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Abstract: The objective is to study the evolution of different characteristics of a population through
time. These response variables may be related for each experimental unit, and in addition, the
observations for each response may as well be correlated with time, producing a complex correlation
structure. The number of responses that can be observed is usually limited for budget, resources, or
time reasons, and thus the selection of the most informative time points when data must be taken
is quite convenient. This will be performed by using the optimal design of experiments techniques.
Some analytical results will be shown, and the results will be applied to obtain the most convenient
points when tests about two variables related with the capability of the resolution of mathematical
problems in primary school students should be performed.

Keywords: covariance structure; evolution study; mental representation; optimal design of experiments;
problem solving
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1. Introduction

When studying several characteristics from a group of experimental units, one of the
main concerns is the independence of the obtained data, since most of the usual techniques
assume independence between the observations. However, this assumption may be difficult
to maintain when observing different variables of a specific subject through time. In this
situation, at least two kind of covariance structures may arise, one between the different
types of observations taken on the same subject at every temporal point and another one
between the values of a specific type of characteristic observed through time [1,2]. This may
be a complex problem even when only one experimental unit is observed. Considering a
group of units in the study means the addition of another layer to the structure, a problem
that will be addressed in the present work.

The origin was the study of small children’s capacity of solving mathematical problems
and the evolution of this skill in students through the years they spent in primary school.
This variable is very often related with some others that could be observed as well in the
same students in order to check the kind of relationship or estimate the model linking the
variables. However, obtaining the data has certain costs, especially those coming from the
time that teachers and administrative personal will spend in designing and performing
the tests, correction, the translation of the outcomes to a computer program, and analyzing
the results. It will be very difficult to have these tests performed very often, or even once a
year. For this reason, a design plan stating the conditions under which these observations
should be taken is quite convenient.
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In this work, such designs will be studied for a general case in which some variables
will be observed on a cohort of subjects at different time periods, trying to decide the
most informative time-points where observations/tests should be collected using optimal
experimental design techniques.

In Section 2, the main concepts and latest results of the optimal design of experiments
theory applied to models describing several response variables for one subject will be
outlined, and new analytical results for a general case with N subjects and k variables of
interest will be obtained. In Section 3, the theory will be applied to the joint study of the
variables ’Ability in problem solving’ (PS) and ’Mental representation capacity’ (MR) of the
primary school students [3], and the results will be commented on in Section 4. Finally, the
main conclusions and further applications will be addressed in Section 5.

2. Background and New Results

Let x denote the experimental conditions, with possible values in the experimental
domain X. An exact design ξ is a collection of points {x1, . . . , xn} where samples are to
be taken. For n observations Y = {y1, . . . , yn}T of the one-response linear model y =

f(x)T
β+ u, the system can be expressed in matrix notation as

Y = Xβ+ U, (1)

where β is the m-parameter vector, U = {u1, . . . , un}T the vector of error terms, and
X = (f(x1), . . . , f(xn))

T the design matrix, with f(x) = ( f1(x), . . . , fm(x))T and the fi(x)
linearly independent in X. When there exists a correlation structure Σ = Var(Y) be-

tween the samples, the estimator of the parameters for normal-distributed errors is
^
β =

(XTΣ−1X)
−1

XTΣ−1Y. One of the most important tools in the optimal design of experiments
framework is the information matrix of the design ξ;

M(ξ) = XTΣ−1X, (2)

which is proportional to the inverse of the variance of
^
β. Usually the objective of practi-

tioners is to find optimal designs that produce precise estimators of the model parameters,

thus minimizing Var
(

^
β

)
or equivalently maximizing M(ξ). Different criterion functions

may be considered, usually convex functions of M−1(ξ). The most popular criterion is
D-optimality, which pays attention to the determinant of M−1(ξ), and that will be the
criterion used in this work. When a design is D-optimal, it minimizes the volume of the
confidence ellipsoid of the estimators of the model parameters. For non-linear models, the
information matrix will depend on the unknown parameters. In this case, nominal values
are needed for them, and locally optimal designs will be obtained. Reference books on the
topic are, for instance, [4–6]. To compute optimal designs, from the analytical expression
of the model the linearized version is obtained by computing the derivatives with respect
to the parameters. When it is not possible to obtain the analytical expression, alternative
methods for computing the derivatives can be employed [7].

