
����������
�������

Citation: Liu, Q.; Cui, C.; Fan, Q.

Self-Adaptive Constrained

Multi-Objective Differential

Evolution Algorithm Based on the

State–Action–Reward–State–Action

Method. Mathematics 2022, 10, 813.

https://doi.org/10.3390/

math10050813

Academic Editors: Linqiang Pan,

Zhihua Cui, Harish Garg,

Thomas Hanne and Gai-Ge Wang

Received: 22 January 2022

Accepted: 2 March 2022

Published: 3 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Self-Adaptive Constrained Multi-Objective Differential
Evolution Algorithm Based on the
State–Action–Reward–State–Action Method
Qingqing Liu, Caixia Cui and Qinqin Fan *

Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China;
202030510155@stu.shmtu.edu.cn (Q.L.); cuicaixia0928@163.com (C.C.)
* Correspondence: qqfan@shmtu.edu.cn; Tel.: +86-135-2446-0557

Abstract: The performance of constrained multi-objective differential evolution algorithms (CMOEAs)
is mainly determined by constraint handling techniques (CHTs) and their generation strategies. To
realize the adaptive adjustment of CHTs and generation strategies, an adaptive constrained multi-
objective differential evolution algorithm based on the state–action–reward–state–action (SARSA)
approach (ACMODE) is introduced in the current study. In the proposed algorithm, the suitable CHT
and the appropriate generation strategy can be automatically selected via a SARSA method. The
performance of the proposed algorithm is compared with four other famous CMOEAs on five test
suites. Experimental results show that the overall performance of the ACMODE is the best among all
competitors, and the proposed algorithm is capable of selecting an appropriate CHT and a suitable
generation strategy to solve a particular type of constrained multi-objective optimization problems.

Keywords: constrained multi-objective optimization; evolutionary computation; reinforcement
learning; SARSA method

MSC: 68Txx

1. Introduction

Constrained multi-objective optimization problems (CMOPs) are commonly found in
the field of engineering optimization, such as robot’s design optimization [1], compressed-
air station scheduling problem [2] and scheduling optimization of microgrid [3]. To
effectively solve CMOPs, various improved CMOEAs have been proposed. For exam-
ple, Wang et al. [4] proposed a cooperative multi-objective evolutionary algorithm with a
propulsive population (CMOEA-PP) to achieve a tradeoff among the diversity, the con-
vergence, and the feasibility in different evolutionary stages. Datta et al. [5] combined the
evolutionary multi-objective optimization method with the penalty function method, and
proposed a bi-objective hybrid constrained optimization algorithm (HyCon) to deal with
CMOPs. Yuan et al. [6] proposed an indicator-based evolutionary algorithm to prevent the
population from falling into local areas. Cui et al. [7] proposed an adaptive constraint han-
dling technique (CHT), which can adaptively select suitable CHT from three state-of-the-art
CHTs via the Q-learning method.

Although various CMOEAs have been proposed to carry out adaptation selection of
CHTs, their search strategies are generally constant during the entire evolutionary process.
Therefore, it may not be effective when solving different types of CMOPs. To alleviate
the above issues, an adaptive constraint multi-objective differential evolution algorithm
based on SARSA method (named as ACMODE) is proposed. In the ACMODE, three
commonly used CHTs are selected and the SARSA [8] is utilized to select appropriate CHTs
during different stages of the evolution. Moreover, two-generation strategies are chosen in
differential evolution (DE), and the SARSA method is used to select appropriate generation

Mathematics 2022, 10, 813. https://doi.org/10.3390/math10050813 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10050813
https://doi.org/10.3390/math10050813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8603-5161
https://doi.org/10.3390/math10050813
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10050813?type=check_update&version=2

Mathematics 2022, 10, 813 2 of 23

strategies in the next iteration. Simulation experiments with four other CMOEAs are carried
out on five constrained multi-objective test suites, and the results show that the ACMODE
is more competitive than the four other CMOEAs.

The main contribution of this work is to realize the adaptive adjustment of CHTs and
generation strategies in the ACMODE. Three CHTs and two DE’s generation strategies are
integrated into the proposed algorithm. The simulation results show that the appropriate
CHT and generation strategy can be self-adaptively selected from CHT and generation
strategy pools to solve a particular type of CMOPs during the entire evolutionary pro-
cess. Therefore, ACMODE can integrate the advantages of different CHTs and generation
strategies when solving different CMOPs.

The rest of this paper is arranged as follows. Section 2 reviews the related works.
Section 3 briefly introduces some basic concepts. The details of the proposed algorithm are
presented in Section 4. Subsequently, the experimental results and analyses are shown in
Section 5. Some discussions are provided in Section 6. Section 7 draws some conclusions.

2. Literature Review
2.1. Constrained Multi-Objective Evolutionary Algorithms

Recently, a large number of CMOEAs have been proposed to solve CMOPs. For
example, Yu et al. [9] proposed a corner point-based algorithm, which has two stages: in
the first stage, corner points are quickly found, and in the second stage, a new diversity
and convergence strategy is used to approach the real Pareto front. In [10], CMOPs
can be divided into three types according to the relationship between the constrained
Pareto-optimal front and unconstrained Pareto front. By considering potential problem
types, a new CHT was proposed to solve CMOPs. Fan et al. [11] introduced a novel
framework, in which the entire search process is divided into push stage and pull stage.
Constraints have not been considered in the push stage, while an improved epsilon-
constraint method is used in the pull phase. To improve the search performance of MOEAs,
a local search mechanism [12] was proposed, which can contain constraint information
and does not need to explicitly calculate gradient information. Liu et al. [13] developed
an indicator-based CMOEA framework, in which indicator-based MOEAs and CHTs are
effectively combined to solve CMOPs. In [14], a coevolutionary framework was proposed
to solve CMOPs via using two different populations. A two-phase framework (ToP) was
proposed in Ref. [15]. In the ToP, a CMOP was transformed into constrained single-objective
optimization problems for locating promising regions in the first phase, and a specific and
efficient CMOEA was employed to find feasible solutions in the second stage. In addition,
a dual-stage dual-population evolutionary algorithm [16] was proposed recently. The
whole search process was divided into exploration and exploitation, and two populations
evolved with and without considering the constraints. Based on the DE [17], a new DE
variant named IMDE [18] was proposed, which used infeasible solutions to guide mutation
operators and applied multiple combinations of mutation strategies and control parameters
to enhance the search performance. Yu et al. [19] proposed a dynamic selection preference-
assisted constrained multiobjective differential evolutionary algorithm (DSPCMDE). In
DSPCMDE, the selection preference of each individual changes from objective functions
to constraint function as the evolutionary process. To balance feasibility, convergence and
distribution, Yang et al. [20] proposed a multi objective differential evolutionary algorithm
based on partition selection (MODE-PS). In MODE-PS, a CMOP is divided into several
subproblems by objective space to keep the distribution. Each subspace saves one feasible
solution to a feasible solution set to maintain the feasibility of the subspaces. Once there
are feasible solutions in one subspace, the individual selection strategy is changed from
constraint search to non-constraint search to accelerate the convergence. Lin et al. [21]
proposed a multi-objective differential evolution with dynamic hybrid constraint handling
mechanism (MODE-DCH) to tackle CMOPs. In the MODE-DCH, the different search
models combined with different CHTs are used. In addition, Xiao et al. [22] proposed a new
mutation mechanism. In this mechanism, DE mutation operator and Gaussian mutation

Mathematics 2022, 10, 813 3 of 23

operator are used to deal with infeasible solutions and feasible solutions respectively.
Wang et al. [23] proposed a cooperative differential evolution framework (CCMODE) in
which the mutation operator is used to guide the infeasible individuals to move to the
feasible region.

2.2. Self-Adaptive Evolutionary Algorithms

No strategy can perform best on all types of CMOPs due to No Free Lunch [24]. To in-
tegrate the advantage of different strategies, many self-adaptive constrained multi-objective
evolutionary algorithms have been introduced. Based on the improved epsilon-constraint
method, Yang et al. [25] proposed a multi-objective differential evolutionary algorithm
named MODE-SaE. In MODE-SaE, the global search and local search can be self-adaptively
adjusted by self-switching parameters of the search engine to balance the convergence
and distribution. In [26], a CMOP was decomposed into multiple subproblems. Each
subproblem has a subpopulation in a subregion. The appropriate CHT can be adaptively
selected in each subregion. Based on decomposition and the DE, Liu and Bi [27] presented
an adaptive ε-constraint MOEA to make full use of the information of infeasible solutions.
They also proposed an adaptive DE mutation strategy to increase search efficiency and
avoid falling into the local optimum. In [28], an adaptive search operator scheme was
introduced. When a search operator hits a difficult patch in the search space, the scheme
“reacts” to that by potentially calling upon a different search operator. Zhang et al. [29] pro-
posed a constrained multi-objective optimization algorithm based on adaptive ε-truncation
(ε-T-CMOA) to further improve the distribution and convergence of the obtained solutions.
In [30], an adaptive repair approach was proposed to improve the efficiency of constraint
handling in non-dominance. Repairing was carried out on the solutions that dominate all
feasible solutions or have the smallest constraint violation.

3. Basic Concepts
3.1. Constrained Multi-Objective Optimization Problem

CMOPs can be mathematically defined as follows:

min f (x) = (f1(x), f2(x), · · · , fm(x))
T

s.t. gj(x) ≤ 0, j = 1, 2, · · · , p
hj(x) = 0, j = p + 1, · · · , q
x = (x1, x2, · · · , xD)

T ∈ O,

(1)

where x is the D-dimensional decision vector; f (x) is an objective vector containing m
objectives; gj(x) is the jth inequality constraint and p denotes the number of inequality
constraints; hj(x) is the (j-p)th equality constraint and has (q-p) equality constraints; O is
the decision space.

The constraint violation degree of the solution x can be computed as:

Cj(x) =
{

max
(
0, gj(x)

)
, 1 ≤ j ≤ p

max
(
0,
∣∣hj(x)− δ

∣∣) , p + 1 ≤ j ≤ q
, (2)

where δ is the tolerance value of equality constraints and is usually set as a small positive
value. The overall constraint violation degree of the solution x can be calculated as follows:

C(x) =
q

∑
j=1

C(x). (3)

For Equation (3), the solution x is a feasible solution when C(x) = 0. On the contrary, it
is an infeasible solution.

3.2. Concepts in Multi-Objective Optimization Problem

Basic concepts in multi-objective optimization are represented as follows [31]:

Mathematics 2022, 10, 813 4 of 23

Definition 1 (Dominance relation). If there are two vectors u and v in the minimization opti-
mization problem, ∀n ∈ {1, 2, · · ·, m}, un ≤ vn and u 6=v, then is said to dominate v, denoted as
u � v.

Definition 2 (Pareto optimal set). For a solution x∗ ∈ RD, if and only if there is no other solution
x such that F(x) � F(x∗), it is called a Pareto optimal solution of a CMOP. All the Pareto optimal
solutions form the Pareto set (PS), defined as X∗.

Definition 3 (Pareto front). The Pareto front can be referred to PF = {F(x∗)|x∗ ∈ X∗ }.

3.3. Constraint Handling Strategies

The CHTs adopted in our proposed algorithm are self-adaptive penalty (SP), constrained-
domination principle (CDP) and adaptive tradeoff model (ATM).

3.3.1. SP

SP [32] is a representative way to solve CMOPs which penalizes the infeasible indi-
vidual with a penalty function. It has two main components: the distance value and the
penalty function. SP can be defined as follows:

Mn(x) = ln(x) + bn(x),

ln(x) =

{
C(x) , if r f= 0√

f̃n(x)
2 + C(x)2 , otherwise

,

bn(x) =
(

1− r f

)
cn(x) + r f en(x),

cn(x) =
{

0, if r f = 0
C(x), otherwise

,

en(x) =
{

0, if x is a feasible individual
f̃n(x), otherwise

,

(4)

where ln(x) is the n-th distance value; bn(x) is the n-th penalty value; C(x) is the degree of

constrained violation, C(x) = 1
q

q
∑

j=1

Cj(x)
Cmax

j
; f̃n(x) is the normalized objective function value;

rf is feasible rate of the population; Then, the population is sorted based on the m fitness
functions M1, M2 . . . , Mm via the nondominated sorting.

3.3.2. CDP

CDP [33] proposed by Deb is a simple and efficient technology to select individuals,
which compares pairwise individuals based on the following rules:

• Any feasible solution is preferred to any infeasible solution.
• For two feasible solutions, the Pareto non-dominant individual is preferred.
• For two infeasible solutions, the one with a smaller degree of constraint violation

is preferred.

3.3.3. ATM

Based on the feasibility ratio of the current population, ATM [34] divides the evolu-
tionary process into three situations:

• The infeasible situation: The constraint violation is considered as an additional ob-
jective. The nondominated sorting is applied, and then half of the individuals with
fewer constraint violations in the first layer are sorted in the offspring population,
then deleted from the population. The same operation is performed on the remaining
individuals until the number of offspring reaches population size.

Mathematics 2022, 10, 813 5 of 23

• The semi-feasible situation: Similar to SP, ATM uses a new function, which is calculated
as follows:

Mn(x) = f̃n(x) + C̃(x),

f̃n(x) =
f ′n(x)−min

x∈P
f ′n(x)

max
x∈P

f ′n(x)−min
x∈P

f ′n(x)
,

C̃(x) =

0, x ∈ PY

C(x)−min
x∈PN

C(x)

max
x∈PN

C(x)−min
x∈PN

C(x)
, x ∈ PN

,

f ′n(x) =
{

fn(x), x ∈ PY
max{ϕ ∗ fmin + (1− ϕ) ∗ fmin}, x ∈ PN

,

(5)

where ϕ represents the feasible ratio of the last iteration population; PY and PN is the set of
feasible and infeasible solutions in P. The m fitness functions M1, M2 . . . , Mm are used to
sort the population via the nondominated sorting.

