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Abstract: This study investigates, for the first time, the product of spacing estimation of the modified
Kies exponential distribution parameters as well as the acceleration factor using constant-stress
partially accelerated life tests under the Type-II censoring scheme. Besides this approach, the con-
ventional maximum likelihood method is also considered. The point estimates and the approximate
confidence intervals of the unknown parameters are obtained using the two methods. In addition,
two parametric bootstrap confidence intervals are discussed based on both estimation methods. Ex-
tensive simulation studies are conducted by considering different censoring schemes to examine the
efficiency of each estimation method. Finally, two real data sets for oil breakdown times of insulating
fluid and minority electron mobility are analyzed to show the applicability of the different methods.
Moreover, the reliability function and the mean time-to-failure under the normal use condition are
estimated using both methods. Based on Monte Carlo simulation outcomes and real data analysis, we
recommend using the maximum product of spacing to evaluate both the point and interval estimates
for the modified Kies exponential distribution parameters in the presence of constant-stress partially
accelerated Type-II censored data.

Keywords: modified Kies exponential distribution; maximum likelihood estimation; maximum
product of spacing estimation; constant-stress partially accelerated life tests

1. Introduction

Many current manufactured products are highly reliable because of competitiveness
between manufacturers. Therefore, experimenters exploring different avenues of reliability
and quality of such products face the issue of not having enough information about
the products’ failures under normal operating conditions. Consequently, experimenters
presented accelerated life tests (ALTs) in the literature as an approach to analyzing highly
reliable products’ lifetimes efficiently. In such experiments, the test items are run at higher-
than-usual levels of stress, including, but not limited to, temperature, voltage and weight, to
actuate early failures. In ALTs, extreme stress levels are forced on the product to guarantee
fast failures. There are several models under ALTs, and the foremost utilized models
incorporate constant-stress and step-stress models. In a constant-stress accelerated life test
model, each examined unit is operated at constant stress until the test ends or all units fail.
Many authors discussed constant-stress ALT models in the literature. See, for example,
Yin et al. [1], Nassar and Dey [2], Dey and Nassar [3] and Sief et al. [4].

On the other hand, in a step-stress ALT experiment, the stress is raised step by step
at predetermined times or upon the event of a specified number of failures. A simple
step-stress ALT model is obtained as a particular situation when the test contains just two
stress levels. Many researchers in the literature considered this model; see, for example,
Balakrishnan et al. [5], Mohie El-Din et al. [6] and Nassar et al. [7], as well as the references
therein. For more details about the ALTs, one can refer to Guan et al. [8], Mohie El-
Din et al. [9] and Bagdonavicius and Nikulin [10].
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In the analysis of ALTs, one of the main focuses is utilizing the obtained information at
accelerated stress stages to extrapolate the product performance at normal use conditions.
To achieve this objective, one needs to know the life–stress model, which determines
the connection between the lifetime and stress conditions. In some situations, the life–
stress models cannot be known or assumed. Therefore, a partially accelerated life test
(PALT) is one option to estimate the product reliability at normal use conditions. In PALT,
items are tested at both normal and accelerated conditions. In a constant-stress PALT
(CSPALT), each unit is operated at a constant stress, under either normal use conditions or
accelerated conditions. Many authors have also investigated CSPALT. Mahmoud et al. [11]
considered the estimation problems of modified Weibull distributions based on CSPALT
using Type-II censored samples. Dey et al. [12] investigated the estimations of Nadarajah–
Haghighi distribution parameters using CSPALT under progressively Type-II censored
data. Ahmadini et al. [13] estimated the unknown parameters and the acceleration factor of
Fréchet distributions with Type-I censoring based on CSPALT. Li and Zheng [14] studied
CSPALT using Type-I censoring under the Gompertz distribution.

Recently, a new two-parameter distribution called the modified Kies exponential
(MKE) distribution was considered by Al-Babtain et al. [15] using the T − X family pro-
cedure. Almetwally et al. [16] used the same approach to introduce the modified Kies
inverted Topp–Leone distribution. This MKE distribution has many desirable properties
in modeling lifetime data compared with traditional distributions, such as the Weibull
and the gamma distributions. The MKE distribution has a significantly flexible probability
density function (PDF); it can be negatively skewed, positively skewed and symmetric and
can permit tremendous flexibility of the tails. Its hazard rate function (HRF) has different
shapes, including increasing and bathtub-shaped. Besides the flexibility of the PDF and
HRF of this distribution, one of the most desirable distributional properties is the simple
closed-form cumulative distribution function (CDF). In this case, the distribution is suitable
for use in different areas, such as life testing, reliability analysis, medical studies and sur-
vival analysis. In this context, Al-Babtain et al. [15] employed two distinct kinds of real data
to demonstrate that the MKE model is a useful alternative to numerous prevalent models,
such as the exponential, gamma, Weibull, generalized exponential, Marshall–Olkin expo-
nential, Kumaraswamy exponential and beta exponential models. Abd El-Raheem et al. [17]
studied the MKE distribution using multiple constant-stress testing based on progressive
Type-II censored data with binomial removal. Aljohani et al. [18] studied the estimation
of the parameters of the MKE distribution based on ranked set sampling. Many authors
applied the MKE distribution to analyze different data types, including precipitation, fail-
ure times of transformer insulation, failure times for a particular windshield device and
time-to-failure of turbocharger data.

In practice, the researcher may not always obtain a complete sample of failure times
for all examination units in life reliability analysis and testing investigations. Data gained
from such tests are described as censored data. Sparing the time on a test and the cost
associated with it are some of the leading reasons for censoring. There are many censoring
schemes in life testing, and the foremost familiar censoring schemes are Type-I and Type-II
censoring (see, for more details, Lawless [19]). Motivated by such causes, as stated before,
studying the MKE distribution under CSPALT in the presence of Type-II censored data is of
considerable interest. To the best of our knowledge, the estimation of the MKE distribution
parameters using CSPALT under the Type-II censoring scheme has not yet been studied.
Therefore, in this work, two methods are used for this purpose: maximum likelihood (ML)
and maximum product of spacing (MPS) methods. In addition to the point estimates of
the unknown parameters, the approximate confidence intervals (ACIs) are also computed
based on the two methods. It is important to mention here that this is the first time the
MPS method is used to estimate the model parameters in the presence of CSPALT. In
addition, two parametric bootstrap confidence intervals are considered based on both ML
and MPS methods. The different point and interval estimates are examined via an extensive
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simulation study. In addition, two real data sets are explained to confirm the applicability
of the various proposed estimators in real-life scenarios.

The remainder of this paper is designed as follows: In Section 2, we explain the
proposed model. The ML method is applied to obtain the point and interval estimates of the
unknown parameters in Section 3. Section 4 discusses point and interval estimation for the
parameters based on the MPS method. In Section 5, two parametric bootstrap confidence
intervals are presented. A Monte Carlo simulation study is implemented in Section 6. Two
real data sets are investigated in Section 7. Finally, some outcomes are provided in Section 8.