When the observations are correlated, the size of the design (number of samples
to be taken) should be decided in advance. Furthermore, for an evolution study, the
design variable is time, and thus it will be assumed that xi 6= xj for all i, j because there
is no reason to take several observations on the same subject at the same time. When
different responses are of interest (multiresponse models), the usual assumption was to
consider that the k responses observed on the same experimental unit under the conditions
x, y(x) = (y1(x), . . . , yk(x))T were correlated, but the measures taken at different points,
y(x) and y(x′), were independent. However, when the design variable is time, this last
assumption is no longer valid [2], and two types of correlation should be considered: a static
or intra covariance structure between different responses observed at the same time and
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a longitudinal or inter correlation between the same type of response obtained at different
times.

Thus, let us assume that we observe k characteristics of one subject at different
times, and for each time t let S(t) denote the covariance matrix of the sample y(t) =
(y1(t), . . . , yk(t)), that is, S(t) = cov[y1(t), . . . , yk(t)]. It is usual to assume that the relation
between the different variables is similar for every t; thus, following that, a constant covari-
ance S will be considered (intra correlation). On the other hand, the covariance between
the same type of observations taken at different points will be assumed to be dependent
only on the distance between points, that is,

Cov
[
yi
(
tj
)
, yi(tl)

]
= ρ

(∣∣tj − tl
∣∣), i = 1, . . . , k; j, l = 1, . . . , n,

where ρ is a known stationary covariance kernel (different proposals of these functions
can be found, for instance, in [8,9]; thus, the longitudinal covariance will be the same
for the k different responses, R = Cov[yi(t1), . . . , yi(tn)] ∀i. The assumption of a known
covariance function may be a controversial issue; however, it becomes more acceptable
when restricting to a local consideration of the model, thus finally obtaining locally optimal
designs.

In previous studies [1,2], the double (inter and intra) covariance structure has been
taken into account for measures over a single experimental unit through time. Now, a
multisubject scenario will be considered, observing N subjects at different times t1, . . . , tn,
(design ξ). Balanced designs will be considered, that is, for each ti in ξ several variables,
Y1, . . . , Yk will be observed for every subject; for unbalanced designs, a procedure similar
to the one employed in Example 2 of [1] can the employed. The aim will be to select the
most informative design for the models describing the evolution of the variables.

The Kronecker product of the different covariance structures can be used to express
the covariance matrix of the N k n observations. Throughout this work, a non-trivial R (but
constant for every variable k) will be assumed; therefore, for each subject it will be more
convenient to use the order y1(t1), . . . , y1(tn), . . . , yk(t1), . . . , yk(tn), getting the covariance
matrix Σ0 = S⊗R. Furthermore, it is quite usual to assume as well that the N subjects are
independent, thus the covariance matrix of the N k n observations can be expressed as

Σ = IN ⊗ S⊗R = IN ⊗ Σ0, (3)

where IN is the identity matrix of order N. That is, Σ is the block-diagonal (BD) matrix
BD{Σ0, . . . , Σ0}.
• Let us now fix the notation and the models that will be studied for the case of several

subjects: let y(v)ij = y(v)i
(
tj
)

denote the value of the i-th variable observed on the v-th

subject at time tj, y(v)
i = (y(v)i1 , . . . , y(v)in )

T
the observations of type i taken on the v-th

subject, and y(v) = (y(v)
1

T , . . . , y(v)
k

T)
T

all the observations taken on the v-th subject,
ordered by type. Then Σ in Equation (3) denotes the covariance matrix of the N k n

observations vector Y = (y(1)T , . . . , y(N)T)
T

. It seems convenient to remember here
some properties of the Kronecker product of matrices that will be used later; they can
be checked, for instance, in [10]:

• (A⊗ B)⊗ C = A⊗ (B⊗ C).
• (A⊗ B)(C⊗ D) = (AC)⊗ (BD).

In particular, (A⊗ B)−1 =
(

A−1 ⊗ B−1) and (A⊗ B)> =
(

A> ⊗ B>
)

• If A and B are squared matrices of respective dimensions nA and nB, then

det(A⊗ B) = det(A)nB det(B)nA

• (A⊗ B) = P(B⊗ A)Q for certain permutation matrices P and Q.
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If both A and B are square matrices, then Q = P>.
with A, B, C, D, P, and Q having the right dimensions for the product of matrices.