• The feasible situation: Nondominated sorting is used to select individuals.

3.4. Performance Metric

In the present work, two widely used performance metrics are employed: the inverted
generational distance (IGD) and the hypervolume (HV).

3.4.1. IGD

IGD [35] is calculated as:

IGD(H, PF∗) =

√
∑z∗∈PF∗ d(z∗, H)2

|PF∗| , (6)

where H represents the PF approximation; PF* is a set of solutions obtained by evolutionary
algorithms, which is uniformly distributed along the true PF; d (z*, H) is the minimum
Euclidean distance between individual z* in PF* and H, |PF*| denotes the number of points
in PF*. The algorithm with a smaller IGD value has better performance [36]. Generally, IGD
can simultaneously evaluate the convergence and diversity of PF.

3.4.2. HV

HV [37] can be defined as follows:

HV(H) = L
(
∪

z∈H
[z1, zr

1]× · · · ×[zm, zr
m]

)
, (7)

where L is the Lebesgue measure; z = (z1, . . . , zm) represents a solution in H; and
zr =

(
zr

1, . . . , zr
m
)

denotes a worst point dominated by all the Pareto optimal solutions.
A larger HV means a better Pareto front set in both the convergence and the diversity [36].

3.5. Basics of DE

Differential evolution algorithm [38] is a simple and efficient meta-heuristic search
algorithm. Its main operator steps are as follows:

3.5.1. Generation Strategy

Two commonly seen generation strategies are as follows:
“DE/rand-to-best/1/bin”:

vG
i = xG

r1 + rand · (xG
best − xG

i) + F · (xG
r2 − xG

r3) , (8)

Mathematics 2022, 10, 813 6 of 23

uG
ij =

{
vG

ij , Rj ≤ CR or j = jrand

xG
ij , otherwise

, j = 1, 2, · · ·D , (9)

“DE/current-to-rand/1”:

vG
i = xG

i + rand · (xG
r3 − xG

i) + F · (xG
r1 − xG

r2) , (10)

where xG
i is the ith individual in the Gth generation; indices r1, r2, and r3, which are all

different from i and are randomly generated from 1 to NP (population size). The scale
factor is F, which is used to scale differential vectors. xG

best represents the best individual
in the Gth generation. Rj is a random number, which ranges from 0 to 1; CR is crossover
probability; jrand is an integer randomly generated within [1, D]. It is worth noting that
the binomial crossover is not implemented in “DE/current-to-rand/1”. The information
of the best individual is employed in “DE/rand-to-best/1/bin”, so it is able to enhance
the convergence. While the diversity can be maintained in “DE/current-to-rand/1”, since
other randomly selected individuals are learned.

3.5.2. Selection

After the generation strategy, the selection operation is performed to select the good
solutions as the parents for the next generation, which can be defined as follows:

xG+1
i =

{
uG

i , f (uG
i) ≤ f (xG

i)
xG

i , otherwise
, (11)

where xG+1
i is the selected solution that can be used in next generation.

4. Proposed Algorithm

Different CHTs and generation strategies have significant effects on the performance
of CMOEAs. To further improve the performance, an adaptive constrained multi-objective
differential evolution algorithm (ACMODE) is proposed in the present study. When solving
different types of CMOPs in the ACMODE, suitable CHT and generation strategies can be
adaptively selected during the whole evolutionary process.

The main operators in the ACMODE are as follows:

4.1. Adaptive Constraint Handling Technology

Different CHTs are suitable for solving different properties of CMOPs, thus the adap-
tation of CHTs is proposed in the current work. Three commonly used CHTs (SP [32],
CDP [33] and ATM [34]) are selected and the SARSA method is used to realize the adapta-
tion of these three different CHTs. To evaluate the performance of each CHT, an improved
IGD is given as follows [39]:

mIGD(H, PF) =

√
∑z∈PF d(z, H)2∣∣PF

∣∣ , (12)

where PF is selected from all achieved PF approximations.
The pseudocode of the proposed adaptive CHT method is described in Algorithm 1.

The action space can be defined as AC = [SP, CDP, ATM], the state space can be expressed
as SV = [excellent, medium, poor], and the value of reward RC is [1, 0, −1] [40]. The form
of the Q-table is shown in Table 1:

Mathematics 2022, 10, 813 7 of 23

Table 1. The form of Q-table.

Q-Table SP CDP ATM

excellent Q (1,1) Q (1,2) Q (1,3)
medium Q (2,1) Q (2,2) Q (2,3)

poor Q (3,1) Q (3,2) Q (3,3)

In lines 1 to 2, according to AC, the number of individuals choosing each CHT can be
determined. Therefore, mIGD value can be calculated by Equation (12). In lines 3 to 6, the
maximum mIGD value represents the individual choosing this CHT in the “poor” state and
its reward is −1; the middle mIGD value indicates the state is “medium” and its reward
is 0; and the reward of “excellent” CHT is 1. State s

′
is used to predict action a

′
and then

update the Q-table. Finally, action chain AC is updated.

Algorithm 1: Adaptive Constraint Handling Technique

Input: the state vector SV and the reward chain RC
Output: action chain AC

1 Determine the number of individuals selecting each CHT via AC;
2 Calculate mIGD value according to Equation (12).
3 Obtain the s

′
and r according to mIGD value, and update SV and RC;

4 Use ε-greedy method to predict individual action a
′

according to s
′
;

5 Update Q-table: Q(s, a) = Q(s, a) + α(r + γQ(s′, a′)−Q(s, a));
6 Update action chain AC;

4.2. Adaptive Generation Strategy

Different generation strategies play distinct roles in the search process. “DE/current-to-
rand/1” has good exploration and search ability, while “DE/rand-to-best/1/bin” possesses
good local search capability and its convergence speed is faster than “DE/rand/1”. Conse-
quently, two-generation strategies are applied in the proposed algorithm. The process of
adaptive generation strategy is as follows:

Step 1: initialize the state s0 for each individual and the corresponding Q-table. Set a
as the action selected by the individual in the initial state using the ε-greedy method.

Step 2: perform the current action a in the current state s. According to the generation
strategy chain GC, the number of individuals selecting each generation strategy can be
determined. The mIGD value can be calculated by Equation (12).

Step 3: the minimum mIGD value represents that the individual choosing this gener-
ation strategy is in an “excellent” state, and its reward is 1. While the reward of “poor”
generation strategy is 1. The new state and the corresponding reward can be obtained.

Step 4: according to s
′
, a new action a

′
is selected.

Step 5: update the Q-table: Q(s, a) = Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)).
Step 6: s = s

′
; a = a

′
.

Step 7: update GC.

4.3. Overall Implementation of the Proposed Algorithm

The proposed algorithm ACMODE mainly includes two stages, namely initialization
and self-adaptation. The pseudocode of our proposed algorithm is described in Algorithm 2.
Lines 1 to 2 are the initialization operator. Firstly, the population is randomly generated.
Then, the state vector AV and GV , the action chain AC and GC and the reward chain RC
and GRC are also initialized. Lines 3–9 realize the adaption of CHTs and the adaption
of generation strategies. Finally, feasible solutions are selected to enter in the external
archive B.

Mathematics 2022, 10, 813 8 of 23

Algorithm 2: ACMODE

Input: Gmax: the maximum number of iterations
Output: final solution set P

1 Initialize population PG =
{

xG
1 , . . . , xG

i , . . . xG
NP
}

;

2
Initialize the external archive B, Q-table, the state vector AV and GV , the action chain AC
and GC and the reward chain RC and GRC;

3 for G=1: Gmax do
4 Each individual selects a F value from the set {0.6, 0.8, 1.0};
5 Each individual selects a CR value from the set {0.1, 0.2, 1.0};
6 Implement the adaptation of generation strategies according to Section 4.2;
7 Implement the adaptation of CHTs according to algorithm 1;
8 Save the feasible solutions at the first level of non-dominated sorting to B;
9 end for

10 Output final solution set P according to B.

5. Experimental Studies

To evaluate the performance of the ACMODE algorithm, it was compared with four
other CMOEAs, which are ACHT-CMODE [7], AGS-CMODE, MOEA/D-CDP [41] and
ANSGAIII [42]. In addition, two nonparametric statistical tests, the Wilcoxon rank sum
test [43] and the Friedman test [44], are employed to analyze the search performances of all
comparison algorithms. “+”, “−” and “=”, respectively, indicate that the performance of
the comparison algorithm is superior, inferior or similar to that of the ACMODE.

5.1. Benchmark Test Functions and Parameter Settings

All experiments are performed on five benchmark test suites, which are CF [45], LIR-
CMOP [46], NCTP [47], MW [48] and DAS-CMOP [49]. CF has 10 CMOPs, LIR-CMOP has
14 test functions, NCTP has 18 test functions, MW has 14 test functions and DAS-CMOP
has nine test functions. Two comprehensive performance indicators (IGD and HV) are
used to evaluate the algorithm’s performance. For all compared algorithms, run times are
set to be 30 on each function, the maximum number of iterations is set to be 500, and the
population size is set to be 100. Furthermore, the parameter settings of other comparison
algorithms are consistent with the original literature.

5.2. Comparison Results
5.2.1. Comparison Results on CF Test Suite

For the CF test suite, Tables 2 and 3 give the comparison results of ACMODE and its
comparison algorithms in terms of IGD and HV, respectively. Note that IGD and HV can
be only used to calculate feasible solutions. The best results are in bold.

As shown in Table 2, the results obtained by Wilcoxon’s rank sum test reveal that
ACMODE is significantly better than ACHT-CMODE in nine test functions. There is no
significant difference between ACMODE and ACHT-CMODE on CF4. In addition, ACMODE
performs better than AGS-CMODE in five test functions. ACMODE is similar to AGS-CMODE
in five test functions. For the rest of the competitors, MOEA/D-CDP and ANSGAIII are,
respectively, worse than ACMODE in nine test functions. ACMODE is similar to MOEA/D-
CDP and ANSGAIII in one test function, respectively. The results shown in Table 2 indicate
that ACMODE is the best one among all compared algorithms with respect to IGD. The
superior performance of the ACMODE is mainly because that appropriate generation strategy
and CHT can be adaptively selected in the ACMODE at different stages of evolution.

It can be observed from Table 3 that ACHT-CMODE is outperformed by ACMODE
in eight test functions. Moreover, there is no significant difference between ACMODE and
ACHT-CMODE on CF9 and CF10. ACMODE performs significantly better than AGS-CMODE
in seven test functions. The performance of ACMODE is similar to that of AGS-CMODE on
CF2, CF7 and CF10. Furthermore, MOEA/D-CDP and ANSGAIII are significantly surpassed
by ACMODE in all test functions. According to the results shown in Table 3, ACMODE is

Mathematics 2022, 10, 813 9 of 23

superior to the other four competitors in terms of HV. The superiority of ACMODE is mainly
due to the adaptation of generation strategies and CHTs. The true PFs of CF8 and CF10 are
disconnected and hindered by several large infeasible regions. This brings challenges to the
CMOEAs. MOEA/D-CDP and ANSGAIII are unable to find feasible solutions. However, the
experimental results show that the adaptive adjustment of CHTs and generation strategies is
beneficial to pass through the infeasible region and then approach the feasible parts.

Table 2. IGD results of all comparison algorithms on CF test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

CF1
5.2867 × 10−2 3.7910 × 10−2 3.7102 × 10−2 3.4372 × 10−2 1.0970 × 10−2

(7.62 × 10−3) − (1.19 × 10−2) − (4.12 × 10−3) − (3.22 × 10−3) − (1.70 × 10−3)

CF2
9.0126 × 10−2 3.0672 × 10−2 1.8108 × 10−1 8.2723 × 10−2 3.0182 × 10−2

(3.69 × 10−2) − (1.15 × 10−2) = (5.59 × 10−2) − (4.15 × 10−2) − (1.00 × 10−2)

CF3
2.9612 × 10−1 2.6593 × 10−1 3.3179 × 10−1 2.2112 × 10−1 1.4216 × 10−1

(9.80 × 10−2) − (1.10 × 10−1) − (1.21 × 10−1) − (5.41 × 10−2) − (1.11 × 10−1)

CF4
7.6876 × 10−2 7.3348 × 10−2 1.6755 × 10−1 1.0219 × 10−1 7.0695 × 10−2

(1.79 × 10−2) = (9.28 × 10−3) = (4.40 × 10−2) − (3.14 × 10−2) − (1.01 × 10−2)

CF5
3.8964 × 10−1 2.5490 × 10−1 3.7316 × 10−1 2.9797 × 10−1 2.2979 × 10−1

(1.77 × 10−1) − (1.02 × 10−1) = (1.45 × 10−1) − (1.22 × 10−1) − (1.41 × 10−1)

CF6
6.6338 × 10−2 6.1696 × 10−2 1.7894 × 10−1 7.5225 × 10−2 5.0066 × 10−2

(2.31 × 10−2) − (2.76 × 10−2) − (5.31 × 10−2) − (2.96 × 10−2) − (2.14 × 10−2)

CF7
3.0948 × 10−1 2.5622 × 10−1 4.1771 × 10−1 3.2974 × 10−1 2.1991 × 10−1

(1.59 × 10−1) − (1.86 × 10−1) = (1.62 × 10−1) − (1.25 × 10−1) − (1.20 × 10−1)

