS-BLS

Figure 9. ROCs of four CS-BLS methods under different broad structures.

4. Discussion

The imbalanced classification problem, which suffers from imbalanced class distri-
bution, is commonly encountered in real-world applications. We have proposed a novel
cost-sensitive BLS, CS-BLS, to improve the ability of BLS to handle it. Four different CS-BLS
methods have been proposed: Log-CS-BLS, Lin-CS-BLS, Sqr-CS-BLS, and EN-CS-BLS,
respectively, corresponding to four different weighted penalty factor calculation methods.
With systemic experimental studies, the results show that the CS-BLS performs better than
the BLS in dealing with imbalanced data, no matter whether in the imbalanced MNIST
dataset, the imbalanced small NORB dataset, or the breast ultrasound diagnosis dataset.

BLS is an effective and efficient machine learning method in many tasks. However, as
the weight matrix of BLS is calculated based on the ridge regression approximation, which
is based on MMSE, the BLS is inherently inappropriate for solving imbalanced classification
problems. In general, there are three levels of methods to handle imbalanced data: the
data level, the classifier level, and the hybrid level. However, not much research has been
done on BLS handling imbalanced data. In this paper, we propose a novel classifier-level
framework, CS-BLS, which can adapt to different loss functions, allowing it to integrate
with existing advanced methods for imbalanced data. We only conducted experiments on
the framework with the loss function of WCE, and other loss functions may achieve better
performance integrated with the CS-BLS framework, such as MFE [30], MSFE [30], and
FL [31]. We will explore these loss functions on the CS-BLS framework in our future work.
The images in the three used datasets are relatively simple for classifiers to learn, and the CS-
BLS may encounter difficulties when processing the image data with high resolution. Other
advanced techniques can be adopted in this framework when encountering high-resolution
images. Firstly, deep auto-encoders [49] can be used to reduce dimensionality and obtain
low-dimensional features. Secondly, transfer learning with pre-trained weights [50] can
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also be used to extract features for the CS-BLS, which can be processed by feature reduction
methods, such as principal component analysis (PCA), to obtain low-dimensional features.

Regarding the time complexity of the proposed CS-BLS and BLS, we analyze them
qualitatively in two aspects, i.e., training time complexity and exploitation time complexity.
Firstly, on the exploitation time complexity, since our proposed CS-BLS algorithm and the
standard BLS only differentiate from loss functions, they lead to different weight matrices
with the same dimension. Thus, the exploitation time complexity of both is the same.
Secondly, on the training time complexity, we compare the training time of both. Taking
MNIST as an example, the training time of BLS is 0.68 s when IR = 50 and the broad network
is (20, 5, 100). While keeping IR constant, the training time increases gradually as the broad
network increases. When the broad networks are (50, 5, 100), (50, 15, 100), (50, 15, 200), and
(50, 30, 100), the training times are 1.15 s, 3.10 s, 3.34 s, and 6.30 s, respectively. The training
time of CS-BLS remains 43–45 s in the same condition of IR and broad network, because we
limit the maximum number of epochs and use the early stopping mechanism. Thus, the
training time of the proposed CS-BLS is longer than that of BLS, although it is within an
acceptable range. However, the performance of CS-BLS is much better than that of BLS, as
shown in the previous analysis in Section 3.

5. Conclusions

BLS is an effective and efficient method, and it has received attention from many
researchers due to its outstanding performance. To improve the ability of BLS for handling
imbalanced data, a novel BLS, called CS-BLS, is proposed. The weighted penalty factor
in the CS-BLS is utilized to provide a proper weight to each sample and constrain its
contribution. Samples in minor classes are assigned greater weights to raise their contribu-
tions in modeling, whereas samples in major classes are assigned lower weights to reduce
their contributions. Four calculation methods for weighted penalty factors are applied
for CS-BLS, and thus, four kinds of CS-BLS approaches are constructed: Log-CS-BLS, Lin-
CS-BLS, Sqr-CS-BLS, and EN-CS-BLS. Systematic experiments on four CS-BLS methods
and the standard BLS are conducted under different imbalance ratios and different broad
structures on two commonly used datasets, i.e., MNIST and small NORB, to demonstrate
the effectiveness and robustness of the proposed methods. The results demonstrate that the
CS-BLS approaches perform better than the standard BLS in all the experiments. Finally,
the proposed CS-BLS methods are applied to a clinical breast ultrasound dataset, and the
results indicate accurate and reliable diagnostic results on breast cancer.
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