The aim is to obtain D-optimal designs for fitting the models of the k variables involved,
assuming m-parameter linear models with the same structure. The setup is somehow
similar to that in [11], where the double covariance structure was applied to a compositional-
response model. That case was roughly equivalent to a one-subject model, and the samples
of the same variable were assumed independent, while here a non-trivial correlation is
considered between the different observations of the same variable, and multiple subjects
are observed. Two scenarios will be considered:

Model I.—Different models of the variables for each subject (N k models):

ŷi
(v)(t) = f(t)T

β
(v)
i , (4)

with β
(v)
i = (β

(v)
1 , . . . , β

(v)
m )

T
i = 1, . . . , k, v = 1, . . . , N.

Model II.—The model of each variable is valid for all the subjects (k models):

ŷi
(v)(t) = f(t)T

βi, (5)

with βi = (β1, . . . , βm)
T i = 1, . . . , k, v = 1, . . . , N.

In the following, analytical results will be obtained for the two scenarios, beginning
with Model I:

Theorem 1. The D-optimal designs for the individual models of each variable in each subject are
also D-optimal for Model I, given by Equation (4).

Proof. If n observations are taken for each variable and subject at times t1, . . . , tn, the model

can be expressed as (1) with β =
(
β(1)T , . . . ,β(N)T

)T
, β(v) =

(
β
(v)
1

T , . . . ,β(v)
k

T
)T

, and

β
(v)
i =

(
β
(v)
i1 , . . . , β

(v)
im

)T
), and the design matrix is

X = BD{X0, . . . , X0} = IN k ⊗ X0,

where X0 =
(

f(t1)
T , . . . , f(tn)

T
)T

is the design matrix for each individual model. Then, the
information matrix (2) is given by

M = XTΣ−1X
=

(
IN ⊗ Ik ⊗ X0

T)(IN ⊗ S−1 ⊗R−1
)
(IN ⊗ Ik ⊗ X0)

= IN ⊗ S−1 ⊗M0,

where M0 = X0
TR−1X0 is the information matrix of the model of each variable for each

subject. Thus det[M] =
(

det[S]−m det[M0]
k
)N

, which finishes the proof since S does not
depend on the design. �

Theorem 2. The parameters of the individual models (4) can be estimated independently and do
not depend on S. However, the variance of the set of the parameter estimators for each subject does
depend on S because Var

(
β(v)

)
= S⊗M0

−1.

Proof. The estimator of the parameter vector is:

^
β = (XTΣ−1X)

−1
XTΣ−1Y

=
(
IN ⊗ S⊗M0

−1)(IN ⊗ Ik ⊗ X0
T)(IN ⊗ S−1 ⊗R−1

)
Y

= (IN ⊗ Ik ⊗W)Y,
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where W = M0
−1X0

TR−1 is such that β(v)
i = Wy(v)

i for all i = 1, . . . , k, v = 1, . . . , N, and

Var
(

^
β

)
= M−1 = IN ⊗ S⊗M0

−1. �

Let us now pay attention to Model II given in (5). In this case the parameter vector

is
~
β =

(
~
β1

T , . . . ,
~
βk

T
)T

, with
~
βi =

(
β̃i1, . . . , β̃im

)T
. There are only kxm parameters since

the model of each variable Yi is the same for all the subjects. For this reason, it will be
convenient to place together all the observations of each variable, that is, consider the
following observations vector:

~
Y =

y(1)
1

T , . . . , y(N)
1

T︸︷︷︸
obs. variable 1

, . . . , y(1)
k

T , . . . , y(N)
k

T︸︷︷︸
obs. variable k


T

The following results can be derived, the first one similar to that of Theorem 1, but
now consider the second model:

Theorem 3. The D-optimal designs for the individual models of each variable in each subject are
also D-optimal for Model II, given by Equation (5).

Proof. The design matrix
~
X corresponding to the ordering given by

~
Y will be

~
X =



X0 0 . . . 0
...

... . . .
...

X0 0 . . . 0
0 X0 . . . 0
...

... . . .
...

0 X0 . . . 0
...

...
. . .