CF8
4.0369 × 10−1 3.2016 × 10−1 NaN NaN 3.0085 × 10−1

(1.01 × 10−1) − (2.46 × 10−2) − (NaN) (NaN) (3.02 × 10−2)

CF9
2.2998 × 10−1 1.9144 × 10−1 1.6194 × 10−1 1.9518 × 10−1 1.6347 × 10−1

(2.75 × 10−2) − (1.63 × 10−2) − (2.33 × 10−2) = (1.08 × 10−1) = (2.48 × 10−2)

CF10
4.8295 × 100 6.1970 × 10−1 NaN NaN 5.8169 × 10−1

(4.96 × 100) − (8.87 × 10−2) = (NaN) (NaN) (9.69 × 10−2)

+/=/− 0/1/9 0/5/5 0/1/9 0/1/9 /

Table 3. HV results of all comparison algorithms on CF test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

CF1
5.0226 × 10−1 5.3020 × 10−1 5.1961 × 10−1 5.2354 × 10−1 5.5277 × 10−1

(7.44 × 10−3) − (1.35 × 10−2) − (4.77 × 10−3) − (4.12 × 10−3) − (2.06 × 10−3)

CF2
6.1541 × 10−1 6.3414 × 10−1 5.5158 × 10−1 5.9870 × 10−1 6.3741 × 10−1

(2.87 × 10−2) − (1.64 × 10−2) = (3.16 × 10−2) − (2.31 × 10−2) − (1.21 × 10−2)

CF3
1.4263 × 10−1 6.2928 × 10−2 1.4502 × 10−1 1.6713 × 10−1 2.2932 × 10−1

(4.49 × 10−2) − (5.37 × 10−2) − (3.71 × 10−2) − (3.70 × 10−2) − (6.97 × 10−2)

CF4
4.1802 × 10−1 4.2951 × 10−1 3.6115 × 10−1 4.1346 × 10−1 4.4357 × 10−1

(2.82 × 10−2) − (1.88 × 10−2) − (3.64 × 10−2) − (3.10 × 10−2) − (1.33 × 10−2)

CF5
1.7365 × 10−1 2.1278 × 10−1 2.5767 × 10−1 2.6832 × 10−1 3.0478 × 10−1

(1.16 × 10−1) − (7.31 × 10−2) − (7.95 × 10−2) − (6.40 × 10−2) − (8.62 × 10−2)

CF6
6.3664 × 10−1 6.4217 × 10−1 5.9050 × 10−1 6.3067 × 10−1 6.5454 × 10−1

(1.30 × 10−2) − (1.17 × 10−2) − (3.13 × 10−2) − (1.78 × 10−2) − (1.13 × 10−2)

CF7
3.0291 × 10−1 4.5368 × 10−1 3.6811 × 10−1 4.2346 × 10−1 4.8571 × 10−1

(1.75 × 10−1) − (1.14 × 10−1) = (1.18 × 10−1) − (7.56 × 10−2) − (8.66 × 10−2)

CF8
1.6747 × 10−1 1.7895 × 10−1 NaN NaN 2.1303 × 10−1

(5.29 × 10−2) − (2.12 × 10−2) − (NaN) (NaN) (2.79 × 10−2)

CF9
3.8431 × 10−1 3.3650 × 10−1 3.6784 × 10−1 3.6594 × 10−1 3.9182 × 10−1

(5.47 × 10−2) = (3.04 × 10−2) − (2.87 × 10−2) − (6.20 × 10−2) − (3.27 × 10−2)

CF10
6.2801 × 10−2 9.8047 × 10−2 NaN NaN 1.0148 × 10−1

(8.36 × 10−2) = (1.45 × 10−2) = (NaN) (NaN) (2.46 × 10−2)

+/=/− 0/2/8 0/3/7 0/0/10 0/0/10 /

Mathematics 2022, 10, 813 10 of 23

5.2.2. Comparison Results on LIR-CMOP Test Suite

For LIR-CMOP test suite, Tables 4 and 5 list the results of all comparison algorithms in
terms of IGD and HV, respectively. The best results are in bold.

Based on the results obtained by Wilcoxon’s rank sum test in Table 4, we can ob-
serve that ACMODE significantly outperforms ACHT-CMODE in all 14 test functions.
ACMODE performs better than AGS-CMODE in ten test functions and is similar to AGS-
CMODE in four test functions. AGS-CMODE carries out the adaptation of generation
strategies, and only one constraint handling method (i.e., CDP) is used. However, AC-
MODE simultaneously realizes the adaptive adjustment of CHTs and generation strategies.
Compared with MOEA/D-CDP, ACMODE shows the similar performance on LIR-CMOP4
and LIR-CMOP6. ACMODE is significantly better than MOEA/D-CDP in 12 test functions.
However, ACMODE is outperformed by MOEA/D-CDP on LIR-CMOP14. In addition,
ANSGAIII is significantly worse than ACMODE in 12 test functions. The performance
of the ACMODE is similar to that of ANSGAIII on LIR-CMOP4 and LIR-CMOP6. These
experimental results demonstrate that the ACMODE outperforms all the compared algo-
rithms. The effectiveness of the ACMODE can be attributed to the adaptation of CHTs and
generation strategies.

When the solutions obtained by the algorithm are all Pareto dominated by the reference
points, the HV value is zero. The reference points of other comparison algorithms are
consistent with the original literature [7,41,42]. From the results regarding HV shown in
Table 5, ACHT-CMODE performs significantly worse than ACMODE on all 14 test functions.
In fact, LIR-CMOP5-LIR-CMOP14 exists within the infeasible barriers when approximating
the true PF. ACMODE is more likely to choose “DE/rand-to-best/1/bin”, which has
a better exploration ability. Therefore, ACMODE is able to pass through the infeasible
region and find high-quality solutions. ACMODE is superior to AGS-CMODE in 11 test
functions, and there is no significant difference between ACMODE and AGS-CMODE
on LIR-CMOP4, LIR-CMOP9 and LIR-CMOP12. For the rest of compared algorithms,
MOEA/D-CDP and ANSGAIII are, respectively, worse than ACMODE in 12 test functions.
The performance of ACMODE is similar to that of MOEA/D-CDP and ANSGAIII in two
test functions, respectively. ACMODE particularly stands out among all the comparison
algorithms because its CHTs and generation strategies can be automatically selected at
different evolutionary stages for different CMOPs.

Table 4. IGD results of all comparison algorithms on LIR-CMOP test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

LIR-CMOP1
3.6782 × 10−1 2.3948 × 10−1 2.8261 × 10−1 3.1440 × 10−1 1.2279 × 10−1

(3.26 × 10−2) − (2.93 × 10−2) − (2.59 × 10−2) − (3.53 × 10−2) − (1.23 × 10−1)

LIR-CMOP2
3.1322 × 10−1 2.1796 × 10−1 2.4263 × 10−1 2.6801 × 10−1 9.6984 × 10−2

(4.71 × 10−2) − (4.85 × 10−2) − (2.63 × 10−2) − (2.32 × 10−2) − (9.13 × 10−2)

LIR-CMOP3
3.5187 × 10−1 2.8157 × 10−1 2.8272 × 10−1 3.1967 × 10−1 1.3190 × 10−1

(3.17 × 10−2) − (4.36 × 10−2) − (3.83 × 10−2) − (3.25 × 10−2) − (1.14 × 10−1)

LIR-CMOP4
3.2254 × 10−1 2.7900 × 10−1 2.6684 × 10−1 2.9089 × 10−1 1.6098 × 10−1

(7.29 × 10−3) − (4.83 × 10−2) = (3.91 × 10−2) = (2.94 × 10−2) = (1.09 × 10−1)

LIR-CMOP5
1.2205 × 100 1.2156 × 100 1.4539 × 100 1.2484 × 100 1.1738 × 100

(7.48 × 10−3) − (2.33 × 10−2) = (5.10 × 10−1) − (6.88 × 10−2) − (1.94 × 10−1)

LIR-CMOP6
1.3471 × 100 1.2726 × 100 1.4029 × 100 1.3460 × 100 1.1320 × 100

(1.02 × 10−3) − (2.38 × 10−1) − (2.59 × 10−1) = (3.32 × 10−4) = (3.99 × 10−1)

LIR-CMOP7
8.4456 × 10−1 1.0911 × 100 1.5268 × 100 1.4345 × 100 2.3164 × 10−1

(7.45 × 10−1) − (7.23 × 10−1) − (4.09 × 10−1) − (5.53 × 10−1) − (2.95 × 10−1)

LIR-CMOP8
1.1796 × 100 1.2161 × 100 1.6403 × 100 1.5431 × 100 8.1410 × 10−1

(6.73 × 10−1) − (6.40 × 10−1) − (2.10 × 10−1) − (4.10 × 10−1) − (7.27 × 10−1)

LIR-CMOP9
1.0273 × 100 5.5734 × 10−1 9.0252 × 10−1 1.0191 × 100 5.3120 × 10−1

(7.07 × 10−2) − (7.24 × 10−2) = (1.10 × 10−1) − (4.95 × 10−2) − (4.73 × 10−2)

Mathematics 2022, 10, 813 11 of 23

Table 4. Cont.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

LIR-CMOP10
9.2893 × 10−1 4.4541 × 10−1 7.9612 × 10−1 1.0207 × 100 3.2702 × 10−1

(4.32 × 10−2) − (8.36 × 10−2) − (1.46 × 10−1) − (5.34 × 10−2) − (7.42 × 10−2)

LIR-CMOP11
8.9470 × 10−1 5.1836 × 10−1 8.6793 × 10−1 9.2118 × 10−1 3.7547 × 10−1

(6.88 × 10−2) − (1.19 × 10−1) − (8.18 × 10−2) − (7.37 × 10−2) − (1.51 × 10−1)

LIR-CMOP12
7.2041 × 10−1 3.6486 × 10−1 6.8840 × 10−1 8.6910 × 10−1 3.4246 × 10−1

(1.19 × 10−1) − (5.08 × 10−2) = (1.64 × 10−1) − (1.61 × 10−1) − (5.85 × 10−2)

LIR-CMOP13
1.3443 × 100 1.3369 × 100 1.3056 × 100 1.3182 × 100 1.2505 × 100

(5.97 × 10−3) − (3.90 × 10−2) − (4.43 × 10−4) − (4.62 × 10−3) − (2.54 × 10−1)

LIR-CMOP14
1.3018 × 100 1.2980 × 100 1.2618 × 100 1.2753 × 100 1.2762 × 100

(5.25 × 10−3) − (5.31 × 10−3) − (4.42 × 10−4) + (3.67 × 10−3) − (3.77 × 10−2)

+/=/− 0/0/14 0/4/10 1/2/11 0/2/12

Table 5. HV results of all comparison algorithms on LIR-CMOP test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

LIR-CMOP-1
1.0470 × 10−1 1.3078 × 10−1 1.1914 × 10−1 1.0895 × 10−1 1.9034 × 10−1

(7.03 × 10−3) − (1.08 × 10−2) − (8.23 × 10−3) − (9.82 × 10−3) − (3.67 × 10−2)

LIR-CMOP-2
1.9590 × 10−1 2.4336 × 10−1 2.3581 × 10−1 2.2184 × 10−1 3.1171 × 10−1

(2.60 × 10−2) − (3.18 × 10−2) − (1.23 × 10−2) − (1.07 × 10−2) − (4.40 × 10−2)

LIR-CMOP-3
9.2036 × 10−2 1.0801 × 10−1 1.0552 × 10−1 9.8475 × 10−2 1.6380 × 10−1

(1.01 × 10−2) − (1.52 × 10−2) − (1.07 × 10−2) − (8.47 × 10−3) − (3.04 × 10−2)

LIR-CMOP-4
1.7758 × 10−1 1.9572 × 10−1 2.0185 × 10−1 1.9483 × 10−1 2.5029 × 10−1

(6.21 × 10−3) − (2.39 × 10−2) = (1.59 × 10−2) = (1.28 × 10−2) = (5.06 × 10−2)

LIR-CMOP-5
0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 2.4662 × 10−1

(0.00 × 100) − (0.00 × 100) − (0.00 × 100) − (0.00 × 100) − (9.96 × 10−2)

LIR-CMOP-6
0.0000 × 100 4.2375 × 10−3 0.0000 × 100 0.0000 × 100 6.3365 × 10−2

(0.00 × 100) − (1.63 × 10−2) − (0.00 × 100) − (0.00 × 100) − (1.73 × 10−2)

LIR-CMOP-7
1.3136 × 10−1 9.0241 × 10−2 2.2081 × 10−2 4.5117 × 10−2 2.3786 × 10−1

(1.17 × 10−1) − (1.18 × 10−1) − (6.09 × 10−2) − (9.18 × 10−2) − (2.69 × 10−2)

LIR-CMOP-8
7.4568 × 10−2 6.9517 × 10−2 5.1055 × 10−3 1.9617 × 10−2 2.2895 × 10−1

(1.01 × 10−1) − (9.96 × 10−2) − (2.80 × 10−2) − (5.99 × 10−2) − (3.90 × 10−2)

LIR-CMOP-9
1.0130 × 10−1 3.1252 × 10−1 1.5118 × 10−1 1.0356 × 10−1 3.3605 × 10−1

(3.17 × 10−2) − (4.57 × 10−2) = (5.40 × 10−2) − (2.38 × 10−2) − (3.16 × 10−2)

LIR-CMOP-10
7.7537 × 10−2 4.5558 × 10−1 1.4128 × 10−1 5.6946 × 10−2 5.2440 × 10−1

(2.52 × 10−2) − (5.70 × 10−2) − (7.65 × 10−2) − (1.03 × 10−2) − (4.21 × 10−2)

LIR-CMOP-11
1.7900 × 10−1 3.4756 × 10−1 2.0844 × 10−1 1.7725 × 10−1 4.4958 × 10−1

(1.49 × 10−2) − (1.07 × 10−1) − (5.00 × 10−2) − (2.22 × 10−2) − (1.20 × 10−1)

LIR-CMOP-12
3.1138 × 10−1 4.2061 × 10−1 3.2802 × 10−1 2.4222 × 10−1 4.3065 × 10−1

(5.58 × 10−2) − (4.38 × 10−2) = (7.24 × 10−2) − (8.08 × 10−2) − (4.98 × 10−2)

LIR-CMOP-13
4.6953 × 10−5 6.8231 × 10−4 4.2034 × 10−4 2.0855 × 10−4 3.0773 × 10−2

(1.00 × 10−4) − (3.51 × 10−3) − (3.94 × 10−5) = (1.75 × 10−4) − (8.88 × 10−2)

LIR-CMOP-14
1.7391 × 10−4 2.8551 × 10−4 9.5720 × 10−4 6.3627 × 10−4 2.2823 × 10−3

(2.35 × 10−4) − (2.64 × 10−4) − (4.84 × 10−5) − (3.57 × 10−4) = (8.72 × 10−3)

+/=/− 0/0/14 0/3/11 0/2/12 0/2/12

5.2.3. Comparison Results on NCTP Test Suite

For the NCTP test suite, Tables 6 and 7 give the comparison results of ACMODE and its
comparison algorithms in terms of IGD and HV, respectively. The best results are in bold.