2. Model Description

Suppose that under normal conditions, the lifetime of an object, say, Y, follows the
MKE distribution. Then, the associated PDF according to Al-Babtain et al. [15] is given by

f1(y) = abeaby−(eby−1)
a(

1− e−by
)a−1

; y > 0, a, b > 0. (1)

where a and b are the shape and scale parameters, respectively. The CDF of the MKE
distribution is

F1(y) = 1− e−(eby−1)
a
. (2)

The reliability function (RF) and HRF are, respectively, given by

R1(y) = e−(eby−1)
a

(3)

and
H1(y) = abeaby

(
1− e−by

)a−1
. (4)

Figure 1 displays the different plots of the PDF, CDF, RF and HRF for some selected
values of the shape parameter and assumes that the scale parameter is one in all the cases.
Al-Babtain et al. [15] mentioned that the PDF of the MKE distribution can be symmetric or
positive- or negative-skewed, depending on the shape parameter value. In addition, they
proved that the HRF of the MKE distribution is increasing for a ≥ 1 and bathtub-shaped for
a < 1. According to Al-Babtain et al. [15], the mean and median of the MKE distribution
can be written, respectively, as

µ =
∞

∑
m,j,k=0

a(−1)m+j

b(1 + m)2 j!

(
k + a(j + 1)

k

)(
k + a(j + 1)− 1

m

)

and
M =

1
b

log
[
1 + (log 2)1/a

]
.

Now, suppose that we have n units divided into two groups: the first group contains
n1 units randomly chosen from n test units at normal conditions, and the second group
contains the remaining n2 = n− n1 units, which are subjected to an accelerated condition.
For group k, where k = 1, 2, the units are tested under the Type-II censoring scheme with
prefixed sample size (nk, rk), where rk ≤ nk, k = 1, 2, are the observed number of failures at
normal use and accelerated conditions, respectively. Once the experiment ends, one has
the observations (Yk1, Yk2, . . . , Ykrk

). The lifetime of an item tested at normal conditions
follows the MKE distribution, with PDF, CDF, RF and HRF given by (1)–(4). The hazard
rate of a tested unit at accelerated condition is given by H2(y) = cH1(y), where H1(y) is
given by (4) and c is an acceleration factor satisfying c > 1. In this case, the HRF under the
accelerated condition is given by

H2(y) = cH1(y)

= abceaby
(

1− e−by
)a−1

. (5)
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Using the relation R2(y) = exp
(
−
∫ y

0 H2(x)dx
)
, we can obtain the RF under the

accelerated condition as follows:

R2(y) = e−c(eby−1)
a
. (6)

The corresponding CDF and PDF are, respectively, given by

F2(y) = 1− e−c(eby−1)
a

(7)

and
f2(y) = abceaby−c(eby−1)

a(
1− e−by

)a−1
. (8)

It is of interest to mention here that one of the main advantages of the MKE distribution
is that it contains only one scale and one shape parameter. Hence, this makes it a very
flexible model when applied in the CSPALT because the number of parameters of the
new model will be three, including the acceleration factor c. On the other hand, when
using models with three parameters, such as the exponentiated Weibull distribution, the
model parameters increase to four parameters (due to the acceleration factor). Therefore,
the resulting model will be very complicated with many parameters, which makes it not
a practical choice to many researchers and reliability engineers. Based on the previous
argument, the likelihood function (without constant terms) based on the realizations of the
two censored samples is given by

L(θ|y) =
2

∏
k=1

{
rk

∏
i=1

fk(yki)[1− Fk(ykrk
)]nk−rk

}
, (9)

where θ = (a, b, c)>. Cheng and Amin [20] proposed the MPS estimation method as an
alternative to the ML estimation method, especially for the distributions with unknown
scale and shifted threshold. They pointed out that the MPS and ML estimators have similar
asymptotic sufficiency, consistency and efficiency properties. Ranneby [21] studied the
mathematical properties of the MPS method as an approximation to the Kullback–Leibler
information and observed that the MPS method gives unique and minimum variance
unbiased estimators. In addition, Anatolyev and Kosenok [22] investigated the invariance
properties of the MPS estimators (MPSEs) and showed that they have the same properties as
the MLEs. The MPSEs are obtained by maximizing the product of the differences between
the values of the CDF at adjacent ordered points. Ng et al. [23] extended the MPS method
to estimate the parameters of a three-parameter Weibull distribution under progressively
Type-II censored data. Following the same approach as Ng et al. [23], we can write the
product of spacing to be maximized under the CSPALT for Type-II censored data as

M(θ|y) =
2

∏
k=1

{
rk+1

∏
i=1

[Fk(yki)− Fk(yki−1)][1− Fk(ykrk
)]nk−rk

}
. (10)
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Figure 1. Plots of PDF, CDF, RF and HRF of the MKE distribution.

3. Maximum Likelihood Estimation

For k = 1, 2, let Yk1 < Yk2 < . . . < Ykrk
be two Type-II censored samples from two

populations with CDFs and PDFs given by (2), (1), (7) and (8), respectively. In this case, we
can write the log-likelihood function, denoted by `(θ|y) = log L(θ|y), in the following form:

`(θ|y) = r log(ab) + r2 log(c) + ab
2

∑
k=1

rk

∑
i=1

yki + (a− 1)
2

∑
k=1

rk

∑
i=1

log(ψki)−
r1

∑
i=1

ϕa
1i

− (n1 − r1)ϕa
1r1
− c

[
r2

∑
i=1

ϕa
2i + (n2 − r2)ϕa

2r2

]
, (11)

where r = r1 + r2, ψki = 1 − e−byki and ϕki = ebyki − 1, i = 1, . . . , rk. The maximum
likelihood estimates (MLEs) of the parameters a, b and c can be obtained by maximizing
the objective function (11). This can be achieved by deriving (11) with respect to a, b and c,
equating them to zero, and then solving the system of nonlinear equations simultaneously.
Here, the likelihood equations are as follows:

∂`(θ|y)
∂a

=
r
a
+ b

2

∑
k=1

rk

∑
i=1

yki +
2

∑
k=1

rk

∑
i=1

log(ψki)−
r1

∑
i=1

ϕa
1i log(ϕ1i)− (n1 − r1)ϕa

1r1
log(ϕ1r1)

− c

[
r2

∑
i=1

ϕa
2i log(ϕ2i) + (n2 − r2)ϕa

2r2
log(ϕ2r2)

]
= 0, (12)

∂`(θ|y)
∂b

=
r
b
+ a

2

∑
k=1

rk

∑
i=1

yki + (a− 1)
2

∑
k=1

rk

∑
i=1

yki ϕ
−1
ki − a

[
r1

∑
i=1

η1i + (n1 − r1)η1r1

]

