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Abstract: We considered routing problems for plane graphs to solve control problems of cutting
machines in the industry. According to the cutting plan, we form its homeomorphic image in the
form of a plane graph G. We determine the appropriate type of route for the given graph: OE-
route represents an ordered sequence of chains satisfying the requirement that the part of the route
that is not passed does not intersect the interior of its passed part, AOE-chain represents OE-chain
consecutive edges which are incident to vertex v and they are neighbours in the cyclic order O±(v),
NOE-route represents the non-intersecting OE-route, PPOE-route represents the Pierce Point NOE-
route with allowable pierce points that are start points of OE-chains forming this route. We analyse
the solvability of the listed routing problems in graph G. We developed the polynomial algorithms
for obtaining listed routes with the minimum number of covering paths and the minimum length of
transitions between the ending of the current path and the beginning of the next path. The solutions
proposed in the article can improve the quality of technological preparation of cutting processes in
CAD/CAM systems.

Keywords: routing; plane graph; polynomial algorithm

1. Introduction

Simulation of some control and automation design problems [1,2] explains interest in
routing problems for CAD/CAM systems. Lots of them devoted to finding the routes satis-
fying certain constraints have arisen from specific practical situations. All kinds of trajectory
problems are universal mathematical models of optimization and control tasks. The exam-
ples of them are the following: (1) heuristic algorithms for constructing routes (N.A. Eapen
and R.B. Heckendorn [3], S.Q. Xie [4], Y. Jing and C. Zhige [5], M.K. Lee and K.B. Kwon [6],
J. Hoeft and U.S. Palekar [7]); (2) trajectory stabilization of mobile robots (V.A. Utkin [8]);
(3) management of routing process and optimization (A.A. Lazarev [9]); (4) problems of
obtaining the routes in graphs (H. Fleischner [10]); (5) the routing problem for cutting
blanks from sheet material (V.M. Kartak [11], A.A. Petunin [12,13], A.G. Chentsov [14,15],
I. Landovskaya [16]).

The capabilities of modern equipment for cutting sheet material allow using the
cutting plans with the combining of contours for cut-out of separate parts. This combining
of cuts allows reducing the material loss, the cutting length and the number of idle passes.

Algorithms for obtaining the cutting plans for tasks with combined cuts do not funda-
mentally differ from algorithms that do not allow any combining. However, the algorithms
for finding the routes of the cutter moving are fundamentally different. Therefore, the de-
velopment of algorithms for finding the route of the cutter for plans allowing the combining
of the cut parts contours is still an open task.

In this paper, we consider the routing problems in plane graphs. These graphs are
homeomorphic images of cutting plans. The cutter path is defined as a path covering all
the boundaries of the cut parts. The main constraint on this path is that the faces of the
route’s initial part do not intersect with the edges of the remaining part. For flame cutting,
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we need the following additional constraints on a path: (1) absence of self-intersections of
the cutting path (NOE-condition), and (2) allowance to start cutting from allowable pierce
vertices (PPOE-condition).

In practice, the most common approach does not involve a combination of the contours
of the cut parts. This method is material and energy-consuming [13,17,18]. In one of such
papers [3], the shapes are considered to be polygons. There are two different ways to
cut each polygon: (1) entirely (complete cutting approach) or (2) partially (partial cutting
approach) before cutting the next one. The authors of [3] proposed the approximation
algorithm that uses such concepts as matching, spanning tree, and triangulation (MASTRI).
This algorithm runs a time not greater than O(n log n), where n is the total number of all
the polygons vertices. The cutting path computed by algorithm [3] is guaranteed to be
within a factor of 3/2 of the optimum distance of the cutter. Hence, MASTRI algorithm
can be used for computing cutting paths in industries like sheet metal cutting. It should be
noted that the possibility of using concepts of matching, spanning tree, and triangulation
was noted in our article [19].

The first attempts of constructing the routes in which the passed part of the route
does not cover the edges of the remaining part were made in the work of U. Manber and
S. Israni [20] where the image of the cutting plan is represented as an equivalent graph. The
objective of this research is to cover this graph with a minimum number of chains starting
in the pierce points or breakthroughs. Since the graph has 2k vertices of odd degree, then k
pierce points are necessary and sufficient to traverse the graph. The cutter path problem
formulation includes such parameters as manufacturing cost, efficiency, and distortion
considerations. Some algorithms solving this task are considered in [20]. However, these
algorithms do not have sufficient formalization, and the formulation of the problem does
not take into account some technological constraints for flame cutting. Later, U. Manber
and S.W. Bent [21] noted the need to construct a self-intersecting route and provided proof
that this task belongs to theN P class. This proof is a compilation H. Fleischner’s results [22]
introducing the concept of an A-chain. This chain has the allowed transitions between
edges, that are specified in a cyclic order at each vertex of the graph. H. Fleischner also
proved that the task of constructing the A-chain is NP-hard in general, but there are some
special cases for which this task is solvable in polynomial time. One of such cases is a
4-regular graph. U. Manber and S.W. Bent in fact use A-chain instead of a self-intersecting
chain. If we consider the partial case when the cutting plan is a plane Euler graph, then
it is known that its dual face graph is bichromatic. For this case, S.B. Bely [23] proved the
existence of an Euler cycle homeomorphic to a plane Jordan curve without self-intersections.
However, it is unclear how to use this possibility for CAD/CAM systems for technological
preparation of cutting processes.

The listed above problems have been solved by the authors. A rigorous formaliza-
tion of these problems in terms of OE-chains is given in our paper [24]; however, the
OE-chain allows the possibility of self-intersection of the trajectory. Representation of a
plane Euler graph in the form of a self-intersecting Jordan curve has been announced at
conferences [25,26]. We proved the necessary and sufficient conditions of PPOE-routes ex-
istence and built the polynomial algorithm PPOE-routing constructing such routes for any
plane graph. The correctness of this algorithm has been announced at the conference [27].
The purpose of this article is to present the results obtained using a single terminology.

2. Methods
2.1. Abstracting the Cutting Plan to a Plane Graph

The information on the part shape is not used when we determine the sequence of
cutting the fragments of the cutting. Hence, all the curves without self-intersections and
contacts on the plane, representing the shape of the parts, are interpreted as the edges of the
graph. All the points of intersection and contact are represented as the vertices of the graph.
So, it is necessary to introduce additional functions on the set of vertices, faces and edges
of the resulting graph to analyse the implementation of the given technological constraints.
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We consider a plane S as a model of cutting plan, then a plane graph G(V, E) with
outer face f0 ⊂ S be the cutting plan model. The set of edges E(G) ⊂ S of this graph is
the Jordan curves with pairwise disjoint interiors and homeomorphic to open segments.
Hence, the set of vertices V(G) ⊂ S is the set of bounding points of these segments. For any
part of the graph J ⊆ G, we denote the set-theoretic union of its interior faces (the union of
all connected components of S \ J that do not contain an outer face) by Int(J). Then, Int(J)
can be interpreted as a part cut off a sheet. The sets of vertices, edges and faces of the graph
G we denote as V(G), E(G) and F(G), respectively. Since we consider graph G as a model
of a cutting plan, there is no case when G is non-planar.