According to the results obtained by Wilcoxon’s rank sum test in Table 6, ACHT-CMODE
is better than the proposed algorithm ACMODE on NCTP2, NCTP4 and NCTP5. However,
it is inferior to ACMODE in 14 test functions. ACMODE is similar to ACHT-CMODE on
NCTP1. The main reason is that ACHT-CMODE realizes the adaptation selection of CHTs,

Mathematics 2022, 10, 813 12 of 23

and its search strategies are generally constant during the entire evolutionary process. In
addition, ACMODE performs better than AGS-CMODE in 12 test functions. AGS-CMODE
is better than the proposed algorithm on NCTP1, NCTP2, NCTP13 and NCTP14. There
is no significant difference between AGS-CMODE and ACMODE on NCTP4 and NCTP5.
For the rest of the competitors, MOEA/D-CDP performs worse than ACMODE in 16 test
functions. MOEA/D-CDP and ACMODE have similar performance on NCTP1 and NCTP2.
Additionally, ANSGAIII is significantly surpassed by ACMODE in all test functions. The
results shown in Table 6 indicate that ACMODE is the best one among all compared algorithms.
The reason may be that appropriate generation strategies and CHTs can be automatically
selected at different stages of evolution for different types of CMOPs.

The results shown in Table 7 reveal that ACMODE performs better than ACHT-
CMODE in 12 test functions, but ACMODE is surpassed by ACHT-CMODE on NCTP7,
NCTP8 and NCTP13. ACMODE is superior to AGS-CMODE in eight test functions. How-
ever, AGS-CMODE outperforms ACMODE on NCTP7, NCTP8 and NCTP13. There is no
significant difference between AGS-CMODE and ACMODE in seven test functions. The
results demonstrate that both the adaptive CHT and the adaptation of generation strategy
play an important role in improving the performance of CMOEAs. For the rest of compared
algorithms, ACMODE is surpassed by MOEA/D-CDP on NCTP7 and NCTP8. MOEA/D-
CDP performs worse than ACMODE in eight test functions. ACMODE and MOEA/D-CDP
have no significant difference in eight test functions. Furthermore, ACMODE performs
better than ANSGAIII in 11 test functions. ACMODE is significantly outperformed by
ANSGAIII on NCTP3, NCTP5 and NCTP6. In addition, there is no significant difference
between ACMODE and ANSGAIII in four test functions. Overall, ACMODE is capable of
providing better feasible PF regarding convergence and diversity in most test functions.

Table 6. IGD results of all comparison algorithms on NCTP test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

NCTP1
1.3860 × 10−1 1.0771 × 10−1 2.4462 × 10−1 NaN 1.5979 × 10−1

(3.74 × 10−2) = (9.01 × 10−3) + (1.78 × 10−1) = (NaN) (6.96 × 10−2)

NCTP2
2.1228 × 10−1 2.3431 × 10−1 3.3089 × 10−1 NaN 2.5951 × 10−1

(4.01 × 10−2) + (1.85 × 10−2) + (9.41 × 10−2) = (NaN) (3.15 × 10−2)

NCTP3
1.0298 × 10−1 1.0074 × 10−1 1.7656 × 10−1 5.9349 × 10−1 7.4401 × 10−2

(6.58 × 10−2) − (1.87 × 10−2) − (1.48 × 10−1) − (8.93 × 10−1) − (1.62 × 10−2)

NCTP4
1.3090 × 10−1 1.0642 × 10−1 4.3209 × 10−1 4.6246 × 10−1 1.0313 × 10−1

(1.83 × 10−2) + (7.71 × 10−3) = (8.37 × 10−1) − (7.31 × 10−1) − (8.84 × 10−3)

NCTP5
2.1392 × 10−1 2.3318 × 10−1 5.0585 × 10−1 7.6896 × 10−1 2.3259 × 10−1

(4.81 × 10−2) + (1.69 × 10−2) = (6.93 × 10−1) − (9.25 × 10−1) − (2.19 × 10−2)

NCTP6
1.0380 × 10−1 9.2220 × 10−2 5.7480 × 10−1 7.5063 × 10−1 7.2113 × 10−2

(4.20 × 10−2) − (1.78 × 10−2) − (1.01 × 100) − (8.24 × 10−1) − (1.91 × 10−2)

NCTP7
2.7279 × 10−1 8.2332 × 10−2 5.4114 × 10−1 NaN 7.6018 × 10−2

(2.99 × 10−1) − (2.11 × 10−2) − (4.56 × 10−1) − (NaN) (2.79 × 10−2)

NCTP8
2.0817 × 10−1 8.0694 × 10−2 6.6398 × 10−1 NaN 6.9113 × 10−2

(1.04 × 10−1) − (2.61 × 10−2) − (5.79 × 10−1) − (NaN) (2.51 × 10−2)

NCTP9
1.1628 × 10−1 1.0837 × 10−1 8.1585 × 10−1 4.4256 × 10−1 7.0539 × 10−2

(5.60 × 10−2) − (3.46 × 10−2) − (1.13 × 100) − (5.35 × 10−1) − (3.59 × 10−2)

NCTP10
1.4095 × 10−1 7.7485 × 10−2 5.3551 × 10−1 8.6430 × 10−1 4.1228 × 10−2

(1.59 × 10−1) − (1.90 × 10−2) − (1.10 × 100) − (1.08 × 100) − (5.25 × 10−3)

NCTP11
2.2205 × 10−1 6.9075 × 10−2 6.7656 × 10−1 8.6755 × 10−1 4.9439 × 10−2

(2.11 × 10−1) − (1.39 × 10−2) − (5.20 × 10−1) − (1.41 × 100) − (1.17 × 10−2)

NCTP12
1.6543 × 10−1 1.1236 × 10−1 5.8721 × 10−1 8.9402 × 10−1 4.9613 × 10−2

(1.78 × 10−1) − (2.77 × 10−2) − (8.06 × 10−1) − (1.40 × 100) − (8.68 × 10−3)

NCTP13
1.9554 × 10−1 4.4096 × 10−2 NaN 5.3113 × 10−1 5.4671 × 10−2

(3.87 × 10−1) − (4.56 × 10−3) + (NaN) (5.81 × 10−1) − (2.72 × 10−2)

Mathematics 2022, 10, 813 13 of 23

Table 6. Cont.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

NCTP14
2.2531 × 10−1 4.4640 × 10−2 5.9747 × 10−1 NaN 6.1650 × 10−2

(3.94 × 10−1) − (8.54 × 10−3) + (6.17 × 10−1) − (NaN) (1.40 × 10−2)

NCTP15
1.5001 × 10−1 4.2951 × 10−2 4.5939 × 10−1 NaN 3.8772 × 10−2

(2.02 × 10−1) − (4.80 × 10−3) − (5.08 × 10−1) − (NaN) (3.05 × 10−3)

NCTP16
1.3413 × 10−1 4.4146 × 10−2 5.0853 × 10−1 4.9278 × 10−1 3.6088 × 10−2

(1.77 × 10−1) − (4.35 × 10−3) − (7.36 × 10−1) − (6.87 × 10−1) − (2.31 × 10−3)

NCTP17
1.0507 × 10−1 4.4572 × 10−2 3.8320 × 10−1 4.8897 × 10−1 3.6699 × 10−2

(1.01 × 10−1) − (6.69 × 10−3) − (4.51 × 10−1) − (5.88 × 10−1) − (2.63 × 10−3)

NCTP18
1.4100 × 10−1 4.4446 × 10−2 6.8239 × 10−1 6.9280 × 10−1 3.6178 × 10−2

(1.82 × 10−1) − (6.20 × 10−3) − (1.11 × 100) − (9.53 × 10−1) − (2.93 × 10−3)

+/=/− 3/1/14 4/2/12 0/2/16 0/0/18 /

Table 7. HV results of all comparison algorithms on NCTP test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

NCTP1
5.4088 × 10−1 5.6237 × 10−1 6.0289 × 10−1 NaN 5.7718 × 10−1

(2.76 × 10−2) − (8.20 × 10−3) − (6.26 × 10−2) = (NaN) (1.79 × 10−2)

NCTP2
5.4146 × 10−1 5.6460 × 10−1 5.7051 × 10−1 NaN 5.5957 × 10−1

(1.98 × 10−2) − (1.25 × 10−2) = (4.09 × 10−2) = (NaN) (9.94 × 10−3)

NCTP3
5.5944 × 10−1 6.0019 × 10−1 6.2467 × 10−1 6.2739 × 10−1 5.9190 × 10−1

(3.51 × 10−2) − (1.14 × 10−2) = (5.64 × 10−2) = (1.83 × 10−1) + (1.09 × 10−2)

NCTP4
5.4199 × 10−1 5.6015 × 10−1 5.5349 × 10−1 5.4983 × 10−1 5.5990 × 10−1

(1.96 × 10−2) − (8.50 × 10−3) = (1.09 × 10−1) = (1.94 × 10−1) − (8.87 × 10−3)

NCTP5
5.3512 × 10−1 5.6368 × 10−1 5.4810 × 10−1 5.7141 × 10−1 5.5636 × 10−1

(2.34 × 10−2) − (1.12 × 10−2) = (1.09 × 10−1) = (2.15 × 10−1) + (1.23 × 10−2)

NCTP6
5.6637 × 10−1 5.9506 × 10−1 5.5482 × 10−1 6.5762 × 10−1 5.9033 × 10−1

(3.18 × 10−2) − (1.10 × 10−2) = (1.92 × 10−1) − (2.03 × 10−1) + (9.67 × 10−3)

NCTP7
6.2801 × 10−1 6.4922 × 10−1 6.5732 × 10−1 NaN 5.1276 × 10−1

(6.24 × 10−2) + (2.70 × 10−3) + (1.58 × 10−1) + (NaN) (2.71 × 10−1)

NCTP8
6.1795 × 10−1 6.2606 × 10−1 5.7234 × 10−1 NaN 5.3824 × 10−1

(1.88 × 10−2) + (4.21 × 10−3) + (1.54 × 10−1) + (NaN) (2.03 × 10−1)

NCTP9
6.0831 × 10−1 6.0372 × 10−1 6.0243 × 10−1 5.7150 × 10−1 6.1349 × 10−1

(4.51 × 10−3) = (4.75 × 10−3) − (1.86 × 10−1) = (1.80 × 10−1) = (1.70 × 10−1)

NCTP10
6.4548 × 10−1 6.4932 × 10−1 6.0053 × 10−1 4.8179 × 10−1 6.5318 × 10−1

(2.30 × 10−2) − (2.52 × 10−3) − (1.77 × 10−1) = (2.16 × 10−1) = (1.64 × 10−3)

NCTP11
6.1443 × 10−1 6.2653 × 10−1 5.6357 × 10−1 5.3849 × 10−1 6.2895 × 10−1

(4.21 × 10−2) = (3.53 × 10−3) − (1.67 × 10−1) = (1.98 × 10−1) = (5.15 × 10−3)

NCTP12
6.4981 × 10−1 6.5731 × 10−1 6.2751 × 10−1 5.2498 × 10−1 6.6473 × 10−1

(3.01 × 10−2) − (3.24 × 10−3) − (1.84 × 10−1) − (2.49 × 10−1) = (1.99 × 10−3)

NCTP13
6.6543 × 10−1 7.0834 × 10−1 NaN 5.2705 × 10−1 6.1506 × 10−1

(1.38 × 10−1) + (8.72 × 10−4) + (NaN) (2.16 × 10−1) − (2.15 × 10−1)

NCTP14
5.7668 × 10−1 5.0439 × 10−1 NaN NaN 6.4519 × 10−1

(1.32 × 10−1) − (2.72 × 10−1) − (NaN) (NaN) (1.45 × 10−3)

NCTP15
4.0668 × 10−1 4.3265 × 10−1 3.2546 × 10−1 NaN 4.3636 × 10−1

(5.02 × 10−2) − (5.45 × 10−4) − (1.16 × 10−1) − (NaN) (1.26 × 10−3)

NCTP16
6.8158 × 10−1 7.0841 × 10−1 5.8498 × 10−1 5.6543 × 10−1 7.0887 × 10−1

(6.86 × 10−2) = (9.34 × 10−4) = (1.89 × 10−1) − (2.23 × 10−1) − (7.29 × 10−4)

NCTP17
6.1449 × 10−1 5.5516 × 10−1 5.2751 × 10−1 4.8065 × 10−1 6.4505 × 10−1

(4.32 × 10−2) − (1.41 × 10−3) − (1.49 × 10−1) − (2.05 × 10−1) − (7.83 × 10−4)

NCTP18
4.0931 × 10−1 4.3727 × 10−1 3.2606 × 10−1 3.0694 × 10−1 4.3741 × 10−1

(4.69 × 10−2) − (8.19 × 10−4) = (1.46 × 10−1) − (1.43 × 10−1) − (5.31 × 10−4)

+/=/− 3/3/12 3/7/8 2/8/8 3
4 /11 /

Mathematics 2022, 10, 813 14 of 23

5.2.4. Comparison Results on MW Test Suite

For the MW test suite, Tables 8 and 9 give the comparison results of ACMODE and its
comparison algorithms in terms of IGD and HV, respectively. The best results are in bold.