...
0 0 . . . X0
...

... . . .
...

0 0 . . . X0



= A⊗ X0,

with A = Ik ⊗ 1N, where 1N denotes a column vector of ‘1′s of length N.

Let P be the N k n permutation matrix that turns Y into
~
Y, that is, PY =

~
Y. Since P

permutes in fact the vectors of observations y(v)
i , it can be expressed as P = Q⊗ In, with Q

the N k permutation matrix expressed by vector vQ,

vQ = (1, k + 1, 2k + 1, . . . , (N − 1)k + 1,
2, k + 2, 2k + 2, . . . , (N − 1)k + 2,

. . . . . . . . .
k, 2k, 3k, . . . , N k),

meaning that for every row i of Q (i = 1, . . . , N k), we have Qi,vQ(i) = 1 and Qi,j = 0 if
j 6= vQ(i).
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Now the covariance matrix of
~
Y is

~
Σ = Σ~

Y
= ΣP Y = PΣYPT

= (Q⊗ In)[(IN ⊗ S)⊗R]
(

QT ⊗ In

)
=

[
Q(IN ⊗ S)QT

]
⊗R

= S⊗ IN ⊗R,

and the information matrix can be computed as

~
M =

~
X

T ~
Σ
−1 ~

X
=

(
AT ⊗ X0

T
)[(

S−1 ⊗ IN

)
⊗R−1

]
(A⊗ X0)

=
[
AT
(

S−1 ⊗ IN

)
A
](

X0
TR−1X0

)
= N S−1 ⊗M0,

With the last expression obtained using that A = Ik ⊗ 1N. Then, det
[ ~
M
]

=

Nk mdet[S]−m det[M0]
k. �

Theorem 4. Regarding Model II given by (5), the estimation of the parameters of the i-th response
is the average of the corresponding estimations for each subject and does not depend on S (but their
covariance matrix, which is proportional to the inverse of the information matrix, does depend on S).

Proof. The estimator of the parameter vector is

~̂
β = (

~
X

T ~
Σ
−1 ~

X)
−1 ~

X
T ~

Σ
−1 ~

Y

=
(
S/N ⊗M0

−1)(AT ⊗ X0

)[(
S−1 ⊗ IN

)
⊗R−1

]~
Y

=
[
S/N AT

(
S−1 ⊗ IN

)]
⊗
(
M0
−1X0

TR−1)~
Y

=
(
Ik ⊗ 1N

T/N ⊗W
)~
Y,

where the last equality comes from

(S/N) AT = (S⊗ I1/N)
(

Ik ⊗ 1N
T
)
=
(

S⊗ 1N
T/N

)
.

Let us have a close look at this expression. It means that

ˆ̃
βi =

(
1N

T/N ⊗W
)(

y(1)
i

T , . . . , y(N)
i

T
)T

= 1
N (W, . . . , W)

(
y(1)

i
T , . . . , y(N)

i
T
)T

= 1
N

N
∑

v=1
Wy(v)

i
T

which, taking into account that Wy(v)
i

T is the estimation of the parameters of the model of
the variable Yi for the v-th subject, finishes the proof. �

3. Optimal Designs for Evolution of MR and PS

There is a general agreement that problem solving should be the main objective in
school mathematics instruction [12,13]. It seems clear that this ability may be related with
the capability of understanding the semantic structure of the mathematical problems state-
ments and increases with age. Children could be able to solve real world problems at early
age [14], but the acquisition of academic language comes later, after they dominate every-
day language [15]. The relation between problem solving and linguistic comprehension is
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explored in [16]. However, apart from understanding the statement of the problem, the
students must be able to construct a mental representation of it [17–19].

All these facts are discussed in [3], where a test on additive problems using expressions
close to practical everyday language is proposed. That work studied the influence of mental
representation (MR) in the ability of the resolution of additive problems (PS) for children
from 6 to 12 years old and found a model relating the two variables. Once this relationship
has been stablished, the next step should be to find a convenient design plan for a follow-up
study of the evolution of both characteristics. To this end, the results of Section 2 will be
employed for obtaining an optimal design plan for the observation of these two variables
through time. The design points ti can denote any convenient temporal unit (school level,
semester, etc.).