Theorem 1. The topological representation of plane graph G = (V, E) on plane S up to homeo-
morphism is defined by the following functions for each edge e ∈ E, k = 1, 2:

• vk(e) is the pair of vertices incident to e,
• lk(e) is the edges obtained by rotating edge e counter-clockwise around a vertex vk,
• rk(e) is the edges obtained by rotating edge e clockwise around a vertex vk,
• fk(e) is the face placed on the left when moving along the edge e from the vertex vk(e) to the

vertex v3−k(e).

Proof. An illustration of the functions from the Theorem 1 is given in Figure 1.

Figure 1. Functions representing graph edges.

Since functions vk(e), fk(e), lk(e), k = 1, 2 for graph G edges define incident vertices,
faces, and adjacent edges for each e ∈ E(G) this statement is obvious.

Figure 2 illustrates an example of a cutting plan. Its homeomorphic image is given in
Figure 3 and the named functions for its computer representation are given in Table 1. We
can interpret any path obtained in graph G as a trajectory of the cutter since we know the
inverse images of all the vertices.

Figure 2. Example of cutting plan.

Figure 3. Geomorphic image of cutting plan in Figure 2.
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Table 1. Encoding of the plane graph in Figure 3.

e v1(e) v2(e) l1(e) l2(e) r1(e) r2(e) f1(e) f2(e)

e1 v2 v9 e4 e21 e3 e23 f0 f1
e2 v4 v6 e3 e8 e7 e9 f1 f2
e3 v2 v4 e1 e5 e4 e2 f1 f3
e4 v2 v3 e3 e6 e1 e5 f3 f0
e5 v3 v4 e4 e7 e6 e3 f3 f5
e6 v3 v7 e5 e23 e4 e13 f5 f0
e7 v4 v1 e2 e13 e5 e8 f2 f5
e8 v6 v1 e10 e7 e2 e11 f7 f2
e9 v6 v5 e2 e15 e10 e20 f1 f12
e10 v6 v10 e9 e11 e8 e15 f12 f7
e11 v1 v10 e8 e16 e12 e10 f7 f8
e12 v1 v12 e11 e14 e13 e16 f8 f6
e13 v1 v7 e12 e6 e7 e14 f6 f5
e14 v7 v12 e13 e17 e23 e12 f6 f4
e15 v5 v10 e20 e10 e9 e19 f11 f12
e16 v10 v12 e18 e12 e11 e17 f9 f8
e17 v12 v11 e16 e22 e14 e18 f9 f4
e18 v10 v11 e19 e17 e16 e22 f10 f9
e19 v10 v8 e15 e22 e18 e20 f11 f10
e20 v5 v8 e9 e19 e15 e21 f1 f11
e21 v9 v8 e23 e20 e1 e22 f4 f1
e22 v8 v11 e21 e18 e19 e17 f4 f10
e23 v9 v7 e1 e14 e21 e6 f0 f4

2.2. OE-Routing
2.2.1. Basic Definitions

Let us consider the formulation and solution of the problem for constructing the routes
in a plane graph that satisfy the condition that the interior faces of any their initial parts
do not intersect with the edges of the remaining part. Formally, such routes are defined as
an ordered sequence of OE-chains (ordered enclosing chains) of the graph G = (V, E) and
form a class of OE-paths. The definitions, proofs and notations of the theory of routes with
ordered enclosing (OE-routes) are introduced in [19]. Let us give these definitions to avoid
the loss of generality.

Definition 1. Chain C = v1e1v2e2 . . . vk in plane graph G has ordered enclosing (is an OE-chain),
if for any its initial part Cl = v1e1v2e2 . . . el, l ≤ (|E|) the condition Int(Cl) ∩ E = ∅ holds.

Theorem 2 ([19]). Let G = (V, E) be a plane Euler graph. For any vertex v ∈ V(G) incident to
outer (infinite) face of graph G there exists Euler OE-cycle C = ve1v1e2v2 . . . v|E|−1e|E|v.

The proof of this theorem gives the recursive algorithm of OE-cycle constructing.
This algorithm has computing complexity O(|E|2). However, there exists non-recursive
approach with computing complexity O(|V| · log |E|) [28].

Let’s generalize Definition 1 up to the notion of OE-route plane graphs (it is possible
non-Eulerian and disconnected).

Definition 2. The ordered sequence of edge-disjoint OE-chains

C0 = v0e0
1v0

1e0
2...e0

k0
v0

k0
, C1 = v1e1

1v1
1e1

2...e1
k1

v1
k1

, . . . ,

Cn−1 = vn−1en−1
1 vn−1

1 en−1
2 ...en−1

kn−1
vn−1

kn−1
,

covering graph G and such that

(∀m : m < n),
(⋃m−1

l=0
Int(Cl)

)
∩
(⋃n−1

l=m
Cl
)
= ∅
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is a route with ordered enclosing (OE-route).

Definition 3. Let a route consisting of a minimal (in cardinality) ordered sequence of edge-disjoint
OE-chains in a plane graph G be called an Euler route with ordered enclosing (Euler OE-route),
and OE-chains forming it be the Euler OE-cover.

Theorem 3 ([27]). Let G connected plane graph, Vodd(G) be the set of its odd vertices, then the
cardinality N of Euler OE-cover of G satisfies the inequality

k =
|Vodd(G)|

2
≤ N ≤ |Vodd(G)| = 2k

holds. The upper and lower bounds are reachable.

The cover capacity is significantly influenced by the presence of bridges in the graph.
In their absence, the lower bound is reached, in the case of the existence of vertices of odd
degree incident to the outer face; or, if there are no such vertices, the cardinality of the cover
is one higher than the lower bound.

The construction of the OE-route of the graph G solves the considered cutting problem
in the absence of restrictions on self-intersections and the placement of starting (i.e., pierce)
points for all chains.

2.2.2. Algorithms Constructing OE-Chains for Connected Graph G

Algorithms for constructing OE-routes in plane Eulerian graphs are known [28]. The pos-
sibility of constructing an OE route in an arbitrary plane graph demonstrates Theorem 4 [24].

Theorem 4. Let G = (V, E) be plane connected graph without bridges on S. There exists the set of
edges H : (H ∩ S)\V = ∅ so that graph Ĝ = (V, E∪ H) be Euler, and there exists Euler cycle in
graph Ĝ, such that C = v1e1v2e2...env1, n = |E|+ |H|, for any its initial part Cl = v1e1v2e2...vl ,
l ≤ |E|+ |H| the condition Int(Cl) ∩ G = ∅ holds.