− ac

[
r2

∑
i=1

η2i + (n2 − r2)η2r2

]
= 0 (13)
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and

∂`(θ|y)
∂c

=
r2

c
−
[

r2

∑
i=1

ϕa
2i + (n2 − r2)ϕa

2r2

]
= 0, (14)

where ηki = ykiebyki ϕa−1
ki , k = 1, 2. From (14) and for fixed a and b, the MLE of the parameter

c can be obtained as follows:

ĉ(a, b) =
r2

∑r2
i=1 ϕa

2i + (n2 − r2)ϕa
2r2

. (15)

Substituting ĉ(a, b), given by (15) in (12) and (13), the MLEs of a and b, denoted by â
and b̂, can be obtained by solving the following two nonlinear equations:

r
a
+ b

2

∑
k=1

rk

∑
i=1

yki +
2

∑
k=1

rk

∑
i=1

log(ψki)−
r1

∑
i=1

ϕa
1i log(ϕ1i)− (n1 − r1)ϕa

1r1
log(ϕ1r1)

−
r2

[
∑r2

i=1 ϕa
2i log(ϕ2i) + (n2 − r2)ϕa

2r2
log(ϕ2r2)

]
∑r2

i=1 ϕa
2i + (n2 − r2)ϕa

2r2

= 0 (16)

and

r
b
+ a

2

∑
k=1

rk

∑
i=1

yki + (a− 1)
2

∑
k=1

rk

∑
i=1

yki ϕ
−1
ki − a

[
r1

∑
i=1

η1i + (n1 − r1)η1r1

]

−
ar2
[
∑r2

i=1 η2i + (n2 − r2)η2r2

]
∑r2

i=1 ϕa
2i + (n2 − r2)ϕa

2r2

= 0 (17)

It is observed that, from (16) and (17), there are no closed forms for â and b̂; therefore,
any suitable numerical technique may be used to obtain these estimates. Upon obtaining â
and b̂, ĉ = ĉ(â, b̂) can be obtained from (15) by replacing a and b with their corresponding
estimates â and b̂. Based on the asymptotic properties of the MLEs, we can construct the
ACIs of the unknown parameters and the acceleration factor θ = (a, b, c)>. From large
sample theory, it is known that the asymptotic distribution of the MLEs θ̂ = (â, b̂, ĉ)>

is a trivariate normal distribution with mean θ and variance–covariance matrix I−1(θ).
Practically, I−1(θ̂) is used to estimate I−1(θ), where I(θ̂) is the observed information
matrix and

I−1(θ̂) =


− ∂2`(θ)

∂a2 − ∂2`(θ)
∂a∂b − ∂2`(θ)

∂a∂c

− ∂2`(θ)
∂b∂a − ∂2`(θ)

∂b2 − ∂2`(θ)
∂b∂c

− ∂2`(θ)
∂c∂a − ∂2`(θ)

∂c∂b − ∂2`(θ)
∂c2


−1

(a,b,c)=(â,b̂,ĉ)

, (18)

where

∂2`(θ|y)
∂a2 = − r

a2 −
r1

∑
i=1

ϕa
1i log2(ϕ1i)− (n1 − r1)ϕa

1r1
log2(ϕ1r1)− c

r2

∑
i=1

ϕa
2i log2(ϕ2i)

− c(n2 − r2)ϕa
2r2

log2(ϕ2r2),

∂2`(θ|y)
∂b2 = − r

b2 − (a− 1)
2

∑
k=1

rk

∑
i=1

y2
kie

byki ϕ−2
ki − a

r1

∑
i=1

y1iη1i[1 + (a− 1)ψ−1
1i ]

− a(n1 − r1)y1r1 η1r1 [1 + (a− 1)ψ−1
1r1

]− ac
[ r2

∑
i=1

y2iη2i[1 + (a− 1)ψ−1
2i ]

+ (n2 − r2)y2r2 η2r2 [1 + (a− 1)ψ−1
2r2

]

]
,
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∂2`(θ|y)
∂c2 = − r2

c2 ,

∂2`(θ|y)
∂a∂b

=
2

∑
k=1

rk

∑
i=1

yki +
2

∑
k=1

rk

∑
i=1

yki ϕ
−1
ki −

r1

∑
i=1

η1i[1 + a log(ϕ1i)]− (n1 − r1)η1r1

× [1 + a log(ϕ1r1)]− c
[ r2

∑
i=1

η2i[1 + a log(ϕ2i)] + (n2 − r2)η2r2 [1 + a log(ϕ2r2)]

]
,

∂2`(θ|y)
∂a∂c

= −
[

r2

∑
i=1

ϕa
2i log(ϕ2i) + (n2 − r2)ϕa

2r2
log(ϕ2r2)

]

and

∂2`(θ|y)
∂b∂c

= −a

[
r2

∑
i=1

η2i + (n2 − r2)η2r2

]
.

Now, the 100(1− α)% ACIs of the unknown parameters a, b and c can be obtained
as follows:

â± zα/2

√
v̂ar(â), b̂± zα/2

√
v̂ar(b̂) and ĉ± zα/2

√
v̂ar(ĉ).

where v̂ar(â), v̂ar(b̂) and v̂ar(ĉ) are the main diagonal elements of (18), respectively, and
zα/2 is the upper α/2th percentile point of the standard normal distribution.

Clearly, maximizing the objective function (11) with respect to a, b and c to obtain the
MLEs requires a numerical method using a statistical software such as R, which is an envi-
ronment for statistical computing, see Reference [24]. Typically, researchers use Newton’s
method (i.e., Newton–Raphson) to solve (12)–(14), with respect to the model parameters,
to numerically determine the MLEs. Furthermore, they sometimes transform the model
parameters using a log-transformation to avoid constraints, as indicated by MacDonald
[25]. In R, the objective function (11) can be maximized using built-in functions of R, such
as nlm() and optim(). However, since there is a constraint on the acceleration parameter c,
namely, c > 1, we could not apply any transformations on the model parameters to avoid
constraints; thus, we considered the R built-in function nlminb(), which implements a
constrained quasi-Newton method. For details about this approach, see Fox et al. [26].