As can be shown in Table 8, the performance of ACHT-CMODE is better than that of
ACMODE on MW4 and MW14. However, it is inferior to ACMODE in 11 test functions.
The performance of ACMODE is similar to that of ACHT-CMODE on MW9. In addition,
ACMODE performs better than AGS-CMODE in 12 test functions. There is no significant
difference between AGS-CMODE and ACMODE on MW4 and MW9. ACHT-CMODE real-
izes the adaption of CHTs, and AGS-CMODE realizes the adaption of generation strategies.
However, the performance of ACMODE is better than that of these two algorithms. Its
performance is improved by the adaptive adjustment of CHTs and generation strategies.
For the rest of the competitors, MOEA/D-CDP performs worse than ACMODE in eight test
functions. MOEA/D-CDP and ACMODE have similar performance on MW8 and MW12.
MOEA/D-CDP outperforms ACMODE in four test functions. Additionally, ANSGAIII is
significantly surpassed by ACMODE in 12 test functions. ANSGAIII performs better than
ACMODE on MW13 and MW14. The results shown in Table 8 indicate that the performance
of ACMODE is the best among all compared algorithms.

It can be observed from Table 9 that ACHT-CMODE is surpassed by ACMODE in eight test
functions. There is no significant difference between ACHT-CMODE and ACMODE in six test
functions. ACMODE is superior to AGS-CMODE in nine test functions. ACMODE and AGS-
CMODE have no significant difference in five test functions. Table 9 also shows that ACMODE
is surpassed by MOEA/D-CDP on MW4 and MW13. MOEA/D-CDP performs worse than
ACMODE in six test functions. There is no significant difference between MOEA/D-CDP and
ACMODE in six test functions. Furthermore, ACMODE performs better than ANSGAIII in
12 test functions and is significantly outperformed by ANSGAIII on MW14. ACMODE and
ANSGAIII have similar performances on MW13. MOEA/D-CDP and ANSGAIII are unable
to find the feasible solutions on MW1. This is because MW1 has a disconnected constrained
PF with narrow feasible regions. However, the proposed algorithm can automatically select
suitable CHT and generation strategies to solve different types of CMOPs.

Table 8. IGD results of all comparison algorithms on MW test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

MW1
3.5685 × 10−2 2.8590 × 10−2 NaN NaN 3.6886 × 10−3

(1.25 × 10−1) − (1.26 × 10−1) − (NaN) (NaN) (3.42 × 10−4)

MW2
1.2796 × 10−1 9.4127 × 10−2 2.0047 × 10−2 2.5678 × 10−2 6.0942 × 10−3

(5.40 × 10−2) − (4.26 × 10−2) − (7.02 × 10−3) − (2.12 × 10−2) − (3.31 × 10−4)

MW3
1.1164 × 10−2 6.0933 × 10−2 1.0535 × 10−2 1.6396 × 10−2 7.2653 × 10−3

(8.37 × 10−4) − (1.86 × 10−1) − (1.73 × 10−2) − (2.55 × 10−2) − (7.04 × 10−4)

MW4
6.1867 × 10−2 8.4142 × 10−2 4.9103 × 10−2 NaN 7.9096 × 10−2

(3.35 × 10−3) + (3.31 × 10−3) = (3.18 × 10−2) + (NaN) (5.38 × 10−2)

MW5
1.0475 × 10−1 1.7277 × 10−1 1.2854 × 10−1 NaN 1.9151 × 10−2

(2.51 × 10−1) − (3.14 × 10−1) − (2.71 × 10−1) − (NaN) (6.58 × 10−2)

MW6
4.9754 × 10−1 3.8194 × 10−1 1.6465 × 10−2 8.3408 × 10−2 5.3924 × 10−3

(2.12 × 10−1) − (2.44 × 10−1) − (7.24 × 10−3) − (1.46 × 10−1) − (8.97 × 10−4)

MW7
1.5003 × 10−2 1.5839 × 10−2 5.2247 × 10−3 7.0319 × 10−2 9.0254 × 10−3

(1.55 × 10−3) − (1.84 × 10−3) − (2.17 × 10−4) + (1.47 × 10−1) − (7.36 × 10−4)

MW8
3.9036 × 10−1 2.5627 × 10−1 5.2612 × 10−2 1.1601 × 10−1 6.4412 × 10−2

(3.97 × 10−1) − (2.58 × 10−1) − (3.02 × 10−3) = (1.59 × 10−1) − (3.61 × 10−3)

MW9
1.8159 × 10−2 2.6656 × 10−2 4.3805 × 10−2 1.4554 × 10−1 2.0545 × 10−2

(4.22 × 10−3) = (4.22 × 10−3) = (1.16 × 10−1) − (2.31 × 10−1) − (4.97 × 10−3)

MW10
5.4517 × 10−1 4.7261 × 10−1 5.7076 × 10−2 NaN 5.0451 × 10−2

(3.49 × 10−1) − (1.24 × 10−1) − (9.91 × 10−2) − (NaN) (1.40 × 10−1)

MW11
3.1015 × 10−2 1.7603 × 10−2 3.1642 × 10−1 6.5410 × 10−1 1.1193 × 10−2

(3.07 × 10−2) − (2.47 × 10−3) − (3.49 × 10−1) − (1.92 × 10−1) − (1.88 × 10−3)

Mathematics 2022, 10, 813 15 of 23

Table 8. Cont.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

MW12
1.4828 × 10−2 1.5529 × 10−2 9.1041 × 10−3 2.4633 × 10−1 8.1329 × 10−3

(2.13 × 10−3) − (2.29 × 10−3) − (9.61 × 10−3) = (2.16 × 10−1) − (1.31 × 10−3)

MW13
4.2169 × 10−1 1.1238 × 100 1.0992 × 10−1 2.8903 × 10−1 5.4055 × 10−1

(6.07 × 10−1) − (1.14 × 100) − (9.78 × 10−2) + (2.28 × 10−1) + (5.71 × 10−1)

MW14
2.0062 × 10−1 5.9693 × 10−1 2.0936 × 10−1 1.4393 × 10−1 2.9577 × 10−1

(5.33 × 10−2) + (8.59 × 10−1) − (3.13 × 10−3) + (6.22 × 10−2) + (5.87 × 10−2)

+/=/− 2/1/11 0/2/12 4/2/8 2/0/12 /

Table 9. HV results of all comparison algorithms on MW test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

MW1
3.8045 × 10−1 4.7016 × 10−1 NaN NaN 4.8900 × 10−1

(2.03 × 10−1) − (9.04 × 10−2) = (NaN) (NaN) (2.05 × 10−4)

MW2
3.9179 × 10−1 4.5204 × 10−1 5.5505 × 10−1 5.4544 × 10−1 5.7959 × 10−1

(8.73 × 10−2) − (5.21 × 10−2) − (1.15 × 10−2) − (2.97 × 10−2) − (4.00 × 10−4)

MW3
5.3649 × 10−1 5.0459 × 10−1 5.3963 × 10−1 5.3463 × 10−1 5.4508 × 10−1

(1.47 × 10−3) − (1.12 × 10−1) − (1.30 × 10−2) − (1.94 × 10−2) − (8.20 × 10−2)

MW4
8.1170 × 10−1 7.7877 × 10−1 8.3018 × 10−1 NaN 7.9922 × 10−1

(5.91 × 10−3) = (6.46 × 10−3) − (4.80 × 10−2) + (NaN) (2.29 × 10−2)

MW5
2.8276 × 10−1 2.6895 × 10−1 2.9676 × 10−1 NaN 3.1409 × 10−1

(7.62 × 10−2) − (9.99 × 10−2) − (7.04 × 10−2) = (NaN) (3.17 × 10−2)

MW6
1.2894 × 10−1 1.4219 × 10−1 3.0778 × 10−1 2.8431 × 10−1 3.2721 × 10−1

(7.70 × 10−2) − (7.45 × 10−2) − (1.06 × 10−2) = (4.58 × 10−2) − (1.69 × 10−3)

MW7
4.0222 × 10−1 4.0040 × 10−1 4.1054 × 10−1 3.8371 × 10−1 4.0999 × 10−1

(2.04 × 10−3) = (1.82 × 10−3) = (3.39 × 10−4) = (5.71 × 10−2) − (2.99 × 10−2)

MW8
5.1365 × 10−1 3.1684 × 10−1 5.3025 × 10−1 5.0202 × 10−1 5.4384 × 10−1

(5.89 × 10−3) − (1.09 × 10−1) − (1.35 × 10−2) = (5.97 × 10−2) − (1.89 × 10−1)

MW9
3.7959 × 10−1 3.6561 × 10−1 3.5258 × 10−1 3.5021 × 10−1 3.7506 × 10−1

(7.01 × 10−3) = (5.48 × 10−3) = (8.63 × 10−2) − (4.71 × 10−2) − (6.58 × 10−3)

MW10
4.2631 × 10−1 1.7716 × 10−1 4.0371 × 10−1 NaN 4.4409 × 10−1

(7.77 × 10−2) = (5.88 × 10−2) − (5.71 × 10−2) − (NaN) (6.81 × 10−3)

MW11
4.3838 × 10−1 4.4266 × 10−1 3.7572 × 10−1 2.8696 × 10−1 4.4538 × 10−1

(1.47 × 10−2) − (1.17 × 10−3) = (8.38 × 10−2) − (4.44 × 10−2) − (1.10 × 10−3)

MW12
5.9577 × 10−1 5.9427 × 10−1 6.0002 × 10−1 4.3413 × 10−1 6.0154 × 10−1

(1.37 × 10−3) = (2.44 × 10−3) = (7.64 × 10−3) = (1.20 × 10−1) − (1.09 × 10−3)

MW13
3.8252 × 10−1 1.9149 × 10−1 4.3410 × 10−1 3.8801 × 10−1 3.8573 × 10−1

(1.42 × 10−1) = (1.67 × 10−1) − (3.39 × 10−2) + (4.65 × 10−2) = (1.66 × 10−1)

MW14
4.2247 × 10−1 3.2069 × 10−1 4.3603 × 10−1 4.5033 × 10−1 4.4174 × 10−1

(3.60 × 10−2) − (1.08 × 10−1) − (3.70 × 10−3) = (2.99 × 10−2) + (1.00 × 10−1)

+/=/− 0/6/8 0/5/9 2/6/6 1/1/12 /

5.2.5. Comparison Results on DAS-CMOP Test Suite

For DAS-CMOP test suite, Tables 10 and 11 give the comparison results of ACMODE and
its comparison algorithms in terms of IGD and HV, respectively. The best results are in bold.

It can be observed from Table 10 that ACHT-CMODE performs better than ACMODE on
DAS-CMOP7, but it is inferior to ACMODE in eight test functions. ACMODE performs better
than AGS-CMODE in eight test functions. There is no significant difference between AGS-
CMODE and ACMODE on DAS-CMOP9. ACMODE is significantly better than MOEA/D-
CDP in five test functions. However, ACMODE is outperformed by MOEA/D-CDP in four test
functions. In addition, ANSGAIII is significantly worse than ACMODE in six test functions.
ANSGAIII performs better than ACMODE in three test functions. These experimental results
demonstrate that the ACMODE outperforms all the compared algorithms.