We use the concept of the edge e rank while considering the algorithms of OE-routes
constructing.

Definition 4. The rank of edge e ∈ E(G) be the value of function rank(e) : E(G) → N
recursively defined as following:

• let E1 = {e ∈ E : e ⊂ f0} be the set of edges bounding outer face f0 of graph G(V, E), then
(∀e ∈ E1)(rank(e) = 1);

• let Ek(G) be the set of edges of rank 1 for graph

Gk

(
V, E\

(
k−1⋃
l=1

El

))
,

then (∀e ∈ Ek)(rank(e) = k).

Definition 5 ([28]). Let rank of face f ∈ F(G) be a value of function rank : F(G)→ N0:

rank( f ) =
{

0, if f = f0,
mine∈E( f ) rank(e), otherwise,

where E( f ) be a set of edges incident to outer face f ∈ F.

Definition 6 ([28]). Let rank of vertex v ∈ V(G) be a value of function rank : V(G) → N:
rank(v) = mine∈E(v) rank(e) where E(v) is a set of edges incident to vertex v ∈ V.
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We developed the following polynomial time algorithms for constructing OE-routes
for plane graphs:

• Euler OE-cycle in plane Euler graph (algorithm OE-CYCLE, computing complexity
O(|V|2) [29]);

• connected OE-route of Chinese postman for any plane connected graph; removing re-
traversed edges will result in a OE-route; this route is not optimal either in terms of the
number of covering chains or the length of idle passes (algorithm CPP_OE, computing
complexity O(|E(G)| · |V(G)|) [30]);

• a route in plane connected graph without bridges being the OE-cover optimal by the
number of chains, the length of idle passes may not be optimal (algorithm OECover,
computing complexity O(|E| · log |V|) [19]);

• OE-route in plane connected graph without bridges with additional edges, connecting
the odd vertices (algorithm M-COVER with computing complexity O(|E| · log |V|)); this
algorithm appended by algorithm of finding the shortest matching between odd
vertices allows to obtain OE-cover with minimal summary length of additional edges
(computing complexity O(|E| ·

√
|V|)) [19].

In this paper, we describe in details those of them that are not published in open access
for the convenience of the reader.

Algorithm 1 OECover covers the plane graph G by an ordered sequence of OE-chains.
The graph G is encoded by the list of edges, and for each edge e the functions considered in
Theorem 1 are defined.

Algorithm 1 Algorithm OECover

Require: G = (V, E) be a plane graph; Vodd ⊆ V be the set of odd vertices;
Ensure: f irst ∈ E, last ∈ E, mark1 : E→ E;

1: Initiate(); . Assign the initial values of all used variables
2: Order(); . Define the ranks of edges, and form the ordered lists for vertices
3: SortOdd(); . Sorting of odd vertices by decreasing of their rank
4: if {∃v ∈ Vodd| v ∈ f0} then . Define the starting value of a chain
5: v0 ← arg max

v∈Vodd
rank(v); Vodd ← Vodd\{v0};

6: else v0 ← v| v ∈ f0;
7: end if
8: while (true) do
9: v← FormChain(v0); . Form a chain from the defined vertex

10: Vodd ← Vodd\{v}; . Exclude the starting vertex of current chain from the list
11: if ( thenVodd = ∅) . Check the possibility to construct one more chain
12: break;
13: end if
14: v0 ← arg max

v∈Vodd
rank(v);

15: end while

In the body of the procedure Initiate, the initial values of all used variables are
assigned, and the first edge e0 ∈ E belonging to the boundary of the outer face f0 is defined.

Procedure Order Algorithm 2 functional purpose of the Order procedure is in:
(1) defining the value rank(e) for each edge e ∈ E (note that the rank of any edge of a

plane graph can be determined in time O(|E|) using this procedure);
(2) forming the list Q(v) of incident edges for each vertex (the edges are ordered in

descending order of the rank() value).



Mathematics 2022, 10, 795 7 of 22

Algorithm 2 Procedure Order
1: procedure ORDER
2: while f irst 6= ∞ do
3: while (mark(ne) = ∞) and (last 6= ne) do
4: M1: . Forming the queue of M1-marked edges
5: rank(ne)← k; . Define the rank of an edge
6: mark1(last)← ne;
7: if v2(ne) 6= v then
8: REPLACE(ne);
9: end if

10: v← v1(ne); last← ne; ne← l1(ne);
11: end while
12: e← f irst; f irst← mark1( f irst); v← v2(e); ne← l2(e);
13: M2: . Placing the M1-marked edges to the lists of the corresponding vertices
14: k← rank(e) + 1; mark1(e)← Stack(v1(e)); mark2(e)← Stack(v);
15: if mark1(e) 6= 0 then
16: . Form queue of M1-marked edges of all unmarked edges bounding f1(e)
17: if v1(e) = v1(mark1(e)) then
18: prev1(mark1(e))← e;
19: else
20: prev2(mark1(e))← e;
21: end if
22: end if
23: if mark2(e) 6= 0 then . Pushing of edge to stacks of vertices v1(e) and v2(e)
24: if v = v1(mark2(e)) then
25: prev1(mark2(e))← e;
26: else
27: prev2(mark2(e))← e;
28: end if
29: Stack(v)← e; Stack(v1(e))← e;
30: end if
31: end while
32: end procedure

After executing the Initiate and Order procedures, the odd vertices v ∈ Vodd are
ordered in ascending order of their rank using the SortOdd procedure. The rank of the
vertex v is the value of the function rank(Stack(v)). Then, the loop do...while is executed
using the FormChain procedure (see Algorithm 3). This cycle constructs a sequence of
|Vodd|/2 simple paths between pairs of odd vertices. If none of the odd vertices is adjacent
to the outer face, then it is necessary to construct a |Vodd|/2 + 1 chain, where the first of the
constructed paths C0 starts at vertex of even degree v0 ∈ f0, adjacent outer face, and ends
at an odd vertex. All the chains of the cover C1, . . . Cn−1 are connecting the odd vertices,
and the last one Cn starts at odd vertex, and ends at vertex v0 ∈ f0.