4. Maximum Product of Spacing Estimation

In the maximum likelihood method approach, the values of the parameters are chosen
to maximize the likelihood function. The MPSEs are computed instead by choosing the
values of the parameters that maximize the product of the spaces between the values of
the distribution function at adjacent ordered points. Anatolyev and Kosenok [22] stated
that for small sample sizes, the MPSEs demonstrate efficient small sample behaviour when
compared with the MLEs, which makes the MPS method even more appealing in reliability
studies. For more details about the MPS estimation method, see Nassar et al. [27] and
Basu et al. [28]. Using the same notation as the previous sections and from (2), (7) and (10),
we can write the product of spacing to be maximized as follows:

M(θ|y) =
r1+1

∏
i=1

[e−ϕa
1i−1 − e−ϕa

1i ]
r2+1

∏
i=1

[e−cϕa
2i−1 − e−cϕa

2i ] e−
[
(n1−r1)ϕa

1r1
+c(n2−r2)ϕa

2r2

]
. (19)
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Taking the natural logarithm of (19), say, m(θ|y) = log M(θ|y), we have the following:

m(θ|y) =
r1+1

∑
i=1

log[e−ϕa
1i−1 − e−ϕa

1i ] +
r2+1

∑
i=1

log[e−cϕa
2i−1 − e−cϕa

2i ]−
[
(n1 − r1)ϕa

1r1

+ c(n2 − r2)ϕa
2r2

]
. (20)

The MPSEs are obtained by maximizing the objective function (20) with respect to the
unknown parameters a, b and c. These estimates can also be obtained by differentiating (20)
with respect to a, b and c, equating the results to zero, and then solving the three nonlinear
equations simultaneously. The three normal equations of (20) are given by

∂m(θ|y)
∂a

=
r1+1

∑
i=1

φ1i − φ1i−1

e−ϕa
1i−1 − e−ϕa

1i
+ c

r2+1

∑
i=1

φ2i − φ2i−1

e−cϕa
2i−1 − e−cϕa

2i
−
[
(n1 − r1)ϕa

1r1
log(ϕ1r1)

+ c(n2 − r2)ϕa
2r2

log(ϕ2r2)
]
= 0, (21)

∂m(θ|y)
∂b

= a
r1+1

∑
i=1

ζ1i − ζ1i−1

e−ϕa
1i−1 − e−ϕa

1i
+ ac

r2+1

∑
i=1

ζ2i − ζ2i−1

e−cϕa
2i−1 − e−cϕa

2i
− a
[
(n1 − r1)η1r1

+ c(n2 − r2)η2r2

]
= 0 (22)

and

∂m(θ|y)
∂c

=
r2+1

∑
i=1

ϕa
2ie
−cϕa

2i − ϕa
2i−1e−cϕa

2i−1

e−cϕa
2i−1 − e−cϕa

2i
− (n2 − r2)ϕa

2r2
= 0, (23)

where φ1i = e−ϕa
1i ϕa

1i log(ϕ1i), φ2i = e−cϕa
2i ϕa

2i log(ϕ2i), ζ1i = η1ie−ϕa
1i and ζ2i = η2ie−cϕa

2i . It
is noted that the MPSEs denoted by ã, b̃ and c̃ cannot be obtained in closed forms; therefore,
numerical techniques can be used to solve Equations (21)–(23).

Using the same approach as the ML estimation method and from large sample theory,
we constructed the ACI for the unknown parameters based on the MPSEs. The asymptotic
distribution of the MPSEs θ̃ = (ã, b̃, c̃)> is a trivariate normal distribution with mean θ
and variance–covariance matrix I−1(θ). It is beneficial to remark here that several authors
have elicited the asymptotic equivalence of the MPS method and ML estimation method;
Cheng and Amin [20], Ghosh and Jammalamadaka [29] and Anatolyev and Kosenok [22]
demonstrated that the MPS method exhibits asymptotic properties, like the ML method.
One can also refer to Basu et al. [30,31]. In this case, we used I−1(θ̃) to estimate I−1(θ)
as follows:

I−1(θ̃) =


− ∂2`(θ)

∂a2 − ∂2`(θ)
∂a∂b − ∂2`(θ)

∂a∂c

− ∂2`(θ)
∂b∂a − ∂2`(θ)

∂b2 − ∂2`(θ)
∂b∂c

− ∂2`(θ)
∂c∂a − ∂2`(θ)

∂c∂b − ∂2`(θ)
∂c2


−1

(a,b,c)=(ã,b̃,c̃)

,

where

∂2m(θ|y)
∂a2 =

r1+1

∑
i=1

v1i −v1i−1

e−ϕa
1i−1 − e−ϕa

1i
−

r1+1

∑
i=1

(φ1i − φ1i−1)
2(

e−ϕa
1i−1 − e−ϕa

1i

)2 + c
r2+1

∑
i=1

v2i −v2i−1

e−ϕa
2i−1 − e−ϕa

2i

− c
r2+1

∑
i=1

(φ2i − φ2i−1)
2(

e−cϕa
2i−1 − e−cϕa

2i

)2 − (n1 − r1)ϕa
1r1

log2(ϕ1r1)− c(n2 − r2)ϕa
2r2

log2(ϕ2r2),
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∂2m(θ|y)
∂b2 = a

r1+1

∑
i=1

$1i − $1i−1

e−ϕa
1i−1 − e−ϕa

1i
− a

r1+1

∑
i=1

(ζ1i − ζ1i−1)
2(

e−ϕa
1i−1 − e−ϕa

1i

)2 + ac
r2+1

∑
i=1

$2i − $2i−1
−ϕa

2i−1 − e−ϕa
2i

− ac
r2+1

∑
i=1

(ζ2i − ζ2i−1)
2(

e−ϕa
2i−1 − e−ϕa

2i

)2 − a(n1 − r1)y1r1
η1r1(1 + (a− 1)ψ1r1)

− ac(n2 − r2)y2r2
η2r2(1 + (a− 1)ψ2r2),

∂2m(θ|y)
∂c2 =

r2+1

∑
i=1

ϕ2a
2i−1e−cϕa

2i−1 − ϕ2a
2i e−cϕa

2i

e−cϕa
2i−1 − e−cϕa

2i
−

r2+1

∑
i=1

(
ϕa

2ie
−cϕa

2i − ϕa
2i−1e−cϕa

2i−1

)2

(
e−cϕa

2i−1 − e−cϕa
2i

)2 ,

∂2m(θ|y)
∂a∂b

=
r1+1

∑
i=1

τ1i − τ1i−1

e−ϕa
1i−1 − e−ϕa

1i
−

r1+1

∑
i=1

(φ1i − φ1i−1)(ζ1i − ζ1i−1)(
e−ϕa

1i−1 − e−ϕa
1i

)2 + c
r2+1

∑
i=1

τ2i − τ2i−1

e−cϕa
2i−1 − ec−ϕa

2i

− c
r2+1

∑
i=1

(φ2i − φ2i−1)(ζ2i − ζ2i−1)(
e−cϕa

2i−1 − e−cϕa
2i

)2 − a(n1 − r1)η1r1 log(ϕ1r1)