A constant variance σ2 will be assumed for the observations of the two variables.
Should they have different variances σ2

1 and σ2
2 , the covariance structure would depend

(by a constant term) on the ratio σ1/σ2 that has no influence on the computation of the
optimal designs (see the discussion at the end of Section 2.1 of [2], and in this situation
(constant variance), for the easiness of computations, σ2 = 1 will be assumed without loss
of generality. Assuming constant covariance between yi(t), yj(t) for every i, j = 1 . . . , k
may be arguable, mainly because the k variables may refer to quite different characteristics
and even use different scales. An alternative that may soften this problem would be
using normalized values of the variables. However, the case k = 2 of this example is not
controversial, since for k = 2 the intra-covariance matrix S will have this shape:

S =

(
1 s
s 1

)
,

with s = Cov[y1(t), y2(t)], an assumed constant for all t. Thus, when observing Y1 = MR
and Y2 = PS, the covariance matrix for (the observations taken at) each student will be

Σ0 = S⊗R =

(
R s R

s R R

)
. (6)

and the previous results can be applied. From Theorems 1 to 4, the D-optimal designs can be
computed assuming just one variable and one subject. An inter-correlation structure usually
employed when the measurements are taken on the same individual is the exponential
covariance [20], decreasing with the increasing distance in time between measurements,

Cov[y(t), y(t + d)] = e−λd , (7)

where the parameter λ is characteristic of the individual. When there is no reason to
think that the parameter may vary very much between individuals, the same characteristic
(reference individual) is used for every of them. In this work, λ = 1 will be assumed, which
is a typical choice.

Two types of evolution models will be considered:

• Linear regression model: ŷ = β0 + β1t, that is, f(t) = (1, t)T . Since there are m = 2
parameters, at least two observations are needed

# If n = 2, it will be convenient to express the design as ξ = {t, t + d}, where t is
the first observation and d > 0 the distance between the two samples, with t
+ d ≤ tmax, the maximum value for performing the tests. Then, assuming the
inter-correlation R given by (7),

X0 =

(
f(t)T

f(t + d)T

)
=

(
1 t
1 t + d

)
, R =

(
1 e−d

e−d 1

)
(8)
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and

M0 = X0
TR−1X0

= 1
1−e−2d

(
1 1
t t + d

)(
1 −e−d

−e−d 1

)(
1 t
1 t + d

)
= 1

1+e−d

(
2 2 t + d

2 t + d 2 t(t + d) + d2

1−e−d

)
.

Thus, det(M0) = d2/
(

1− e−2d
)

is an increasing function of d, and the optimal
design will be the one having the maximum distance d between the observa-
tions, therefore taking the samples at the beginning and at the end of the period
of study.

# When n = 3, let us consider the design ξ = {t, t + d1, t + d1 + d2}, with
d1, d2 > 0 and t + d1 + d2 ≤ tmax. Now

X0 =

 1 t
1 t + d1
1 t + d1 + d2

, R =

 1 e−d1 e−(d1+d2)

e−d1 1 e−d2

e−(d1+d2) e−d2 1


and

det(M0) =
2e2d1+d2

(
ed2
(

ed1 − 1
)

d2
1 +

(
−2ed2 + ed1+d2 + 1

)
d2d1 + ed2

(
ed1 − 1

)
d2

2

)
(
ed1+d2 − 1

)(
ed1 − 2ed2 + e2d1+d2

) .

Assuming a minimum distance d0 between consecutive sample points, the
maximum is attained for d1 = tmax − d0, and d2 = d0. Thus, the first test
should be taken at the beginning and the rest at the end, with the minimum
possible distance d0 between these last ones.

• Exponential regression model: ŷ = β0eβ1t.
After linearizing, the model can be expressed as f(t) = eβ1t(1, β0t)T , which depends
on the unknown values of the parameters. In this case, the D-optimal designs will
depend as well on these values; thus, they will be in fact locally optimal, that is, good
for (or near to) those nominal values used in the computation. It is well known that
the optimal designs will not depend on the parameters that ‘appear linearly’ in the
model [21], that is, β0 in this case, while they will depend on the ‘non-linear parameter’
β1. Thus, an initial value will be needed just for this last one. Again, the cases of two
and three observations will be studied:

# n = 2⇒ ξ = {t, t + d} . The determinant of the information matrix is

det(M0) =
β2

0d2e2(β1+1)d+4β1t

e2d − 1
,

and it is clear that the values t and d maximizing this determinant will not
depend on β0. Figure 1 shows the determinant of the information matrix after
removing β2

0 and using the nominal value β10 = 1 for the non-linear parameter.
For primary school levels (tmax = 6) and assuming a minimum distance d0 = 1
between tests, the recommended design uses t = 5 and d = 1, that is, making
the tests the last two years.
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and when removing β0
2 and assuming tmax = 6 and d0 = 1, the maximum for

β10 = 1 is attained when t = 4, d1 = 1, and d2 = 1, that is, testing the students the
last three courses.

4. Discussion

In the last few years, there has seen a remarkable increase in the relevance of the
design of experiments in social science areas [22]. Major issues in the education research
area must be treated on a sequential multiscale temporal level. Educational policies such
as curricula, reduction in class size, programs for students’ support, etc. are developed
considering educational theories based on solid experimentation [23]. In addition, large-
scale experiments may be unattainable, and some authors alert about extracting generalized
conclusions from experiments in education [24]. There is a general agreement in trying
to “maximize the scientific benefit using the resources available for an investigation” [25];
thus, the optimal design of experiments becomes a key piece on the research process.

Randomized experiments with multilevel implications have been used by educational
researchers in order to determine the effect of some treatment through time. One of the
most used techniques in this line is the sequential multiple assignment randomized trials
(SMART) [23,26,27]. This approach gives information about the effectiveness of some
intervention or treatment through time, but it does not discriminate factor variables [25,28].
As an alternative, factorial designs, with the feature of determining the influence of factors,
have also been applied for similar purposes [25,29]. These factorial designs have been used
as well to provide a relation between four different mathematical problem representations
and the problem solving abilities of elementary school students from grades 1 to 3 [30].
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Nevertheless, some limitations regarding to the independence of the variables, the quantity
of considered factors, or the presence of more than two levels by factor are addressed [25].
Most of these studies assume independent observations; few consider some kind of relation
between samples (for example, the intraclass-correlation between observations within a
cluster in [25,31], but not complex correlation structures like the ones derived from the
consideration of multiresponse models such as the ones studied in this work.

In educational research, observations are rarely independent, as pointed out in [32].
Mixed-effect regression models cover this and other issues, such as correlated data or-
ganized in a multilevel or hierarchical structure, missing data, variability, etc. [33–35].
Applications of these models in educational projects can be found in [32] where the correla-
tion between the results of two tests taken before and after a treatment is studied, controlled
for a variable with three levels. The levels correspond to three selected difficult topics to
study, and a selection model based on AIC criterion is applied to conclude. In [36], mixed
linear regression analysis is applied to a large database to establish the correlation between
the student’s relationship and their academic performance. Finally, ref. [37] evaluated the
impact of sequences of parents’ input on children’s language outcomes. Although all these
applications are longitudinal or level studies, they are focused on selecting the best model
for prediction, but no one addresses the issue of optimizing data recollection along time.

Despite being less known in the education area, generalized estimating equations
(GEEs) are introduced in [38] as an alternative for the analysis of cross sectional clustered
data with repeated measurements along time [39–41]. It shows GEEs as a generalization
of linear general models and that its performance is similar to multilevel models (random
effects or mixed model) and ordinary least squares. However, some limitations have to be
considered, for example the impossibility of applying classical selection model techniques
based on likelihood estimation, the lack of non-random data, and the amount of missing
data. In addition, the number of clusters should be relatively high, and the observations
in different clusters must be independent, although within-cluster observations may be
correlated, as it is refereed in [40].

Again, it is necessary to highlight that none of these approaches seem to be fully
appropriate to conduct experiments involving multiresponse and multisubject models with
repeated observations in time, with potential correlation structures as the ones described in
this paper. The novel approach presented here seems the most convenient for studies that
could be similar to the one described in the example.

The relation between the variables ’Mental Representation’ and ’Mathematical Problem
Resolution’ in primary school students was extensively studied in [3]. Now, the theory
developed in Section 2 has been applied to that case for finding the best design (times when
perform the tests to the students) in order to obtain an insight of the evolution of the two
variables.