The aim of FormChain procedure is to obtain the OE-chain starting in a given vertex
w and ending in some odd vertex v ∈ Vodd, v 6= w. As a result of the procedure, a simple
chain will be obtained Ci = vi

0ei
1vi

1ei
2 . . . ei

kvi
k, for which vi

1, vi
2, ...vk−1 /∈ Vi

odd, and for i 6= 0
and i 6= n vertices vi

0, vi
k ∈ Vodd, if i = 0 vertex vi

k ∈ Vodd, and if i = n vertex vi
0 ∈ Vodd,

ei = arg max
e∈E(vi)\{el |l<i}

rank(e), vi+1 = v1(ei), i = 1, 2, . . . , k,

moreover, for any initial part Cl = v0e1v1e2v2 . . . el , l ≤ k and for any vertex v ∈ V
the inequality

min
e∈E(v)

⋂
E(Cl)

rank(e) > max
e∈E(v)\E(Cl)

rank(e)

holds.
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Algorithm 3 Procedure FormChain
1: procedure FORMCHAIN(In: w starting vertex of a chain; Out: v ending vertex of a chain)
2: v← w; e← Q(v);
3: do
4: e1 = arg maxe∈Q(v) rank(e);
5: e2 = arg maxe∈Q(v): f1(e)= f2(e) rank(e);
6: if rank(e1) = rank(e2) then . Find the edge of maximal rank, a bridge if possible
7: e = e2;
8: else
9: e = e1;

10: end if
11: if v = v1(e) then
12: REPLACE(e); . Change the indexes of functions for edge e from k to 3− k, k = 1, 2
13: end if
14: E(G)← E(G) \ {e}; . Delete edge e and delete faces divided by edge e
15: Trail ← Trail ∪ {e};
16: v← v1(e);
17: while (v 6∈ Vodd&Q(v) 6= ∅);
18: return v;
19: end procedure

Theorem 5. Let G = (V, E) be a plane connected bridgeless graph on S, and Vodd ⊂ V be the set
of odd vertices. For any matching M on set VOdd in graph Ĝ = (V, E ∪M), there exists Euler
cycle C = v1e1v2e2...env1, n = |E|+ |M|, for any initial part Cl = v1e1v2e2...vl , l ≤ |E|+ |M|
of which, the condition Int(Cl) ∩ G = ∅ holds.

The proof of Theorem 5 is constructive and consists in proving the efficiency of the
algorithm M-Cover (see Algorithm 4) for constructing a cover for any matching on the set
of odd vertices [19].

Algorithm 4 Algorithm M-Cover

Require: plane connected graph G, functions vk(e), lk(e), e ∈ E(G), k = 1, 2; vertex v0 ∈ V(G)
incident to outer face; matching M on set of odd vertices VOdd; boolean function IdleM : VOdd →
{false, true} on set of odd vertices VOdd;

Ensure: almost ordered set C of OE-chains of graph G, being the OE-cover of graph G;
1: Order (G); . Define rank() for all e ∈ E(G), v ∈ V(G)
2: v := v0; . Constructing
3: while Q(v) 6= ∅ do
4: FormChain(v, v);
5: if IdleM(v) ∨ (Q(v) = ∅) then
6: u← M(v); . Vertex u is a pair for vertex v in matching M
7: VOdd ← VOdd \ {u, v} . Delete vertices u, v from VOdd
8: v← u; . Finish constructing the current chain
9: end if

10: end while
11: End of algorithm

The main difference of this algorithm from OE-Cover is that for each vertex v ∈ VOdd
the next one u = M(v) ∈ VOdd is fixed. It is the vertex to which the transition is made.
Algorithm M-Cover can finish constructing the current chain both at the first visit to the
vertex v ∈ VOdd, and at the moment when the vertex becomes dead-end (i.e., Q(v) = ∅).
To determine at what moment to finish the constructing of the chain, the values of
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IdleM(v) = (rank(v) ≤ rank(M(v))) ∧
(

fM(v) � fv
)
, v ∈ VOdd,

are used, where fw = arg min f :v∈ f⊂F(G) rank( f ), w ∈ VOdd. Here � is partial ordering on
F(G) induced by tree TG′

f 0 of shortest paths to vertex f0 ∈ F:

( fi � f j)↔
(

f j belongs to chain TG′
f0

between fiand f0

)
.

To construct the optimal cover (i.e., cover with a minimal length of additional edges)
it is enough to take the shortest matching on set of odd vertices Vodd as M. This task is
realized by the following Algorithm 5.

Algorithm 5 OptimalCover

Require: plane graph G represented by the list of edges with defined functions vk(e), lk(e), fk(e),
k = 1, 2

Ensure: cover of graph G by OE-chains Cj, j = 1, ..., |Vodd|/2
1: Define the shortest matching M on set Vodd
2: Run algorithm M-Cover for graph G and matching M
3: Stop

Obviously, Algorithm 5 allows us to construct the optimal OE-cover, and its computing
complexity is not greater than O(|V|3) (but by using special data structures and algorithms,
it is possible to run this algorithm by the time not exceeding O(|E(G)| ·

√
|V(G)|)). This

estimation is defined by the computing complexity of Step 1.

2.3. Constructing of Routes Satisfying the Combination of Constraints

During the technological preparation of the cutting process, various constraints on the
trajectory of the cutting tool may appear. One of them is the task considered above, where
the cut off part of the sheet of the obtained route does not require additional cuts. However,
in practice, it is required to fulfil additional constraints on the absence of intersection of
cuts and on allowable pierce points that are start points of OE-chains forming this route.

To solve a problem of the cuts intersection absence at each vertex of the graph, a cyclic
order of traversing the edges is specified, and the continuation of the traversal along the
chain is carried out only by this cyclic order. In the general case, the problem of finding such
a chain in a graph belongs to the class of NP-complete problems, but there are effective
algorithms of its solution for some special cases.

2.3.1. AOE-Routs

Let us consider Euler chain

T = v0, k1, v1, . . . , kn, vn, vn = v0

in graph G = (V, E). Let we know the cyclic order O±(v) defining the transitions system
AG(v) ⊆ O±(v) for each vertex v ∈ V. In the case when ∀v ∈ V(G) AG(v) = O±(v) the
transitions system AG(v) is called the full transitions system, and chain satisfying this
system is AG-compatible.

Definition 7. AG-compatible chain T is called A-chain. Thus, consecutive edges in the chain T
incident to vertex v are the neighbours in the cyclic order O±(v) [31].

Definition 8. The chain is called AOE-chain if it is OE-chain and A-chain simultaneously [32].
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Theorem 6. If there is A-chain in a plane graph G then there is also AOE-chain in this graph [32].

Theorem 7. Plane connected 4-regular graph G has AOE-chain.

To prove this theorem, we need to introduce some definitions and prove some propositions.

Definition 9. The partial graph Gk of graph G for which E(Gk) = {e ∈ E(G) : rank(e) ≥ k} is
called partial graph of rank k.

Preliminarily, the “correct” splitting of all cut-vertices of partial graphs Gk is performed,
so that as a result of the splitting, we get a graph for which any partial graph Gk has no
cut-vertices. The vertices splitting is a local operation, hence the sequence of splitting does
not affect the total result. The “correct” transition is one between arcs corresponding of a
cyclic order and incident to the different pairs of faces (see Figure 4b)). The splitting result,
in this case, is shown in Figure 4b).