Mathematics 2022, 10, 813 16 of 23

The results shown in Table 11 reveal that ACMODE performs better than ACHT-
CMODE in six test functions, but ACMODE is surpassed by ACHT-CMODE on DAS-
CMOP7. ACMODE and ACHT-CMODE have no significant difference on DAS-CMOP3
and DAS-CMOP5. ACMODE is superior to AGS-CMODE in seven test functions. There
is no significant difference between AGS-CMODE and ACMODE on DAS-CMOP3 and
DAS-CMOP9. Table 11 also indicates that ACMODE is surpassed by MOEA/D-CDP on
DAS-CMOP3, DAS-CMOP4, and DAS-CMOP7. MOEA/D-CDP performs worse than
ACMODE in five test functions. Furthermore, ACMODE performs better than ANSGAIII
in six test functions and is significantly outperformed by ANSGAIII on DAS-CMOP3,
DAS-CMOP7 and DAS-CMOP8.
Table 10. IGD results of all comparison algorithms on DAS-CMOP test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

DAS-CMOP1
6.8402 × 10−1 3.0521 × 10−1 7.0233 × 10−1 7.2659 × 10−1 9.7386 × 10−2

(3.95 × 10−2) − (3.01 × 10−1) − (2.86 × 10−2) − (3.20 × 10−2) − (2.12 × 10−1)

DAS-CMOP2
2.0314 × 10−1 1.4664 × 10−1 2.0182 × 10−1 2.3340 × 10−1 5.6632 × 10−2

(2.47 × 10−2) − (7.51 × 10−2) − (2.51 × 10−2)− (2.52 × 10−2) − (6.61 × 10−2)

DAS-CMOP3
4.5027 × 10−1 4.7333 × 10−1 3.4909 × 10−1 3.6324 × 10−1 3.9314 × 10−1

(1.94 × 10−1) − (2.50 × 10−1) − (2.85 × 10−2) + (7.28 × 10−2) + (2.16 × 10−1)

DAS-CMOP4
5.8602 × 10−1 NaN 3.7875 × 10−1 5.2573 × 10−1 4.0609 × 10−1

(2.50 × 10−1) − (NaN) (1.59 × 10−1) + (7.70 × 10−2) − (3.22 × 10−1)

DAS-CMOP5
5.4619 × 10−1 NaN NaN NaN 5.1266 × 10−1

(2.66 × 10−1) − (NaN) (NaN) (NaN) (1.56 × 10−2)

DAS-CMOP6
5.7986 × 10−1 NaN NaN NaN 5.4968 × 10−1

(2.70 × 10−1) − (NaN) (NaN) (NaN) (2.89 × 10−1)

DAS-CMOP7
4.3361 × 10−1 NaN 7.5066 × 10−2 8.0605 × 10−2 5.0813 × 10−1

(3.71 × 10−1) + (NaN) (3.53 × 10−2) + (4.30 × 10−2) + (4.22 × 10−1)

DAS-CMOP8
4.2182 × 10−1 1.3639 × 100 2.1033 × 10−1 1.3997 × 10−1 2.8305 × 10−1

(3.30 × 10−1) − (1.94 × 10−1) − (2.39 × 10−1) + (1.25 × 10−1) + (2.29 × 10−1)

DAS-CMOP9
2.8285 × 10−1 1.7237 × 10−1 3.0124 × 10−1 3.4032 × 10−1 2.0376 × 10−1

(5.11 × 10−2) − (1.20 × 10−1) = (9.30 × 10−2) − (4.87 × 10−2) − (1.30 × 10−1)

+/=/− 1/0/8 0/1/8 4/0/5 3/0/6 /

Table 11. HV results of all comparison algorithms on DAS-CMOP test suite.

ACHT-CMODE AGS-CMODE MOEA/D-CDP ANSGAIII ACMODE

DAS-CMOP1
1.1540 × 10−2 1.2188 × 10−1 7.7281 × 10−3 5.1066 × 10−3 1.8329 × 10−1

(8.16 × 10−3) − (9.03 × 10−2) − (5.66 × 10−3) − (6.26 × 10−3) − (6.23 × 10−2)

DAS-CMOP2
2.5058 × 10−1 2.8191 × 10−1 2.5360 × 10−1 2.4274 × 10−1 3.2420 × 10−1

(6.81 × 10−3) − (3.16 × 10−2) − (9.27 × 10−3) − (5.00 × 10−3) − (3.47 × 10−2)

DAS-CMOP3
1.6687 × 10−1 1.5288 × 10−1 2.0953 × 10−1 2.0341 × 10−1 1.8499 × 10−1

(8.48 × 10−2) = (1.05 × 10−1) = (6.74 × 10−3) + (3.40 × 10−2) + (8.86 × 10−2)

DAS-CMOP4
3.4570 × 10−2 NaN 8.0763 × 10−2 3.4611 × 10−2 7.3804 × 10−2

(3.94 × 10−2) − (NaN) (5.22 × 10−2) + (1.29 × 10−2) − (8.53 × 10−2)

DAS-CMOP5
1.0397 × 10−1 NaN NaN NaN 8.4077 × 10−2

(9.64 × 10−2) = (NaN) (NaN) (NaN) (4.31 × 10−3)

DAS-CMOP6
9.3738 × 10−2 NaN NaN NaN 1.3128 × 10−1

(1.02 × 10−1) − (NaN) (NaN) (NaN) (1.18 × 10−1)

DAS-CMOP7
1.4421 × 10−1 NaN 2.6506 × 10−1 2.4506 × 10−1 1.2062 × 10−1

(1.05 × 10−1) + (NaN) (2.56 × 10−2) + (1.52 × 10−2) + (1.14 × 10−1)

DAS-CMOP8
8.6964 × 10−2 0.0000 × 100 1.5944 × 10−1 1.7561 × 10−1 1.1666 × 10−1

(7.86 × 10−2) − (0.00 × 100) − (5.54 × 10−2) = (2.69 × 10−2) + (8.19 × 10−2)

DAS-CMOP9
1.2571 × 10−1 1.6214 × 10−1 1.0977 × 10−1 1.0218 × 10−1 1.5383 × 10−1

(1.02 × 10−2) − (3.63 × 10−2) = (2.84 × 10−2) − (1.54 × 10−2) − (3.95 × 10−2)

+/=/− 1/2/6 0/2/7 3/1/5 3/0/6 /

Mathematics 2022, 10, 813 17 of 23

5.2.6. Overall Comparison Results on All Test Suites

In this section, the overall performance of ACMODE on all 65 test functions is eval-
uated by the Friedman test [44]. The average rankings of HV and IGD of all comparison
algorithms are shown in Figure 1. A smaller average ranking value denotes a better per-
formance. For the IGD values, the experimental results demonstrate that the proposed
algorithm ranks first among all the comparison algorithms. The overall performance of
ACMODE is the best in terms of HV. It can be concluded that the overall performance of
ACMODE is better than that of the other four algorithms. This is because ACMODE can
choose the CHT and generation strategy with the best performance during different stages
of the search process.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 25

algorithm ranks first among all the comparison algorithms. The overall performance of
ACMODE is the best in terms of HV. It can be concluded that the overall performance of
ACMODE is better than that of the other four algorithms. This is because ACMODE can
choose the CHT and generation strategy with the best performance during different stages
of the search process.

Figure 1. Performance rankings of all comparison algorithms.

5.3. Experimental Analysis
5.3.1. The Effectiveness of Adaptive Constraint Handling Technology

In ACMODE, three widely used CHTs are selected to realize the adaptation of CHTs.
In order to further verify the effectiveness of the proposed adaptive constraint handling
technology, the evolution curves of CHTs in two test functions (CF6 and NCTP11) are
presented in this experiment.

Figure 2 depicts the number of individuals of each CHT during the entire evolution-
ary process. In this section, three variants are investigated by adopting different CHTs. To
be specific, only “ATM” is used in ACMODE-ATM, only “CDP” is used in ACMODE-
CDP, and only “SP” is used in ACMODE-SP. The experimental results of these three var-
iants on CF6 and NCTP11 are summarized in Table 12. The best results are in bold.

Table 12 shows that ACMODE-SP obtains the best results on CF6. The results
achieved by the other two variants have no significant difference. It can be observed from
Figure 2a that “SP” is always in the dominant position during the entire evolutionary pro-
cess, while other two CHTs play similar roles. This confirms that ACMODE allocates more
computing resources to a better CHT. Table 12 reveals that ACMODE-CDP and AC-
MODE-ATM, respectively, get the best results in terms of IGD and HV on NCTP11. The
performance of ACMODE-SP is the worst one among the three variants. Figure 2b indi-
cates that “SP” is relatively stable during the whole evolutionary process. “ATM” plays
an important role at the early and middle stages of evolution, while “CDP” is mainly used
in ACMODE at the later stage of evolution. It can be seen from Figure 2 that the resources
allocated to these three CHTs change in real time during evolution. It can be concluded
that appropriate CHTs can be adaptively selected according to different types of CMOPs
in different evolutionary periods.

Figure 1. Performance rankings of all comparison algorithms.

5.3. Experimental Analysis
5.3.1. The Effectiveness of Adaptive Constraint Handling Technology

In ACMODE, three widely used CHTs are selected to realize the adaptation of CHTs.
In order to further verify the effectiveness of the proposed adaptive constraint handling
technology, the evolution curves of CHTs in two test functions (CF6 and NCTP11) are
presented in this experiment.

Figure 2 depicts the number of individuals of each CHT during the entire evolutionary
process. In this section, three variants are investigated by adopting different CHTs. To be
specific, only “ATM” is used in ACMODE-ATM, only “CDP” is used in ACMODE-CDP,
and only “SP” is used in ACMODE-SP. The experimental results of these three variants on
CF6 and NCTP11 are summarized in Table 12. The best results are in bold.

Table 12 shows that ACMODE-SP obtains the best results on CF6. The results achieved
by the other two variants have no significant difference. It can be observed from Figure 2a
that “SP” is always in the dominant position during the entire evolutionary process, while
other two CHTs play similar roles. This confirms that ACMODE allocates more computing
resources to a better CHT. Table 12 reveals that ACMODE-CDP and ACMODE-ATM, re-
spectively, get the best results in terms of IGD and HV on NCTP11. The performance of
ACMODE-SP is the worst one among the three variants. Figure 2b indicates that “SP” is
relatively stable during the whole evolutionary process. “ATM” plays an important role
at the early and middle stages of evolution, while “CDP” is mainly used in ACMODE at
the later stage of evolution. It can be seen from Figure 2 that the resources allocated to
these three CHTs change in real time during evolution. It can be concluded that appropri-
ate CHTs can be adaptively selected according to different types of CMOPs in different
evolutionary periods.

Mathematics 2022, 10, 813 18 of 23Mathematics 2022, 10, x FOR PEER REVIEW 19 of 25

(a) (b)

Figure 2. The number of individuals of CHTs changes during the whole evolutionary process. (a)
CH6, (b) NCTP11.

Table 12. IGD and HV results of three variants on CF6 and NCTP11.

Function Algorithm
IGD HV

Mean Deviation Mean Deviation

CF6
ACMODE-ATM 5.9609 × 10−2 1.53 × 10−2 6.1250 × 10−1 1.16 × 10−2
ACMODE-CDP 5.7884 × 10−2 1.77 × 10−2 6.1339 × 10−1 1.00 × 10−2
ACMODE-SP 5.3083 × 10−2 6.98 × 10−3 6.2135 × 10−1 6.30 × 10−3

NCTP11
ACMODE-ATM 5.2470 × 10−2 1.11 × 10−2 5.9944 × 10−1 3.58 × 10−3
ACMODE-CDP 4.9925 × 10−2 1.00 × 10−2 5.9846 × 10−1 4.36 × 10−3
ACMODE-SP 5.4795 × 10−2 1.32 × 10−2 5.9595 × 10−1 3.50 × 10−3

5.3.2. The Effectiveness of Adaptive Generation Strategy
To further validate the effectiveness of the proposed adaptive generation strategy,

the evolution curves of generation strategies in two test functions (CF8 and LIR-CMOP9)
are presented in this experiment.

Figure 3 shows that the number of the two-generation strategies changes during evo-
lution. In this section, two variants are investigated by adopting different generation strat-
egies. To be specific, only “DE/rand-to-best/1/bin” is used in ACMODE-best, and only
“DE/current-to-rand/1” is used in ACMODE-current. The experimental results of these
two variants on CF5 and LIR-CMOP9 are summarized in Table 13. The best results are in
bold.

The results shown in Table 13 reveal that ACMODE-best performs better than AC-
MODE-current on CF5. As shown in Figure 3a, “DE/rand-to-best/1/bin” has good perfor-
mance during the whole evolutionary process. ACMODE allocates more computing re-
sources to “DE/rand-to-best/1/bin”. This is consistent with the results shown in Table 13.
Table 13 also demonstrates that ACMODE-best is slightly superior to ACMODE-current
on LIR-CMOP9. It can be seen from Figure 3b that “DE/rand-to-best/1/bin” plays an im-
portant role at the very early stage, while “DE/current-to-rand/1” also displays good per-
formance at the early stage. However, as evolution progresses, more computing resources
are allocated to “DE/rand-to-best/1/bin” at later evolutionary stages. Figure 3 also indi-
cates that the ACMODE can effectively allocate computing resources to generation strat-
egies. It can be concluded that the ACMODE can adaptively select appropriate generation
strategies at different evolutionary stages.

Figure 2. The number of individuals of CHTs changes during the whole evolutionary process.
(a) CH6, (b) NCTP11.

Table 12. IGD and HV results of three variants on CF6 and NCTP11.

Function Algorithm
IGD HV

Mean Deviation Mean Deviation

CF6
ACMODE-ATM 5.9609 × 10−2 1.53 × 10−2 6.1250 × 10−1 1.16 × 10−2

ACMODE-CDP 5.7884 × 10−2 1.77 × 10−2 6.1339 × 10−1 1.00 × 10−2

ACMODE-SP 5.3083 × 10−2 6.98 × 10−3 6.2135 × 10−1 6.30 × 10−3

NCTP11
ACMODE-ATM 5.2470 × 10−2 1.11 × 10−2 5.9944 × 10−1 3.58 × 10−3

ACMODE-CDP 4.9925 × 10−2 1.00 × 10−2 5.9846 × 10−1 4.36 × 10−3

ACMODE-SP 5.4795 × 10−2 1.32 × 10−2 5.9595 × 10−1 3.50 × 10−3

5.3.2. The Effectiveness of Adaptive Generation Strategy

To further validate the effectiveness of the proposed adaptive generation strategy, the
evolution curves of generation strategies in two test functions (CF8 and LIR-CMOP9) are
presented in this experiment.

Figure 3 shows that the number of the two-generation strategies changes during
evolution. In this section, two variants are investigated by adopting different generation
strategies. To be specific, only “DE/rand-to-best/1/bin” is used in ACMODE-best, and
only “DE/current-to-rand/1” is used in ACMODE-current. The experimental results of
these two variants on CF5 and LIR-CMOP9 are summarized in Table 13. The best results
are in bold.