− ac(n2 − r2)η2r2 log(ϕ2r2),

∂2m(θ|y)
∂a∂c

= c
r2+1

∑
i=1

φ2i−1 ϕa
2i−1 − φ2i ϕ

a
2i

e−cϕa
2i−1 − e−cϕa

2i
− c

r2+1

∑
i=1

(φ2i − φ2i−1)(ϕa
2ie
−cϕa

2i − ϕa
2i−1e−cϕa

2i−1)(
e−cϕa

2i−1 − e−cϕa
2i

)2

+
r2+1

∑
i=1

φ2i − φ2i−1

e−cϕa
2i−1 − e−cϕa

2i
− (n2 − r2)ϕa

2r2
log(ϕ2r2)

and

∂2m(θ|y)
∂b∂c

= ac
r2+1

∑
i=1

ζ2i−1 ϕ−a
2i−1 − ζ2i ϕ

−a
2i

e−cϕa
2i−1 − e−cϕa

2i
− ac

r2+1

∑
i=1

(ζ2i − ζ2i−1)(ϕa
2ie
−cϕa

2i − ϕa
2i−1e−cϕa

2i−1)

e−cϕa
2i−1 − e−cϕa

2i

+ a
r2+1

∑
i=1

ζ2i − ζ2i−1

e−cϕa
2i−1 − e−cϕa

2i
− a(n2 − r2)η2r2 ,

where v1i = φ1i log(ϕ1i)(1− ϕa
1i), v2i = φ2i log(ϕ2i)(1− cϕa

2i), $1i = y1iζ1i[1 + eby1i ϕ−1
1i (a

(1− ϕa
1i)− 1)], $2i = y2iζ2i[1 + eby2i ϕ−1

2i (a(1− cϕa
2i)− 1)], τ1i = a log(ϕ1i)η1ie−ϕa

1i (1− ϕa
1i)

and τ2i = a log(ϕ2i)η2ie−cϕa
2i (1 − cϕa

2i). Now, the 100(1 − α)% ACIs of the unknown
parameters a, b and c based on the MPSEs can be obtained:

ã± zα/2

√
v̂ar(ã), b̃± zα/2

√
v̂ar(b̃) and c̃± zα/2

√
v̂ar(c̃).

where v̂ar(ã), v̂ar(b̃) and v̂ar(c̃) are the estimated variances.
Similar to MLEs, maximizing the objective function (20) with respect to a, b and c

to obtain MPSEs also requires a numerical method using R. We considered the same R
built-in function nlminb() that implements a constraint quasi-Newton method to obtain
the MPSEs.

5. Bootstrap Confidence Intervals

In this subsection, we consider using two parametric bootstrap confidence intervals.
The first is the percentile bootstrap confidence interval (PBCI) method based on the idea
of Efron [32]. The second is the studentized bootstrap confidence interval (SBCI) method
proposed by Hall [33]. It is to be mentioned here that we obtained these two bootstrap
confidence intervals based on MLEs and MPSEs. To compute these confidence intervals,
we used the following steps.
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(A) PBCIs

(1) Based on the original data Yk1 < Yk2 < . . . < Ykrk
, k = 1, 2, obtain the MLEs and

MPSEs.

(2) Use the MLEs obtained in (1) to generate Type-II censored samples.

(3) Redo step (2) using the MPSEs.

(4) Use the generated bootstrap samples in (2) to obtain bootstrap estimates, denoted by
â∗, b̂∗ and ĉ∗.

(5) Use the generated bootstrap samples in (3) to obtain bootstrap estimates, denoted by
ã∗, b̃∗ and c̃∗.

(6) Repeat steps 2 and 4 B times to compute (â∗1 , . . . , â∗B), (b̂∗1 , . . . , b̂∗B) and (ĉ∗1 , . . . , ĉ∗B).

(7) Repeat steps 3 and 5 B times to compute (ã∗1 , . . . , ã∗B), (b̃∗1 , . . . , b̃∗B) and (c̃∗1 , . . . , c̃∗B).

(8) Arrange the estimates in (6) in ascending order to obtain (â∗[1], . . . , â∗[B]), (b̂∗[1], . . . , b̂∗[B])
and (ĉ∗[1], . . . , ĉ∗[B]).

(9) Based on the MLEs, the two-sided 100(1− α)% PBCIs are given by[
â∗[Bα/2], â∗[B(1−α/2)]

]
,
[
b̂∗[Bα/2], b̂∗[B(1−α/2)]

]
and

[
ĉ∗[Bα/2], ĉ∗[B(1−α/2)]

]
.

(10) Arrange the estimates in (7) in ascending order to obtain (ã∗[1], . . . , ∗̃∗[B]), (b̃∗[1], . . . , b̃∗[B])
and (c̃∗[1], . . . , c̃∗[B]).

(11) Based on the MPSEs, the two-sided 100(1− α)% PBCIs are given by[
ã∗[Bα/2], ã∗[B(1−α/2)]

]
,
[
b̃∗[Bα/2], b̃∗[B(1−α/2)]

]
and

[
c̃∗[Bα/2], c̃∗[B(1−α/2)]

]
.

(B) SBCIs

(1–5) Same as in PBCIs.

(6) Obtain the statistics T∗a = â∗−â√
v̂ar(â∗)

, T∗b = b̂∗−b̂√
v̂ar(b̂∗)

and T∗c = ĉ∗−ĉ√
v̂ar(ĉ∗)

.

(7) Obtain the statistics T?a = ã∗−ã√
v̂ar(ã∗)

, T?b = b̃∗−b̃√
v̂ar(b̃∗)

and T?c = c̃∗−c̃√
v̂ar(c̃∗)

.

(8) Repeat steps 2, 4 and 6 B times to obtain (T∗a1 , . . . , T∗aB ), (T∗b1 , . . . , T∗bB ) and (T∗c1 , . . . , T∗cB ).

(9) Arrange the T∗-statistics in ascending order to obtain (T∗a
[1] , . . . , T∗a

[B]), (T∗b
[1] , . . . , T∗b

[B]) and
(T∗c

[1], . . . , T∗c
[B]).

(10) Repeat steps 3, 5 and 7 B times to obtain (T?a
1 , . . . , T?a

B ), (T?b
1 , . . . , T?b

B ) and (T?c
1 , . . . , T?c

B ).

(11) Arrange the T?-statistics in ascending order to obtain (T?a
[1] , . . . , T?a

[B]), (T?b
[1] , . . . , T?b

[B])
and (T?c

[1], . . . , T?c
[B]).

(12) Based on the MLEs, the two-sided 100(1− α) SBCIs are given by[
â + T∗a[Bα/2]

√
v̂ar(â), â + T∗a[B(1−α/2)]

√
v̂ar(â)

]
,[

b̂ + T∗b[Bα/2]

√
v̂ar(b̂), b̂ + T∗b[B(1−α/2)]

√
v̂ar(b̂)

]
and [

ĉ + T∗c[Bα/2]

√
v̂ar(ĉ), ĉ + T∗c[B(1−α/2)]

√
v̂ar(ĉ)

]
.
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(13) Based on the MPSEs, the two-sided 100(1− α) SBCIs are given by[
ã + T?a

[Bα/2]

√
v̂ar(ã), ã + T?a

[B(1−α/2)]

√
v̂ar(ã)

]
,[

b̃ + T?b
[Bα/2]

√
v̂ar(b̃), b̃ + T?b

[B(1−α/2)]

√
v̂ar(b̃)

]
and [

c̃ + T?c
[Bα/2]

√
v̂ar(c̃), c̃ + T?c

[B(1−α/2)]

√
v̂ar(c̃)

]
.