(a) (b)

Figure 4. Splitting of cut-vertices of rank k. (a) The correct transitions system for splitting the cut-
vertex of partial graph Gk. (b) Splitting according to the transitions system in cut-vertex for partial
graph Gk.

These propositions imply the effectiveness of the CUT-POINT-SPLITTING Algorithm 6
running in time not greater than O(|E(G)| log |V(G)|).

Theorem 8. Algorithm AOE-CHAIN constructs AOE-chain for plane connected 4-regular graph
G any partial graph Gk, k = 1, 2, . . . of which has no cut-vertices. Algorithm solves the problem by
the time O(|E(G)| · log |V(G)|).

The proof of this algorithm’s effectiveness [32] finishes the proof of Theorem 7.

Proposition 1. Vertex incident to four edges bounding outer face is cut-vertex.

Proposition 2. The outer face of a partial graph Gk is the union of all faces of rank k in graph G.

Let us consider the Algorithm 7 for constructing the AOE-chain for plane connected
4-regular graph [32,33].
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Algorithm 6 CUT-POINT-SPLITTING

Require: plane connected 4-regular graph G = (V, E) represented for all e ∈ E(G) by functions
vs, ls, rs , s = 1, 2.

Ensure: homeomorphic image of graph G = (V, E) for which any partial graph Gk has no cut-
vertices.
Supplementary data ∀v ∈ V(G):
point(v) is the array of pointers to one of edges incident to vertex v;
rank(v) is the array of vertices ranks;
count(v) is the counter of incident edges of one rank for each vertex;
Supplementary data ∀ f ∈ F(G): array rank( f ).

1: Initiate():
2: for all v ∈ V(G) do . Zero the counter of edges of the same rank incident to a vertex
3: point(v) := 0; count(v) := 0
4: end for
5: Ranking(G) . Determining the rank of all vertices, edges and faces of a graph
6: Finding(): . Defining the cut-vertices
7: for all e ∈ E(G) do
8: point(v1(e)) : point(v2(e)) := e = e
9: end for

10: for all v ∈ V(G) do . To look through all the vertices
11:
12: e := point(v); k := rank(v) . Save the rank value k of the incident edge e
13: if v = v1(e) then . Define the direction of edge e
14: s := 1
15: else
16: s := 2
17: end if
18: e := ls(e) . Counting the number of rank k edges incident to vertex v
19: for i = 1 up to 4 do
20: if rank(e) = k then
21: count(v) := count(v) + 1
22: if i < 4 then
23: e := ls(e)
24: end if
25: end if
26: end for
27: if count(v) = 4 then . Split the vertex if it is cut-vertex
28: if ( fs(e) = fs(ls(e)) and f3−s(e) = f3−s(ls(e))) or
29: or ( fs(e) = f3−s(ls(e)) and f3−s(e) = fs(ls(e))) then
30: e∗ := ls(e), ls(e) := rs(e), rs(rs(e)) := e,
31: rs(e∗) := ls(e∗), ls(ls(e∗)) := e∗

32: else
33: e∗ := rs(e), rs(e) := ls(e), ls(ls(e) := e,
34: ls(e∗) := rs(e∗), rs(rs(e∗)) := e∗

35: end if
36: end if
37: end for

2.3.2. NOE-Routes

Algorithm 6 AOE-CHAIN is used for running the algorithm NOE-CHAIN (see Algorithm 8)
to obtain the non-intersecting OE-chain for plane connected graph [26].

Definition 10 ([26]). Let Eulerian cycle C of plane graph G be non-intersecting if it is homeomor-
phic to a closed Jordan curve without intersections obtained from graph G by applying of O(|E(G)|)
splittings of its vertices.
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Algorithm 7 Algorithm AOE-CHAIN

Require: plane connected 4-regular graph G = (V, E) defined by functions vk, lk, rk, k = 1, 2 (see
Theorem 1); starting vertex v ∈ V( f0).

Ensure: AChain – output stream containing AOE-chain obtained by the algorithm.
1: Initiate(G, v0);
2: Ranking(G);
3: CUT_POINT_SPLITTING (G); . Deleting of cut-vertices in partial graphs of each rank
4: . Constructing
5: e = arg maxe∈E(v) rank(e) . Choose the edge of maximal rank incident to vertex v
6: repeat
7: if v 6= v1(e) then
8: REPLACE(e)
9: end if . If necessary, adjust the numbering of functions for the edge e

10: AChain←Print(v, e) . Add edge e to the resulting sequence AChain
11: mark(e) := false; counter:=counter+1; v := v2(e) . Mark the current edge as passed
12: if (rank(r2(e)) ≥ rank(l2(e))) then . Choose the next edge of maximal possible rank
13: if mark(r2(e)) then . Check if the chosen edge is already passed
14: e := r2(e) . The passed edges have False value in the arra mark
15: else
16: e := l2(e)
17: end if
18: else
19: if (mark(l2(e)) then . Choose the not passed edge
20: e := l2(e)
21: else
22: e := r2(e)
23: end if
24: end if
25: until (counter > |E(G)|) . Finish the cycle when all the edges are scanned
26: End of Algorithm

Algorithm 8 NOE-CHAIN (G)

Require: plane Euler graph G defined by functions vk(e), lk(e), rk(e), fk(e), k = 1, 2 (see Theorem 1)
and rank(e);

Ensure: C as NOE-chain in graph G;
1: Ĝ = NonIntersecting(G); . Split all vertices of degree higher than 4
2: C∗=AOE_CHAIN(Ĝ); . Obtain AOE-chain in graph G̃
3: C=Absorb(C∗); . Absorb all split vertices and obtain the resulting NOE-chain

Its execution means transforming the initial graph to a plane connected 4-regular
graph by splitting the vertices of degree greater than 4. To obtain the Euler NOE-cycle in a
plane Euler graph without given transitions system, we can act as follows. Let us define
boolean function

Checked(v) =
{

true, if the vertex is viewed;
false, otherwise;

on the set of vertices V(G). When performing initialization, declare all vertices not viewed.
Function NonIntersecting (G) (Algorithm 9) splits all vertices v ∈ V(G) of degree more
than 2k− 1 (k ≥ 3) to k fictive vertices of degree 4 and introduces k fictive edges incident to
the vertices obtained as a result of splitting and forming a cycle (see Figure 5).
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Figure 5. Splitting of vertex (the edges of graph G are bold lines, and the fictive ones are thick lines)
and modification of the pointers according to the splitting processed.