Assuming a sensible hypothesis about the correlation structure, two scenarios have
been considered, one with different models of the variables for each subject and another
one assuming the same model of each variable for every subject, obtaining interesting
theoretical results especially in the second case. Two types of evolution models have been
considered as well in order to stress that the optimal allocation of the tests may depend
very much on the assumed model. The best design when assuming the linear regression
model is making the tests near the extremes of the evaluation period. However, when the
evolution is described by an exponential model, the results may be quite different since the
optimal designs are very sensitive to the initial value of the parameters. The widely used
exponential inter-correlation has been assumed. The preliminary study in [3] discovered
that the group of the small (first year) students had a great variability, and thus it was not
very informative. For this reason, when a design contains any temporal point belonging
to the first school year (for instance when assuming a linear trend evolution), it will be
convenient to delay these tests so that the analysis interval starts the second year of the
primary school period.
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A robustness study has been carried out for the exponential evolution model in order
to check whether the optimal designs obtained are sensitive to the choice of the nominal
value of β1. It has been found that in fact the optimal designs can vary very much; for
instance if n = 2, the best designs found vary from the ones that take the extremes of
the design interval when β10 = 0.1 or the school years 4 and 6 when β10 = 0.5 to those
choosing the last temporal points when β10 ≥ 1. A similar variability of results is obtained
for n = 3: when β10 = 0.1, the proposal is to make one test at the beginning of the design
interval and the other two at the end, and when β10 = 0.5 assuming d0 = 1, the most
convenient school years to perform the tests are 3, 4, and 6.

Optimal designs have been computed for the D-optimality criterion, which is the most
used, and two popular 2-parameter evolution models have been considered assuming
always exponential inter-correlation. However, the procedure can be immediately extended
to other optimality criteria, evolution models, and correlation kernels, provided that these
can be assumed similar for all the variables.

5. Conclusions

The need to study the problem solving ability of primary school students, its relation
with other variables, and the evolution of all of them was the inspiration of this work, from
a previous study of [3]. In order to choose the best temporal points where samples should
be taken to maximize the information of the collected data, a general procedure for several
variables and subjects has been developed from the point of view of optimal design of
experiments theory.

It should be noted that the results obtained in Section 2 are quite general and could
be applied in other type of studies involving several subjects, with a k > 2 number of
variables of interest. Depending on the cost of every type of measure and the available
budget, sometimes it might be convenient to select the variables that will be observed at
a specific point instead of sampling all of them. The reason may be to save the cost of
those measurements that are not considered so important or informative. Cost constraints
could be incorporated into the model in a similar way as described in Chapter 5 of [42].
For instance, when two types of variables are to be observed, the problem can be stated
as follows: two types of measurements y1, y2 can be made for every experimental unit,
with costs c1 and c2, respectively. In the general case, every time that a subject is measured
entails some cost c. For the total cost there are three possibilities:

i. Measure y1, with cost c1. Total cost: C1 = c + c1;
ii. Measure y2, with cost c2. Total cost: C2 = c + c2;
iii. Measure both y1 and y2. Now the overall cost is C3 = c + c1 + c2.

Possible scenarios are described by tx = {t, x1, x2}, with 0 ≤ t ≤ tmax and x1, x2 in
{0, 1} and x1 + x2 > 0, where xi = 1 when test yi is made at a time t, and xi = 0 otherwise.
The best designs fitting this budget may be non-balanced. In this case, the covariance
matrices could be obtained as described in Example 2 of [1]. Ref. [42] discusses a procedure
for studying this issue, but only for one subject and considering intra-correlation and not
inter-correlation between samples, which are assumed independent. When there are more
subjects and the two types of correlation are non-trivial, the problem becomes far more
complex to deal with.

For this study, it has been assumed that the evolution models were similar in the
different variables. Should these models be different, the covariance and information
matrices would be much more complex, as would the computation of the optimal designs.
The assumptions of equal intracorrelation in all the design points and equal intercorrelation
for all the variables are quite sensible. In case that any of them (or both) were not true,
the covariance matrices could not be expressed by Kronecker products, and the optimal
designs for the global model would not be the same as the ones for the individual models of
each variable for each subject; in fact, this global optimal design may be extremely difficult
to compute.
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