6. Simulation Studies

In this section, the outcomes of the analysis of a simulated data set from the described
model are first presented in an illustrative example; afterwards, results from a Monte
Carlo simulation study are reported. All results in this section are associated with proper
discussions. It is important to mention that obtaining explicit estimators from the systems
of nonlinear equations, which were mentioned in the previous sections, is typically not pos-
sible. In our case, we had three parameters; thus, we were dealing with three complicated
nonlinear equations. That is why we obtained the desired estimators numerically.

Moreover, since we derived first- and second-order derivatives for the objective func-
tions, we considered Newton’s method to find MLEs and MPSEs. Convergence problems
might occur in any optimization process if the initial values are not chosen carefully by the
researchers; we randomly generated initial values close to the actual model parameters.
To optimize the objective function, we considered Newton’s method, which is known for
its fast quadratic convergence. We do not provide details about this method for the sake
of brevity.

6.1. Illustrative Example

Here, the MLEs and the MPSEs were determined numerically from a data set simulated
from a CSPALT with n1 = n2 = 10 and a = 1, b = 1 and c = 2. The observations are
reported in Table 1.

Table 1. Simulated CSPALT data with complete information from which the Type-II censored data
were obtained.

Normal Use Condition:

0.04557, 0.29199, 0.42258, 0.47619, 0.56019, 0.58873, 0.93712, 1.14605, 1.17233, 1.34057

Accelerated Stress Condition:

0.02305, 0.15661, 0.23345, 0.26618, 0.31882, 0.33708, 0.57454, 0.72893, 0.74894, 0.87988

Type-II censored data were derived from the data in Table 1 under the assumption
that r1 = r2 = 8. Before proceeding to the calculation of the MLEs and the MPSEs for the
model parameters, one must check their existence and uniqueness and whether the data are
complete or not. Although proving these conditions is extremely important mathematically,
it is beyond this study’s scope. However, one could still prove such requirements by using
graphical means. In fact, by using extensive Monte Carlo simulations, a four-dimensional
(4D) plot for the profiles of the objective functions of MLEs and MPSEs was established, as
shown in Figure 2, in the case of complete and censored data. The 4D charts clearly show
regions, namely, the dark-red spots, in which global maxima exist and are unique for the
objective functions. In addition, censoring caused the regions to slightly change their forms
and shift from their original places when the data were uncensored. The starting values for
the model parameters were obtained from the Monte Carlo simulations to optimize the
objective function and are reported in Table 2. The reason for having different initial values
is that we were dealing with two different objective functions under two different data
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settings. The initial values that maximize the log-likelihood function might not necessarily
maximize the maximum product of spacing objective function. Nevertheless, the initial
values that maximize the log-likelihood function can still obtain the MPSEs. By using
these initial values in Table 2, the estimates of the model parameters and their asymptotic
variances evaluated at these estimates are given in Table 3. From this table, one can readily
conclude that MLEs provided estimates close to the true values of the model parameters
compared to the MPSEs when the data were complete or censored and that censoring
increased the values of the approximated asymptotic variations of the estimates. Further
comparisons are conducted in the upcoming subsection to investigate the performance of
the MLEs and MPSEs.

Figure 2. Four-dimensional profiling of the objective functions for complete sample (upper panel)
and Type-II censored sample (lower panel).

Table 2. Starting (initial) values from the objective functions, based on Table 1.

Case a0 b0 c0

MLEs–Complete 1.2454 0.8690 2.2633
MPSEs–Complete 0.9775 0.8690 1.8312

MLEs–Censoring 1.1003 0.8020 2.0485
MPSEs–Censoring 0.8382 0.7628 1.6506



Mathematics 2022, 10, 819 13 of 26

Table 3. Estimates and their asymptotic properties, based on Table 1.

Case a b c Var(â) Var(b̂) Var(ĉ)

MLEs–Complete 1.25035 0.87498 2.21597 0.06037 0.02388 1.03754
MPSEs–Complete 0.97684 0.86682 1.82586 0.04423 0.03754 0.69076

MLEs–Censoring 1.09137 0.80231 2.02881 0.05727 0.03321 1.07325
MPSEs–Censoring 0.83742 0.75583 1.69290 0.04061 0.05133 0.73330

6.2. Simulation Method and Outcomes

This subsection reports the results of a simulation study conducted based on Monte
Carlo methods to examine the efficiency of the considered estimators numerically. The
performance of the MLEs and MPSEs was assessed in terms of simulated biases and
simulated root-mean-square errors (RMSEs). In this simulation study, the model parameters
were considered to be a = 0.5, 2, b = 1 and c = 1.5, 2.5. Furthermore, it was assumed that
n1 = n2 and r1 = r2 for the sake of concision; moreover, the following Type-II censoring
settings were considered in both normal use and accelerated stress stages:

• n1 = n2 = 20 and r1 = r2 = 12.
• n1 = n2 = 20 and r1 = r2 = 16.
• n1 = n2 = 40 and r1 = r2 = 24.
• n1 = n2 = 40 and r1 = r2 = 32.
• n1 = n2 = 60 and r1 = r2 = 36.
• n1 = n2 = 60 and r1 = r2 = 48.
• n1 = n2 = 80 and r1 = r2 = 48.
• n1 = n2 = 80 and r1 = r2 = 64.
• n1 = n2 = 100 and r1 = r2 = 60.
• n1 = n2 = 100 and r1 = r2 = 80.

By maximizing the objective functions (11) and (20) with respect to a, b and c using
R, we obtained the MLEs and the MPSEs for the model parameters, as mentioned in
the previous sections. Due to the fact that there is no information about the range of
the estimates in practice, the starting values of the model parameters were randomly
obtained around their true values, assuming independent uniform distributions. From a
practical perspective, one should alternatively consider computational ranges for the model
parameters and perform profiling on the objective functions to acquire the corresponding
starting values. For more details about best practice optimization approaches in R, see
Nash [34].

For each setting, the process was repeated 1000 times and the average values of biases
and RMSEs for a, b and c were obtained. These outcomes are displayed in Figures 3 and 4,
where Figure 3 displays the heatmaps of biases and Figure 4 presents the heatmaps of
RMSEs. In addition, to compare the performance of the different proposed confidence in-
tervals (CIs), the lengths (Lens) of the CIs were computed and are presented in Figures 5–7,
respectively. In addition, the coverage probabilities (CPr) of the different CIs were obtained
and are presented in Figures 8–10. From the simulation results in Figures 3–10, one can
draw the following observations:

1. For fixed nk, k = 1, 2, as rk increases, the biases of the MLEs and MPSEs decrease,
which implies that the estimators are asymptotically unbiased.

2. For fixed nk, k = 1, 2, as rk rises, the RMSEs of the MLEs and MPSEs decrease, which
infers that the estimators are consistent.