Algorithm 9 Function NonIntersecting (G)

Require: plane Euler graph G defined by functions vk(e), lk(e), rk(e), fk(e), k = 1, 2 (see Theorem 1)
and rank(e);

Ensure: plane connected 4-regular graph G∗ defined as the same;
1: for all v ∈ V(G) do . Initialization of Checked(v) function
2: Checked(v) := false;
3: end for
4: for all (e ∈ E(G) ) do . Searching of vertices of degree greater than 4 and their splitting
5: k := 1; . Consider vertex with index 1, then vertex with index 2
6: while (k ≤ 2) do
7: if (! Checked(vk(e))) then . Process only a previously unprocessed vertex
8: if (k = 2) then . Improve the indexes
9: REPLACE(e); . Process vertices v1(e)

10: end if
11: Handle ( e); . Call the function to process vertex v1(e)
12: Checked(v1(e)) := true; . Mark the vertex as considered
13: end if
14: k := k + 1;
15: end while
16: end for

End of function

In the body of function we use the procedure Handle (e, vk(e), k), which processes
each unconsidered graph vertex.

Procedure Algorithm 10 during cycle repeat–until (lines 6–11) counts the degree d of
current vertex v. If d > 4, then the second cycle repeat–until (lines 12–23) runs. Here the
handled vertex is split to d/2 fictive vertices, and d fictive edges incident to these vertices.
There fictive edges form a cycle.

In lines 18–23, we not only change the pointers to edges, but also create a new (fictive)
face F, incident to all fictive vertices and edges, and also define the ranks of fictive edges [26].

Definition 11. The rank of fictive edge (line 20) is equal to the rank of the initial graph face incident
to the entered fictive edge.

The introduced by Handle procedure k/2 fictive vertices and k fictive edges incident to
these vertices are forming a cycle. As a result of processing all graph G vertices, we obtain
the modified plane connected 4-regular graph G∗. Algorithm AOE-CHAIN() constructing
AOE-chain T∗ can be implemented to graph G∗. The considered procedure is realized in
algorithm NonIntersecting (see Algorithm 9). If then in T∗ all the fictive edges and the
incident vertices obtained by splitting the vertex v are replaced by v, then we obtain the
NOE-chain T in the original graph G.
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Algorithm 10 Procedure Handle (e)
1: procedure HANDLE(e)
2: v := v1(e); . Splitting vertex
3: e f irst := e; . Save the first considered edge
4: d := 0; . Initialization of a counter for vertex degree d
5: F := FaceNum() + 1; . Define the number of a new face
6: repeat . Pass 1: Defining the degree of v
7: le := l1(e);
8: if (v1(le) 6= v) then REPLACE(le);
9: end if . Change the indexing of functions if necessary

10: e := le; d := d + 1; . Consider the edge when calculating the degree and move on to the
next one

11: until (e = e f irst); . Repeat until all edges incident v have been considered
12: if (d > 4) then . If the degree of current vertex is greater than 4
13: e := e f irst; . Begin from the first considered edge
14: le := lk(e); . Define the number of its left neighbour
15: enext := lk(le); . Save the edge for the next iteration
16: f l := new EDGE; f le := f l; e f irst := e; . Introduce a fictive edge adjacent to le
17: repeat . Put the pointers for edges
18: e := enext; le := lk(e); f r := f l;
19: f1( f l) := F; f2( f l) := f2(e); . Define faces adjacent to a fictive edge
20: rank( f l) := facerank( f2( f l)); . Define ”rank” of fictive edge
21: . Function facerank() defines the rank of a face according to the definition
22: f l := new EDGE; enext := lk(le);
23: until (lk(le) = e f irst);
24: end if
25: end procedure

Theorem 9. Algorithm NOE-CHAIN solves the task of constructing the NOE-chain for plane Euler
graph by the time O(|E(G)|2) [26].

Note that this algorithm constructs a NOE-chain in a plane Euler graph. In the case of
a plane non-Euler (generally disconnected) graph G, it is necessary to split all vertices of
degree higher than 4 by the Algorithm 10. As a result, we get a graph with vertex degrees
equal to 3 or 4. For this graph, we apply the algorithm for constructing an AOE-cover. In
the chains of the resulting cover, remove all artificial edges and absorb all split vertices. As
a result, we get NOE-cover.

2.3.3. PPOE-Routes

Let us consider a problem arising in the case of intrusion of constraints on the location
of pierce points. Obviously, the number of pierce points is determined by the number of
covering chains. According to Theorem 3, the number of pierce points is at least |Vodd|/2.
This problem can be formalized as following.

• Let faces Fin(G) ⊂ F(G) allow piercing.
• Let odd vertices v− ∈ Vin(G) ⊂ V(G) be incident to face Fin(G).
• Let for odd vertices v+ ∈ Vout = Vodd \Vin piercing is forbidden.

If the constructed route in the graph is an OE route and all the initial vertices of the
covering chains belong to Vin(G), then this route can be used as a basis for constructing
a route for the cutter trajectory for laser cutting process. Let these routes be called PPOE-
routes [27].
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Definition 12. Let chain C = v1e1v2e2 . . . vk be called PPOE-chain, if it is OE-chain and starts
from vertex v1 ∈ Vin(G).

Definition 13. Let PPOE-cover of graph G be such an OE-cover of G, consisting of PPOE-
chains.

Definition 14. An ordered sequence of edge-disjoint PPOE-chains in a plane graph G of the
minimal cardinality is called an Euler PPOE-cover.

The problem of determining the realizability of a cutting plan can be formulated as
determining the existence of an Euler PPOE-cover for a plane graph that is a homeomorphic
image of the corresponding cutting plan. Following the existing restrictions, we can
formulate the following necessary condition for the existence of a PPOE-cover.

Theorem 10. Plane connected graph G(V, F, E) without bridges has PPOE-cover if and only if
the cardinality of minimal {Vin, Vout}-cut is at least |Vout|.

Proof. The validity of the necessary condition is obvious, sufficiency follows from the
effectiveness of Algorithm 11 solves the problem of constructing PPOE-cover for a plane
graph G(V, E) without bridges.

To find minimal {Vin, Vout}-cut let us construct a network

N(V ∪ {w}, A ∪ ({w} ×Vin))

(i.e., directed graph with source w), in which

• a pair of arcs (u, v), (v, u) ∈ A(N) of capacity 1 corresponds to edge e = {u, v} ∈
E(G);

• vertices v+ ∈ Vout(N), i.e., points of possible end of chain, are the sinks of a unit
power flow;

• vertices v− ∈ Vin(N), i.e., possible pierce points, may be source of the unit.