The results shown in Table 13 reveal that ACMODE-best performs better than ACMODE-
current on CF5. As shown in Figure 3a, “DE/rand-to-best/1/bin” has good performance
during the whole evolutionary process. ACMODE allocates more computing resources to
“DE/rand-to-best/1/bin”. This is consistent with the results shown in Table 13. Table 13
also demonstrates that ACMODE-best is slightly superior to ACMODE-current on LIR-
CMOP9. It can be seen from Figure 3b that “DE/rand-to-best/1/bin” plays an important
role at the very early stage, while “DE/current-to-rand/1” also displays good performance
at the early stage. However, as evolution progresses, more computing resources are
allocated to “DE/rand-to-best/1/bin” at later evolutionary stages. Figure 3 also indicates
that the ACMODE can effectively allocate computing resources to generation strategies. It
can be concluded that the ACMODE can adaptively select appropriate generation strategies
at different evolutionary stages.

Mathematics 2022, 10, 813 19 of 23Mathematics 2022, 10, x FOR PEER REVIEW 20 of 25

(a) (b)

Figure 3. The number of individuals of two generation strategies changes during the whole evolu-
tionary process. (a) CH5, (b) LIR-CMOP9.

Table 13. IGD and HV results of two variants on CF5 and LIR-CMOP9.

Function Algorithm
IGD HV

Mean Deviation Mean Deviation

CF5
ACMODE-best 2.5039 × 10−1 1.34 × 10−1 2.9561 × 10−1 9.24 × 10−2

ACMODE-current 2.9198 × 10−1 1.37 × 10−1 2.5686 × 10−1 9.23 × 10−2

LIR-CMOP9
ACMODE-best 5.4438 × 10−1 3.98 × 10−2 3.1653 × 10−1 2.02 × 10−2

ACMODE-current 5.4840 × 10−1 6.61 × 10−2 3.1859 × 10−1 3.98 × 10−2

5.3.3. Visual Comparison on PF approximation
To testify the performance of the proposed algorithm in the objective space, three test

functions (LIR-CMOP3, NCTP9 and MW8) are selected to provide the PF approximations
obtained by ACMODE and its competitors. The results are given in Figure 4.

It can be observed from Figure 4a that the true PF of LIR-CMOP3 is discontinuous.
LIR-CMOP3 exists infeasible barriers on the way to the true PF, which prevents algo-
rithms from converging towards the true PF. Figure 4a also depicts that ACHT-CMODE,
AGS-CMODE, MOEA/D-CDP and ANSGAIII only obtain part of the true PF. However,
ACMODE is capable of passing through the infeasible region barriers to uniformly cover
the true PF. Therefore, ACMODE performs better than the other four CMOEAs on LIR-
CMOP3. Figure 4b shows that AGS-CMODE and ACHT-CMODE are slightly inferior to
ACMODE on NCTP9. The final solutions obtained by MOEA/D-CDP are far away from
the true PF. However, the solutions obtained by the proposed ACMODE are very close
and evenly distributed to the whole true PF. It is worth noting that MW8 has three objec-
tives. Figure 4c indicates that the final solutions obtained by ACHT-CMODE and AGS-
CMODE are far away from the true PF. Moreover, MOEA/D-CDP and ANSGAIII are
slightly inferior to ACMODE. The PF approximation obtained by ACMODE is evenly dis-
tributed and is very close to the true PF. therefore, it can be concluded that selecting a
suitable CHT and generation strategies is effective and important in ACMODE.

Figure 3. The number of individuals of two generation strategies changes during the whole evolu-
tionary process. (a) CH5, (b) LIR-CMOP9.

Table 13. IGD and HV results of two variants on CF5 and LIR-CMOP9.

Function Algorithm
IGD HV

Mean Deviation Mean Deviation

CF5
ACMODE-best 2.5039 × 10−1 1.34 × 10−1 2.9561 × 10−1 9.24 × 10−2

ACMODE-current 2.9198 × 10−1 1.37 × 10−1 2.5686 × 10−1 9.23 × 10−2

LIR-CMOP9
ACMODE-best 5.4438 × 10−1 3.98 × 10−2 3.1653 × 10−1 2.02 × 10−2

ACMODE-current 5.4840 × 10−1 6.61 × 10−2 3.1859 × 10−1 3.98 × 10−2

5.3.3. Visual Comparison on PF approximation

To testify the performance of the proposed algorithm in the objective space, three test
functions (LIR-CMOP3, NCTP9 and MW8) are selected to provide the PF approximations
obtained by ACMODE and its competitors. The results are given in Figure 4.

It can be observed from Figure 4a that the true PF of LIR-CMOP3 is discontinuous. LIR-
CMOP3 exists infeasible barriers on the way to the true PF, which prevents algorithms from
converging towards the true PF. Figure 4a also depicts that ACHT-CMODE, AGS-CMODE,
MOEA/D-CDP and ANSGAIII only obtain part of the true PF. However, ACMODE is
capable of passing through the infeasible region barriers to uniformly cover the true
PF. Therefore, ACMODE performs better than the other four CMOEAs on LIR-CMOP3.
Figure 4b shows that AGS-CMODE and ACHT-CMODE are slightly inferior to ACMODE
on NCTP9. The final solutions obtained by MOEA/D-CDP are far away from the true PF.
However, the solutions obtained by the proposed ACMODE are very close and evenly
distributed to the whole true PF. It is worth noting that MW8 has three objectives. Figure 4c
indicates that the final solutions obtained by ACHT-CMODE and AGS-CMODE are far
away from the true PF. Moreover, MOEA/D-CDP and ANSGAIII are slightly inferior
to ACMODE. The PF approximation obtained by ACMODE is evenly distributed and is
very close to the true PF. therefore, it can be concluded that selecting a suitable CHT and
generation strategies is effective and important in ACMODE.

5.3.4. Parameter Analysis

The probability ε is mainly used to balance the exploration and exploitation [50].
Therefore, the ε value plays a certain role in the ACMODE. The ε value in the specific
algorithm is generally obtained by trial. In this experiment, all 65 test functions used in
Section 5.2 are selected to investigate the sensitivity of ε. Moreover, ε is selected from the
set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Mathematics 2022, 10, 813 20 of 23

Figure 5 provides the performance rankings of HV in terms of different ε values. A
smaller average ranking value denotes better performance. It can be seen from Figure 5
that the overall performance of the algorithm is the best when ε = 0.5. Therefore, ε is set to
0.5 in the proposed algorithm.

Mathematics 2022, 10, x FOR PEER REVIEW 21 of 25

(a) (b)

(c)

Figure 4. PF approximation of all compared algorithms. (a) LIR-CMOP3, (b) NCTP9, (c) MW8.

5.3.4. Parameter Analysis
The probability ε is mainly used to balance the exploration and exploitation [50].

Therefore, the ε value plays a certain role in the ACMODE. The ε value in the specific
algorithm is generally obtained by trial. In this experiment, all 65 test functions used in
Section 5.2 are selected to investigate the sensitivity of ε. Moreover, ε is selected from the
set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Figure 5 provides the performance rankings of HV in terms of different ε values. A
smaller average ranking value denotes better performance. It can be seen from Figure 5
that the overall performance of the algorithm is the best when ε = 0.5. Therefore, ε is set to
0.5 in the proposed algorithm.

Figure 4. PF approximation of all compared algorithms. (a) LIR-CMOP3, (b) NCTP9, (c) MW8.

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 25

Figure 5. Performance ranking of HV with different ε values.

6. Discussion
From the above experimental comparisons and analyses, it can be seen that the over-

all performance of the proposed algorithm is better than that of four compared algorithms
on five test suites. Specifically, the following results can be obtained.
 Compared with the AGS-CMODE, the experimental results show that using adaptive

CHTs can assist the proposed algorithm in improving its performance on CMOPs.
Moreover, using an adaptive generation strategy can help enhance the performance
of the proposed algorithm when compared with the ACHT-CMODE. Therefore, it
can be concluded that adaptive CHT and generation strategy is useful for ACOMDE
to solve different types of CMOPs.

 MOEA/D-CDP works well on the CMOPs with a low feasibility ratio, and ANSGAIII
is a self-adaptive evolutionary algorithm, in which reference points can adaptively
update. Compared with these two algorithms, although they are effective on some
specific CMOPs, the proposed algorithm outperforms them on most functions.

 The effectiveness of the proposed algorithm is also analyzed. The results demonstrate
that the computational resources can be self-adaptively allocated to different CHTs
and DE’s generation strategies via the SARSA method during the entire evolutionary
process.
However, ACMODE does not work very well when solving some DAS-CMOP series

test problems with the difficulty of feasibility, convergence and diversity at the same time.
The main reason may be that the existing CHTs and generation strategies may not enable
the proposed algorithm to find feasible solutions. Moreover, the adaptive process may
waste some computational resources, thus the efficiency of learning method is important.

7. Conclusions
CHTs and generation strategies significantly affect the performance of CMOEAs. In

the present work, an adaptive constrained multi-objective differential evolution algorithm
based on state–action–reward–state–action approach (ACMODE) is introduced to imple-
ment adaptation of CHTs and generation strategies, which can be automatically selected
via a SARSA method. The performance of the ACMODE is compared with four other
CMOEAs on five test suites, and the experimental results demonstrate that ACMODE is
competitive in handling CMOPs. The main reason is that the ACMODE can adaptively
select the appropriate CHT and generation strategy at different evolutionary stages when
solving different types of CMOPs. Finally, the effectiveness of the introduced components
of ACMODE is also demonstrated. Although adaptive adjustment of CHTs and genera-
tion strategies have been carried out in a current study, the selected CHT and generation
strategy also have a great influence on the performance of the proposed algorithm. In fu-
ture work, we will explore more novel CHTs and generation strategies with good

Figure 5. Performance ranking of HV with different ε values.

Mathematics 2022, 10, 813 21 of 23

6. Discussion

From the above experimental comparisons and analyses, it can be seen that the overall
performance of the proposed algorithm is better than that of four compared algorithms on
five test suites. Specifically, the following results can be obtained.

• Compared with the AGS-CMODE, the experimental results show that using adaptive
CHTs can assist the proposed algorithm in improving its performance on CMOPs.
Moreover, using an adaptive generation strategy can help enhance the performance of
the proposed algorithm when compared with the ACHT-CMODE. Therefore, it can be
concluded that adaptive CHT and generation strategy is useful for ACOMDE to solve
different types of CMOPs.

• MOEA/D-CDP works well on the CMOPs with a low feasibility ratio, and ANSGAIII
is a self-adaptive evolutionary algorithm, in which reference points can adaptively
update. Compared with these two algorithms, although they are effective on some
specific CMOPs, the proposed algorithm outperforms them on most functions.

• The effectiveness of the proposed algorithm is also analyzed. The results demonstrate
that the computational resources can be self-adaptively allocated to different CHTs
and DE’s generation strategies via the SARSA method during the entire evolution-
ary process.

However, ACMODE does not work very well when solving some DAS-CMOP series
test problems with the difficulty of feasibility, convergence and diversity at the same time.
The main reason may be that the existing CHTs and generation strategies may not enable
the proposed algorithm to find feasible solutions. Moreover, the adaptive process may
waste some computational resources, thus the efficiency of learning method is important.

7. Conclusions

CHTs and generation strategies significantly affect the performance of CMOEAs. In
the present work, an adaptive constrained multi-objective differential evolution algorithm
based on state–action–reward–state–action approach (ACMODE) is introduced to imple-
ment adaptation of CHTs and generation strategies, which can be automatically selected
via a SARSA method. The performance of the ACMODE is compared with four other
CMOEAs on five test suites, and the experimental results demonstrate that ACMODE is
competitive in handling CMOPs. The main reason is that the ACMODE can adaptively
select the appropriate CHT and generation strategy at different evolutionary stages when
solving different types of CMOPs. Finally, the effectiveness of the introduced components
of ACMODE is also demonstrated. Although adaptive adjustment of CHTs and generation
strategies have been carried out in a current study, the selected CHT and generation strategy
also have a great influence on the performance of the proposed algorithm. In future work,
we will explore more novel CHTs and generation strategies with good performance, and
incorporated them into ACMODE to solve CMOPs. Moreover, we will apply ACMODE to
real-world problems to further confirm its effectiveness.

Author Contributions: Methodology: C.C., Q.L., Q.F.; writing—original draft: C.C., Q.L., Q.F.;
writing—review and editing: Q.L., Q.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially supported by the National Natural Science Foundation of China
(No. 61603244, 71904116), the National Social Science Fund of China (No. 18BGL103), and Shanghai
Science and Technology Commission (No. 19DZ1209600, No. 18DZ1201500).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Mathematics 2022, 10, 813 22 of 23

Acknowledgments: The original version of this paper was presented at the 16th International Con-
ference on Bio-inspired Computing: Theories and Applications (BIC-TA 2021), December 2021. This
paper was recommended for publication in revised form by the BIC-TA 2021 conference committees.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maminov, A.; Posypkin, M. Constrained Multi-objective Robot’s Design Optimization. In Proceedings of the 2020 IEEE Conference

of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, 27–30 January 2020;
pp. 1992–1995.

2. Liu, J.; Yang, Y.; Tan, S.; Wang, H. Application of Constrained Multi-objective Evolutionary Algorithm in a Compressed-air
Station Scheduling Problem. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019;
pp. 2023–2028.