3. The MPSEs perform better than the MLEs based on minimum biases in all the cases.
4. The MPSEs have fewer RMSEs than the MLEs in all the cases.
5. For small rk, k = 1, 2, the MPSEs have smaller biases and RMSEs than the MLEs in all

the cases.
6. In terms of minimum Lens, the different CIs based on the MPSEs perform better than

those based on the MLEs.
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7. For fixed nk, k = 1, 2, as rk increases, the Lens of the CIs using the MLEs and MPSEs
decreases in all the cases.

8. The ACIs based on the MLEs and MPSEs have the smallest Lens among other CIs in
most of the cases.

9. The ordering of performance for the CIs using the MLEs and MPSEs are the ACIs,
SBCIs and PBCIs.

10. In all the cases, as rk, k = 1, 2, increases, the CPr of the different CIs tends to the
nominal confidence level.

11. Merging all the earlier results, we suggest using the MPS estimation method to
estimate the parameters of the MKE distribution based on CSPALT and Type-II
censored data.
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Figure 3. The heatmaps of the simulated biases of the MLEs and MPSEs of a, b and c.
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Figure 4. The heatmaps of the simulated RMSEs of the MLEs and MPSEs of a, b and c.
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Figure 6. Simulated Lens of different CIs of b.
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Figure 7. Simulated Lens of different CIs of c.
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Figure 8. Simulated CPr of different CIs of a.
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Figure 9. Simulated CPr of different CIs of b.



Mathematics 2022, 10, 819 21 of 26

c = 0.5 c = 2

a
=

0
.5

a
=

2

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

100, 100, 80, 80
100, 100, 60, 60

80, 80, 64, 64
80, 80, 48, 48
60, 60, 48, 48
60, 60, 36, 36
40, 40, 32, 32
40, 40, 24, 24
20, 20, 16, 16
20, 20, 12, 12

100, 100, 80, 80
100, 100, 60, 60

80, 80, 64, 64
80, 80, 48, 48
60, 60, 48, 48
60, 60, 36, 36
40, 40, 32, 32
40, 40, 24, 24
20, 20, 16, 16
20, 20, 12, 12

90% ACI

c = 0.5 c = 2

a
=

0
.5

a
=

2

0
.9

9
2

5

0
.9

9
5

0

0
.9

9
7

5

1
.0

0
0

0

0
.9

9
2

5

0
.9

9
5

0

0
.9

9
7

5

1
.0

0
0

0

95% ACI

c = 0.5 c = 2

a
=

0
.5

a
=

2

0
.9

9
7

0
.9

9
8

0
.9

9
9

1
.0

0
0

0
.9

9
7

0
.9

9
8

0
.9

9
9

1
.0

0
0

99% ACI

c = 0.5 c = 2

a
=

0
.5

a
=

2

0
.7

7
5

0
.8

0
0

0
.8

2
5

0
.8

5
0

0
.8

7
5

0
.9

0
0

0
.7

7
5

0
.8

0
0

0
.8

2
5

0
.8

5
0

0
.8

7
5

0
.9

0
0

100, 100, 80, 80
100, 100, 60, 60

80, 80, 64, 64
80, 80, 48, 48
60, 60, 48, 48
60, 60, 36, 36
40, 40, 32, 32
40, 40, 24, 24
20, 20, 16, 16
20, 20, 12, 12

100, 100, 80, 80
100, 100, 60, 60

80, 80, 64, 64
80, 80, 48, 48
60, 60, 48, 48
60, 60, 36, 36
40, 40, 32, 32
40, 40, 24, 24
20, 20, 16, 16
20, 20, 12, 12

90% PBCI

c = 0.5 c = 2

a
=

0
.5

a
=

2

0
.8

4

0
.8

7

0
.9

0

0
.9

3

0
.8

4

0
.8

7

0
.9

0

0
.9

3

95% PBCI

c = 0.5 c = 2

a
=

0
.5

a
=

2

0
.9

2

0
.9

4

0
.9

6

0
.9

8

0
.9

2

0
.9

4

0
.9

6

0
.9

8

99% PBCI

c = 0.5 c = 2

a
=

0
.5

a
=

2

0
.8

0
.9

0
.8

0
.9

100, 100, 80, 80
100, 100, 60, 60

80, 80, 64, 64
80, 80, 48, 48
60, 60, 48, 48
60, 60, 36, 36
40, 40, 32, 32
40, 40, 24, 24
20, 20, 16, 16
20, 20, 12, 12

100, 100, 80, 80
100, 100, 60, 60

80, 80, 64, 64
80, 80, 48, 48
60, 60, 48, 48
60, 60, 36, 36
40, 40, 32, 32
40, 40, 24, 24
20, 20, 16, 16
20, 20, 12, 12

90% SBCI

c = 0.5 c = 2

a
=

0
.5

a
=

2

0
.8

0

0
.8

5

0
.9

0

0
.9

5

1
.0

0
0

.8
0

0
.8

5

0
.9

0

0
.9

5

1
.0

0

95% SBCI

c = 0.5 c = 2

a
=

0
.5

a
=

2

0
.9

0

0
.9

5

1
.0

0

0
.9

0

0
.9

5

1
.0

0

99% SBCI

Method MLE MPSE

Figure 10. Simulated CPr of different CIs of c.

7. Data Analysis Illustrative Examples

In this part of the paper, two data analysis examples are considered to show practical
application of the estimation methods discussed in the preceding sections.

Example 1 (Oil breakdown times of insulating fluid). The first data set to be analyzed is the oil
breakdown times of insulating fluid subjected to different constant levels of high voltage. The main
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data set consists of additional observations since the tests were performed under different levels of
stress, as reported in Nelson [35] and recently analyzed by many authors (see, for example, Nassar
and Dey [2]). For the sake of illustration, the data set under stress level 30 kilo-volt (KV) was
assumed to be the data under normal use conditions, while the observations under stress level 32 KV
were considered to be the accelerated data set. The data sets of interest are provided in Table 4.

Table 4. Oil breakdown observed times of insulating fluid, complete data.

Normal Use Condition (30 KV):

7.74, 17.05, 20.46, 21.02, 22.66, 43.40, 47.30, 139.07, 144.12, 175.88, 194.90

Accelerated Stress Condition (32 KV):

0.27, 0.40, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.80, 53.24, 82.85, 89.29, 100.58, 215.10

To analyze the data in Table 4, firstly, the goodness-of-fit of the MKE distribution was
evaluated by using the one-sample Kolmogorov-Smirnov (K-S) test. The K-S statistic is
obtained as follows:

K-S = max
1≤i≤nk

(
Fk(yki)−

i− 1
nk

,
i

nk
− Fk(yki)

)
, k = 1, 2.