Cardinality of minimal {Vin, Vout}-cut can be obtained as optimal value of problem

∑
(u,v)∈A(N)

x(u, v)→ min, (1)

∑
v: (u,v)∈A(N)

x(u, v)− ∑
v: (v,u)∈A(N)

x(v, u) = 1, u ∈ Vout(N), (2)

− ∑
v: (u,v)∈A(N)

x(u, v) + ∑
v: (v,u)∈A(N)

x(v, u) = −x(w, u), u ∈ Vin(N), (3)

∑
v: (u,v)∈A(N)

x(u, v)− ∑
v: (v,u)∈A(N)

x(v, u) = 0, u ∈ V\(Vout(N) ∪Vin(N)), (4)

∑
v∈Vin(N)

x(w, v) = |Vout(N)|, (5)

0 ≤ x(u, v) ≤ 1, (u, v) ∈ A(N), (6)

0 ≤ x(w, u) ≤ 1, u ∈ Vin(N), (7)

where w is a common source with capacity |Vout| adjacent to all v ∈ Vin to network N.
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Let x : A→ {0, 1} be optimal solution of problem (1)–(7). Let us construct a sequence
of disjoint chains C1, C2, . . . C|Vout |, containing all the flow holders of x and only them. It
is possible to «correctly» split each vertex v ∈ V(G) to the dummy vertices with «correct»
union of active arcs lists, while it is possible (i.e., taking into account the cyclic order on the
set of arcs and their orientations). The examples of «correct» splitting and uniting are shown
in Figure 6. The result of this step is a sequence of disjoint chains C1, C2, . . . C|Vout |, contain-
ing all the flow holders and only them. The above allows us to propose the Algorithm 11
PPOE-covering.

(a) (b)

Figure 6. Example of the «correct» splitting, where→ is flow hold arc, and 99K is arc without flow.
(a) A vertex and arcs incident to it. (b) The «correct» splitting.

Algorithm 11 Algorithm PPOE-covering

Require: plane graph G(V, F, E) without bridges, defined for all e ∈ E(G)
functions vk(e), lk(e), rk(e), fk(e), k = 1, 2 (see Theorem 1) rank(e),
functions rank(v), v ∈ V(G), rank( f ), f ∈ F(G);
subsets Vout, Vin ⊂ V : |Vin| ≥ |Vout|;
subset {Fin ⊂ F} of faces that allow piercing.

Ensure: PPOE-cover of graph G(V, E): C̃1, C̃2, . . . C̃|Vout |, C|Vout |+1, . . . , CM.

1: Construct a network N(V ∪ {w}, A ∪ ({w} ×Vin)).
2: if (Vout = ∅) then
3: Run Algorithm 5 OptimalCover for graph G
4: Return(Cover of graph G by OE-chains Cj, j = 1, ..., |Vodd(G)|/2)
5: end if
6: if problem (2)–(7) is unsolvable then
7: Rteurn(PPOE-cover does not exist)
8: else
9: Let x : A(N)→ {0, 1} be optimal solution of problem (2)–(7)

10: For each active arc (u, v) : x(u, v) = 1 create a list, including this arc and only it
11: Find a sequence of disjoint chains C1, C2, . . . C|Vout |, containing all the flow holders and only

them with usage for each vertex v ∈ V(G) of «correctly» splitting to the dummy vertices (see
Figure 6)

12: Construct a partial graph

G̃ = G \ (
|Vout |⋃
i=1

Ci), E(G̃) =

E(G) \

|Vout |⋃
i=1

Ci

,

in which all vertices v ∈ Vout, for which piercing is forbidden, are the vertices of even degree.
13: end if
14: For G̃ run algorithm OptimalCover 5. The result of this step is a sequence of disjoint chains

C|Vout |+1, . . . , C|Vout |+|M|.

15: Return( C̃1, C̃2, . . . C̃|Vout |, C|Vout |+1, . . . , CM.)
16: End of algorithm
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Theorem 11. Algorithm PPOE-covering solves the problem of constructing PPOE-cover for a
plane graph G(V, E) without bridges by the time not exceeding O(|V|3).

Proof. The route consisting of chains C1, C2, . . . C|Vout | is the edge-disjoint OE-route (due
to unit carrying capacity of arcs). Partial graph G̃ does not contain any edges belonging to
chains Ci, i = 1, . . . , |Vout| by definition. All graph G̃ vertices avoiding piercing have even
degree due to constructions. As a result of running Step 9, we get the continuation

C|Vout |+1, . . . , C|Vout |+|M|

of route which is the OE-route in graph G̃ covering all edges of graph G̃, and starting vertex
v ∈ Vin of each chain Ci, i = |Vout|+ 1, . . . |Vout|+ |M| is permissible for piercing. Hence,
the route

C1, C2, . . . C|Vout |, C|Vout |+1, . . . , C|Vout |+|M|

is PPOE-cover of initial graph G.
Let us estimate the computing complexity of this algorithm. Step 1 allows to get

the network by time O(|E|). Step 2 verifies the condition and it is completed in O(1).
Circulation in step 3 may be obtained by time not exceeding O(|V|3) [34]. Step 4 verifies the
condition and it is completed in O(1). In step 5, we introduce a sequence of chains along
with a set of active arcs. This operation is performed at a time not exceeding O(|E|). In step
6, at each vertex v, a ”merging” of lists is performed in a time not exceeding O(|V| ·deg(v)).
Thus, the computing complexity of step 6 does not exceed the value O(|V| · |E|). Step 7
runs by time not exceeding O(|E|). The complexity of Step 7 is defined by the complexity
of algorithm OE-Cover [19] and amounts to O(|E(G)| · log2 |V(G)|). Obtaining the partial
graph G̃ at Step 7 claims the time not exceeding O(|E|). The complexity of Step 9 does not
exceed O(|V|3) used for the shortest matching obtaining. Thus, the complexity of algorithm
PPOE-routing does not exceed the value of O(|V|3).

Let us consider the application of algorithm PPOE-Routing to cutting plan in Figure 2
with geomorphic image presented in Figure 3 and in Table 1. We have Vout(N) =
{v1, v5, V11}, Vin(N) = {v2, v3, v7, v9}, V(N)\(Vout(N) ∪ Vin(N)) = {v4, v6, v8, v10, v12}.
Figure 7 demonstrates network N(V ∪ {w}, A ∪ ({w} ×Vin)) constructed in Step 1 and
optimal solution of problem (1)–(7) found in Step 2. Bold lines highlight carriers of non-
zero flow.

Figure 7. Network N for graph in Figure 3.
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After running steps 3–6, we obtain the chains C1 = e3e2e9, C2 = e21e22, C3 = e13.
Partial graph constructed by step 7 is shown in Figure 8.

Figure 8. Rest of network N after running steps 3–6.

In this graph algorithm M-Cover constructs the only chain

C4 = e5e7e11e16e12e8e10e15e20e19e18e17e14e23e1e4e6.

So, the PPOE-cover for this graph is {C1, C2, C3, C4}.
Thus, the construction of the PPOE -cover of the G graph allows us to solve the

problems of the cutter movement routing for a realizable cutting plan with restrictions on
possible pierce points.