3. Li, B.; Wang, J.; Xia, N. Dynamic Optimal Scheduling of Microgrid Based on ε constraint multi-objective Biogeography-based
Optimization Algorithm. In Proceedings of the 2020 5th International Conference on Automation, Control and Robotics
Engineering (CACRE), Dalian, China, 19–20 September 2020; pp. 389–393.

4. Wang, J.; Li, Y.; Zhang, Q.; Zhang, Z.; Gao, S. Cooperative Multiobjective Evolutionary Algorithm With Propulsive Population for
Constrained Multiobjective Optimization. IEEE Trans. Syst. Man Cybern. Syst. 2021, 1–16. [CrossRef]

5. Datta, R.; Deb, K.; Segev, A. A bi-objective hybrid constrained optimization (HyCon) method using a multi-objective and penalty
function approach. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia-San Sebastián,
Spain, 5–8 June 2017; pp. 317–324.

6. Yuan, J.; Liu, H.L.; Ong, Y.S.; He, Z. Indicator-based Evolutionary Algorithm for Solving Constrained Multi-objective Optimization
Problems. IEEE Trans. Evol. Comput. 2021, 1. [CrossRef]

7. Cui, C.X.; Fan, Q.Q. Constrained Multi-objective Differential Evolutionary Algorithm with Adaptive Constraint Handling
Technique. World Sci. Res. J. 2021, 7, 322–339. [CrossRef]

8. Richard, S.S.; Andrew, G.B. Temporal-Difference Learning. In Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA,
USA, 1998; pp. 133–160.

9. Yu, X.B.; Lu, Y.Q. A corner point-based algorithm to solve constrained multi-objective optimization problems. Appl. Intell. 2018,
48, 3019–3037. [CrossRef]

10. Xiang, Y.; Yang, X.W.; Huang, H.; Wang, J.H. Balancing Constraints and Objectives by Considering Problem Types in Constrained
Multiobjective Optimization. IEEE Trans. Cybern. 2021, 1–14. [CrossRef]

11. Fan, Z.; Li, W.J.; Cai, X.Y.; Li, H.; Wei, C.M.; Zhang, Q.F.; Deb, K.; Goodman, E. Push and pull search for solving constrained
multi-objective optimization problems. Swarm Evol. Comput. 2019, 44, 665–679. [CrossRef]

12. Uribe, L.; Lara, A.; Deb, K.; Schutze, O. A new gradient free local search mechanism for constrained multi-objective optimization
problems. Swarm Evol. Comput. 2021, 67, 100938. [CrossRef]

13. Liu, Z.Z.; Wang, Y.; Wang, B.C. Indicator-Based Constrained Multiobjective Evolutionary Algorithms. IEEE Trans. Syst. Man
Cybern. Syst. 2021, 51, 5414–5426. [CrossRef]

14. Tian, Y.; Zhang, T.; Xiao, J.; Zhang, X.; Jin, Y. A Coevolutionary Framework for Constrained Multiobjective Optimization Problems.
IEEE Trans. Evol. Comput. 2021, 25, 102–116. [CrossRef]

15. Liu, Z.Z.; Wang, Y. Handling Constrained Multiobjective Optimization Problems With Constraints in Both the Decision and
Objective Spaces. IEEE Trans. Evol. Comput. 2019, 23, 870–884. [CrossRef]

16. Ming, M.; Wang, R.; Ishibuchi, H.; Zhang, T. A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained
Multi-Objective Optimization. IEEE Trans. Evol. Comput. 2021, 1. [CrossRef]

17. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

18. Xu, B.; Duan, W.; Zhang, H.F.; Li, Z.Q. Differential evolution with infeasible-guiding mutation operators for constrained
multi-objective optimization. Appl. Intell. 2020, 50, 4459–4481. [CrossRef]

19. Yu, K.; Liang, J.; Qu, B.; Luo, Y.; Yue, C. Dynamic Selection Preference-Assisted Constrained Multiobjective Differential Evolution.
IEEE Trans. Syst. Man Cybern. Syst. 2021, 1–12. [CrossRef]

20. Yang, Y.K.; Liu, J.C.; Tan, S.B. A partition-based constrained multi-objective evolutionary algorithm. Swarm Evol. Comput. 2021,
66, 100940. [CrossRef]

21. Lin, Y.; Du, W.; Du, W. Multi-objective differential evolution with dynamic hybrid constraint handling mechanism. Soft Comput.
2019, 23, 4341–4355. [CrossRef]

22. Yu, X.B.; Yu, X.R.; Lu, Y.Q.; Yen, G.G.; Cai, M. Differential evolution mutation operators for constrained multi-objective
optimization. Appl. Soft Comput. 2018, 67, 452–466. [CrossRef]

23. Wang, J.; Liang, G.; Zhang, J. Cooperative Differential Evolution Framework for Constrained Multiobjective Optimization. IEEE
Trans. Cybern. 2019, 49, 2060–2072. [CrossRef]

24. Moniz, N.; Monteiro, H. No Free Lunch in imbalanced learning. Knowl.-Based Syst. 2021, 227, 107222. [CrossRef]

http://doi.org/10.1109/TSMC.2021.3069986
http://doi.org/10.1109/TEVC.2021.3089155
http://doi.org/10.6911/WSRJ.202103_7(3).0042
http://doi.org/10.1007/s10489-017-1126-6
http://doi.org/10.1109/TCYB.2021.3089633
http://doi.org/10.1016/j.swevo.2018.08.017
http://doi.org/10.1016/j.swevo.2021.100938
http://doi.org/10.1109/TSMC.2019.2954491
http://doi.org/10.1109/TEVC.2020.3004012
http://doi.org/10.1109/TEVC.2019.2894743
http://doi.org/10.1109/TEVC.2021.3131124
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1007/s10489-020-01733-0
http://doi.org/10.1109/TSMC.2021.3061698
http://doi.org/10.1016/j.swevo.2021.100940
http://doi.org/10.1007/s00500-018-3087-z
http://doi.org/10.1016/j.asoc.2018.03.028
http://doi.org/10.1109/TCYB.2018.2819208
http://doi.org/10.1016/j.knosys.2021.107222

Mathematics 2022, 10, 813 23 of 23

25. Yang, Y.K.; Liu, J.C.; Tan, S.B.; Wang, H.H. A multi-objective differential evolutionary algorithm for constrained multi-objective
optimization problems with low feasible ratio. Appl. Soft Comput. 2019, 80, 42–56. [CrossRef]

26. Yang, N.; Liu, H.L. Adaptively Allocating Constraint-Handling Techniques for Constrained Multi-objective Optimization
Problems. Int. J. Pattern Recognit. Artif. Intell. 2021, 35, 2159032. [CrossRef]

27. Liu, B.J.; Bi, X.J. Adaptive ε-Constraint Multi-Objective Evolutionary Algorithm Based on Decomposition and Differential
Evolution. IEEE Access 2021, 9, 17596–17609. [CrossRef]

28. Mashwani, W.K.; Salhi, A.; Yeniay, O.; Jan, M.A.; Khanum, R.A. Hybrid adaptive evolutionary algorithm based on decomposition.
Appl. Soft Comput. 2017, 57, 363–378. [CrossRef]

29. Zhang, L.; Bi, X.J.; Wang, Y.J. Adaptive Truncation technique for Constrained Multi-Objective Optimization. Ksii Trans. Internet
Inf. Syst. 2019, 13, 5489–5511. [CrossRef]

30. Samanipour, F.; Jelovica, J. Adaptive repair method for constraint handling in multi-objective genetic algorithm based on
relationship between constraints and variables. Appl. Soft Comput. 2020, 90, 106143. [CrossRef]

31. Fan, Q.; Zhang, Y.; Li, N. An Autoselection Strategy of Multiobjective Evolutionary Algorithms Based on Performance Indicator
and Its Application. IEEE Trans. Autom. Sci. Eng. 2021, 1–15. [CrossRef]

32. Woldesenbet, Y.G.; Yen, G.G.; Tessema, B.G. Constraint Handling in Multiobjective Evolutionary Optimization. IEEE Trans. Evol.
Comput. 2009, 13, 514–525. [CrossRef]

33. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

34. Wang, Y.; Cai, Z.; Zhou, Y.; Zeng, W. An Adaptive Tradeoff Model for Constrained Evolutionary Optimization. IEEE Trans. Evol.
Comput. 2008, 12, 80–92. [CrossRef]

35. Bosman, P.A.N.; Thierens, D. The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans.
Evol. Comput. 2003, 7, 174–188. [CrossRef]

36. Yuan, J.; Liu, H.-L.; He, Z. A constrained multi-objective evolutionary algorithm using valuable infeasible solutions. Swarm Evol.
Comput. 2022, 68, 101020. [CrossRef]

37. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE
Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]

38. Fan, Q.; Yan, X.; Zhang, Y.; Zhu, C. A Variable Search Space Strategy Based on Sequential Trust Region Determination Technique.
IEEE Trans. Cybern. 2021, 51, 2712–2724. [CrossRef] [PubMed]

39. Fan, Q.Q.; Wang, W.L.; Yan, X.F. Multi-objective differential evolution with performance-metric-based self-adaptive mutation
operator for chemical and qbiochemical dynamic optimization problems. Appl. Soft Comput. 2017, 59, 33–44. [CrossRef]

40. Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop
scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [CrossRef]

41. Jan, M.A.; Khanum, R.A. A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D.
Appl. Soft Comput. 2013, 13, 128–148. [CrossRef]

42. Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting
Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622.
[CrossRef]

43. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [CrossRef]
44. Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J. Am. Stat. Assoc.

1937, 32, 675–701. [CrossRef]
45. Zhang, Q.; Zhou, A.; Zhao, S.; Suganthan, P.N.; Tiwari, S. Multiobjective optimization Test Instances for the CEC 2009 Special

Session and Competition. Mech. Eng. 2008, 264, 1–30.
46. Fan, Z.; Fang, Y.; Li, W.; Cai, X.; Wei, C.; Goodman, E. MOEA/D with angle-based constrained dominance principle for constrained

multi-objective optimization problems. Appl. Soft Comput. J. 2018, 74, 621–633. [CrossRef]
47. Li, J.P.; Wang, Y.; Yang, S.; Cai, Z. A comparative study of constraint-handling techniques in evolutionary constrained multiobjec-

tive optimization. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29
July 2016; pp. 4175–4182.

48. Ma, Z.; Wang, Y. Evolutionary Constrained Multiobjective Optimization: Test Suite Construction and Performance Comparisons.
IEEE Trans. Evol. Comput. 2019, 23, 972–986. [CrossRef]

49. Fan, Z.; Li, W.J.; Cai, X.Y.; Li, H.; Wei, C.M.; Zhang, Q.F.; Deb, K.; Goodman, E. Difficulty Adjustable and Scalable Constrained
Multiobjective Test Problem Toolkit. Evol. Comput. 2020, 28, 339–378. [CrossRef] [PubMed]

50. Liu, Y.; Cao, B.; Li, H. Improving ant colony optimization algorithm with epsilon greedy and Levy flight. Complex Intell. Syst.
2021, 7, 1711–1722. [CrossRef]

http://doi.org/10.1016/j.asoc.2019.02.041
http://doi.org/10.1142/S0218001421590321
http://doi.org/10.1109/ACCESS.2021.3053041
http://doi.org/10.1016/j.asoc.2017.04.005
http://doi.org/10.3837/tiis.2019.11.012
http://doi.org/10.1016/j.asoc.2020.106143
http://doi.org/10.1109/TASE.2021.3084741
http://doi.org/10.1109/TEVC.2008.2009032
http://doi.org/10.1109/4235.996017
http://doi.org/10.1109/TEVC.2007.902851
http://doi.org/10.1109/TEVC.2003.810761
http://doi.org/10.1016/j.swevo.2021.101020
http://doi.org/10.1109/4235.797969
http://doi.org/10.1109/TCYB.2019.2914060
http://www.ncbi.nlm.nih.gov/pubmed/31107675
http://doi.org/10.1016/j.asoc.2017.05.044
http://doi.org/10.1016/j.cie.2017.05.026
http://doi.org/10.1016/j.asoc.2012.07.027
http://doi.org/10.1109/TEVC.2013.2281534
http://doi.org/10.2307/3001968
http://doi.org/10.1080/01621459.1937.10503522
http://doi.org/10.1016/j.asoc.2018.10.027
http://doi.org/10.1109/TEVC.2019.2896967
http://doi.org/10.1162/evco_a_00259
http://www.ncbi.nlm.nih.gov/pubmed/31120774
http://doi.org/10.1007/s40747-020-00138-3

	Introduction
	Literature Review
	Constrained Multi-Objective Evolutionary Algorithms
	Self-Adaptive Evolutionary Algorithms

	Basic Concepts
	Constrained Multi-Objective Optimization Problem
	Concepts in Multi-Objective Optimization Problem
	Constraint Handling Strategies
	SP
	CDP
	ATM

	Performance Metric
	IGD
	HV

	Basics of DE
	Generation Strategy
	Selection

	Proposed Algorithm
	Adaptive Constraint Handling Technology
	Adaptive Generation Strategy
	Overall Implementation of the Proposed Algorithm

	Experimental Studies
	Benchmark Test Functions and Parameter Settings
	Comparison Results
	Comparison Results on CF Test Suite
	Comparison Results on LIR-CMOP Test Suite
	Comparison Results on NCTP Test Suite
	Comparison Results on MW Test Suite
	Comparison Results on DAS-CMOP Test Suite
	Overall Comparison Results on All Test Suites

	Experimental Analysis
	The Effectiveness of Adaptive Constraint Handling Technology
	The Effectiveness of Adaptive Generation Strategy
	Visual Comparison on PF approximation
	Parameter Analysis

	Discussion
	Conclusions
	References