The K-S distance and the corresponding p-value based on the MLEs and MPSEs are
summarized in Table 5. Regardless of the considered estimator, the goodness-of-fit test
indicates that the MKE distribution could be considered an adequate life model for the
analyzed data set; nevertheless, MPSEs provided better goodness-of-fit outcomes. The
empirical and fitted CDF plots of the MKE distribution for the data in Table 4 are depicted
in Figure 11. For the sake of illustration, a Type-II censored CSPALT data set was obtained
by considering r1 = 7 and r2 = 10. Accordingly, the MLEs and MPSEs and the associated
standard errors were acquired for the model parameters as well as the considered 95%
CIs, as shown in Table 6. Based on the outcomes of the latter table, one can observe that
the MPSEs of the parameters a and c perform better than the MLEs in terms of minimum
standard errors, while the MLE of the parameter b has a smaller standard error than the
MPSE. On the other hand, the CIs computed via the MPSEs have a slightly shorter interval
Lens than those obtained based on the MLEs, and similarly, the ACIs have slightly smaller
interval lengths among other CIs, except in some cases. Based on the MLEs and MPSEs
displayed in Table 6, the estimates of the mean time to failure (MTTF) and RF using some
mission times under normal use conditions were obtained and are displayed in Table 7.

Table 5. The MLEs, MPSEs and K-S statistics with the associated p-values for the oil breakdown,
assuming complete data.

Condition Estimator a b KS p-Value

Normal Use Condition MLEs 0.8060 0.0078 0.22794 0.5432
MPSEs 0.6832 0.0075 0.20797 0.6559

Accelerated Stress Condition MLEs 0.4151 0.0161 0.14895 0.8463
MPSEs 0.3663 0.0143 0.14783 0.8524
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Figure 11. The empirical and fitted CDF of the MKE distribution for oil breakdown data.

Table 6. The MLEs, MPSEs and the corresponding standard errors (in parentheses) and the different
95% CIs for the oil breakdown Type-II censored CSPALT data.

Method a b c

MLEs 0.8024(0.193) 0.0139(0.005) 3.2067(1.984)
ACIs (0.427, 1.178) (0.004, 0.024) (1.000, 7.096)
PBCIs (0.492, 2.301) (0.008, 0.039) (1.262, 20.23)
SBCIs (0.298, 1.309) (0.003, 0.028) (1.000, 4.874)

MPSEs 0.6281(0.163) 0.0118(0.006) 2.3484(1.402)
ACIs (0.309, 0.947) (0.001, 0.023) (1.000, 5.096)
PBCIs (0.295, 1.228) (0.005, 0.036) (1.000, 3.787)
SBCIs (0.000, 0.919) (0.000, 0.023) (1.000, 3.114)

Table 7. The MLEs and MPSEs of the MTTF and RF for the oil breakdown Type-II censored CSPALT data.

Method MTTF R1(10) R1(20) R1(50)

MLEs 43.808 0.8048 0.6695 0.3668
MPSEs 54.130 0.7625 0.6470 0.4181

Example 2 (Time to breakdown of steel specimens). The second data set was reported by
Nelson [35]. The data consist of the time to breakdown of steel specimens under different stress
levels. The data sets under stress levels of 40 KV (normal use) and 45 KV (accelerated stress), each
containing 12 observations, are listed in Table 8. Before analyzing this data, we checked the validity
of the MKE model to fit the two data sets. The MLEs, MPSEs and K-S and the corresponding
p-value were obtained and are listed in Table 9. It is seen from the results in Table 9 that the MKE
distribution could be accepted as a fit model for the given data sets. The empirical and fitted CDF
plots of the MKE distribution for the data in Table 8 are displayed in Figure 12.

Table 8. Time to breakdown of steel specimens, complete data.

Normal Use Condition (40 KV):

1, 1, 2, 3, 12, 25, 45, 56, 68, 109, 323, 417

Accelerated Stress Condition (45 KV):

1, 1, 1, 2, 2, 3, 9, 13, 47, 50, 55, 71
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Table 9. The MLEs, MPSEs and K-S statistics with the associated p-values for the breakdown of steel,
complete data.

Condition Estimator a b KS p-Value

Normal Use Condition MLEs 0.4176 0.0072 0.18718 0.79450
MPSEs 0.3863 0.0059 0.21841 0.61610

Accelerated Stress Condition MLEs 0.5074 0.0322 0.23105 0.54350
MPSEs 0.5191 0.0233 0.27436 0.32700
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Figure 12. The empirical and fitted CDF of the MKE distribution for the breakdown of steel data.

From the complete data sets in Table 8, a Type-II censored CSPALT data set was
considered by choosing r1 = r2 = 8. Consequently, the MLEs and MPSEs and the associated
standard errors were obtained and are reported in Table 10. In addition, the different 95%
CIs of the unknown parameters were evaluated and are displayed in Table 10. From the
tabulated outcomes given in Table 10, it is noted that CIs evaluated based on the MPSEs
had the smallest Lens in most of the cases, especially when estimating the parameters b
and c, and the bootstrap CIs based on the MPSEs performed better than the ACIs in terms
of CIs Lens, except for in the case when estimating the parameter a. Using the MLEs and
MPSEs presented in Table 10, the MLEs and MPSEs of the MTTF and RF using mission
times under normal use conditions were obtained and are displayed in Table 11.

Table 10. The MLEs, MPSEs and the corresponding standard errors (in parentheses) and the different
95% CIs for the breakdown of steel Type-II censored CSPALT data.

Method a b c

MLEs 0.61830 (0.01823) 0.01376 (0.00003) 2.98191 (2.56567)
ACIs (0.35369, 0.88291) (0.00272, 0.02480) (1.00000, 6.12132)
PBCIs (0.39397, 1.59171) (0.00802, 0.04358) (1.84773, 17.10302)
SBCIs (0.27484, 0.99224) (0.00093, 0.02838) (1.03927, 4.61020)

MPSEs 0.51429 (0.02089) 0.01037 (0.00004) 1.83031 (1.28120)
ACIs (0.23104, 0.79755) (0.00000, 0.02201) (1.0000, 4.04879)
PBCIs (0.25990, 0.95612) (0.00436, 0.04049) (1.21514, 3.09663)
SBCIs (0.00000, 0.79302) (0.00000, 0.02015) (0.67398, 2.64974)
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Table 11. The MLEs and MPSEs of the MTTF and RF for the breakdown of steel Type-II censored
CSPALT data.

Method MTTF R1(5) R1(20) R1(50)

MLEs 46.61 0.8226 0.6118 0.3702
MPSEs 65.532 0.8015 0.6249 0.4405

8. Conclusions

In this paper, investigation of the constant-stress partially accelerated life test, where
the lifetime of the experimental units is obtained from the modified Kies exponential
distribution, is considered. Based on Type-II censored data, the maximum likelihood
and maximum product of spacing estimates of the unknown parameters are obtained.
Furthermore, using both estimation methods, the approximate confidence intervals of
the unknown parameters are built using the observed Fisher information matrix. In
addition, two parametric bootstrap confidence intervals based on both approaches are
additionally given for comparison objects. The efficiency of the various point and interval
estimators is examined via simulation studies. Two real data sets are considered to show
the applicability of the methods employed in this paper. The simulation and real data
analysis outcomes show that the maximum product of spacing provides better estimates
than their conventional counterparts derived using the maximum likelihood approach.
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