2.4. Algorithms for Disconnected Graphs

The problem of constructing OE-routes in disconnected graphs is also of practical
value. In this case, the task of finding the OE-covering of the graph by chains can be
reduced to several tasks of lower dimension (to construct a cover for each connected
component separately). This approach is reasonable if the resulting graph does not con-
tain nested components. However, in the presence of nesting of the connected compo-
nents, the problem becomes somewhat more complicated and the following restrictions
on the order of traversing the connected components arise: the connected components
consisting of edges of higher rank must be traversed before the components consisting
of edges of lower rank. To solve the problem in common for plane disconnected graph
algorithms MultiComponent (computing complexity O(|E(G)| · log2 |V(G)|)), Bridging,
DoubleBridging) and FaceCutting (Figure 9) are developed.

The proofs of these results [19] are constructive and, in fact, are reduced to describing
and proving the effectiveness of algorithms for constructing the desired cycles (routes).

Algorithms Bridging and DoubleBridging use the approach of reducing the initial
disconnected graph to a connected one.

Definition 15. Let face f ∈ F(G) be called separating, if it is incident to two or more connected
components.

Let graph G̃ be obtained from graph G by adding bridges belonging to separating
faces between the components. Obviously, the obtained graph G̃ be a plane connected
graph and it is possible to construct the OE-route R(G̃) for it. This OE-route R(G) can be
obtained from route R(G̃) if vertices incident to the introduced bridges are to be the ends
of the current chain and the beginnings of the next ones (i.e., introduced bridges are the
idle passes).
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Let us consider the way of constructing the bridges connecting graph G and having a
minimal summary length (see Algorithm 12).

(a) (b) (c)

Figure 9. Examples of combining separated components. (a) Bridging; (b) DoubleBridging; (c) Face-
Cutting.

Algorithm 12 Bridging

Require: plane disconnected graph G
Ensure: plane connected graph G̃ and set B of introduced bridges

1: G̃ := G; B = ∅;
2: Define the set CF of all separating faces.
3: for all f ∈ CF do
4: Find the set S( f ) of connected components of graph G incident to face f .
5: Construct the full abstract graph T the vertices of which are the components S( f ), and lengths

of edges are equal to the distance between the components.
6: Obtain the minimal spanning tree T(T ) in T .
7: Add the edges of the obtained spanning tree to graph G̃: E(G̃ := E(G̃) ∪ E(T(T )), B :=

B ∪ E(T(T )).
8: end for
9: end

Plane graph G̃ obtained by algorithm Bridging contains bridges, hence it is possible
to apply only algorithm CPP_OE [30] constructing the Chinese postman OE-route for plane
graph [30]. Note that both the OECover algorithm and the M-Cover algorithm require no
bridges in the graph. To avoid errors in the execution of the algorithms, it is necessary to
add the edges of the spanning tree T(T ) to the graph twice (see line 6 of the Algorithm 12).
The algorithm adjusted in this way is called DoubleBridging. The complexity of the
Bridging and DoubleBridging algorithms is polynomial, depending on the method used
to determine the distances between the connectivity components. If the distances are given
it can be estimated as O(|E(G)| · log |V(G)|).

Theorem 12. If, for each component Gk of graph G, the degrees of vertices incident to separating
faces of G are even, then the path of the minimal length of additional edges can be realized by
algorithm DoubleBridging.

Algorithm FaceCutting [35] is one other way to obtain graph G̃ without bridges. It
consists in splitting the separating face using the Hamiltonian cycle. In fact, if for abstract
graph T we use the minimal weight Hamiltonian cycle H(T ) instead of spanning tree
T(T ), then the resulting graph G̃ does not contain any bridges and, hence, we can use
algorithm M-Cover (see Algorithm 4) to obtain the OE-route with a minimal length of
idle passes.
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3. Discussion

In our article, we provide an overview of the plane graph routing problem statements
since the 1980s. In the early works [20,21], the formalization of the tasks posed is not
accurate enough, there is no classification of routes by the type of restrictions imposed.
In this regard, mainly heuristic algorithms were developed. In the works of the authors
(2007–2020), an exact formalization of some previously considered statements is given,
classes of routes in plane graphs satisfying constraints are introduced, and polynomial
exact algorithms for solving these problems are described.

Of particular note is the proof of the NP-completeness of the problem of finding non-
intersecting Euler chains [21], where the author takes an A-chain as a self-non-intersecting
Euler chain. The authors have shown the existence of a polynomial algorithm for finding
an Euler self-non-intersecting chain in a plane graph. The question of NP-completeness of
the problem of finding a self-non-intersecting chain remains open.

4. Conclusions

In our paper, we introduced a class of routes with ordered enclosing (OE-routes) in
plane graphs. The routes of this class represent an ordered sequence of paths that satisfy
the requirement that the inner edges of the traversed part of the route do not intersect with
the edges of its non-traversed part.

We showed that the presence of bridges in the graph has a significant effect on the cover
cardinality. If there are no bridges in a graph, the minimum number of OE-chains covering
the graph is equal to the minimum number of paths covering the given graph (in the case
of the existence of vertices of odd degree incident to the outer face). If there are no vertices
of odd degree adjacent to the outer face, then the cardinality of the covering is one higher
than the minimum number of paths covering the given graph. In general, the cardinality N
of Euler OE-cover of graph G satisfies the inequality k = |Vodd(G)|

2 ≤ N ≤ |Vodd(G)| = 2k.
The upper and lower bounds are reachable.

We discussed the polynomial algorithms for constructing the OE-cover for different
cases: plane Euler graph, any plane connected graph (CPP and OE-cover constructing
problems), any disconnected plane graph. We developed the polynomial time algorithm
for obtaining an OE-route with the minimum number of covering paths and an algorithm
for constructing an OE-route with a minimum length of transitions between the end of the
current path and the beginning of the next path.

To discover the chains with the complex groups of restrictions we introduced classes of
AOE-chains, NOE-chains, and PPOE-chains. (1) Class of AOE-chains includes the chains
with additional local restriction according to which the neighbouring edges need to satisfy
the transitions system of A-chain. Algorithm AOE-CHAIN allows obtaining a chain belonging
to class AOE for a plane connected 4-regular graph. The algorithm allows to obtain it
by the time O(|E(G)| · log |V(G)|). (2) Class of NOE is the extension of class AOE and
contains all OE-chains with non-intersecting transitions. Algorithm Non-intersecting
allows obtaining such a chain. Its implementation consists in reducing the original plane
graph to a plane connected 4-regular graph by splitting vertices of degree higher than 4 and
further executing the AOE-CHAIN algorithm. (3) Class of PPOE-chains contains OE-chains
with fixed sets of starting and ending vertices, and algorithm PPOE-covering allows for
correctly solving the problem of constructing this type of cover for a plane graph G(V, E)
without bridges by the time not exceeding O(|V|3) [36].

All our algorithms are implemented using the C++ programming language, and the
initial data can be read either from text files with the table of functions for edges (see
Theorem 1) or by conversion of JSON-files used in known CAD/CAM systems to the table
of these functions [36].
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