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Abstract: We propose a fast algorithm for computing optimal viscosities of dampers of a linear
vibrational system. We are using a standard approach where the vibrational system is first modeled
using the second-order structure. This structure yields a quadratic eigenvalue problem which is
then linearized. Optimal viscosities are those for which the trace of the solution of the Lyapunov
equation with the linearized matrix is minimal. Here, the free term of the Lyapunov equation is a
low-rank matrix that depends on the eigenfrequencies that need to be damped. The optimization
process in the standard approach requires O(n3) floating-point operations. In our approach, we
transform the linearized matrix into an eigenvalue problem of a diagonal-plus-low-rank matrix
whose eigenvectors have a Cauchy-like structure. Our algorithm is based on a new fast eigensolver
for complex symmetric diagonal-plus-rank-one matrices and fast multiplication of linked Cauchy-like
matrices, yielding computation of optimal viscosities for each choice of external dampers in O(kn2)

operations, k being the number of dampers. The accuracy of our algorithm is compatible with the
accuracy of the standard approach.

Keywords: linear vibrational system; quadratic eigenvalue problem; diagonal-plus-low-rank matrix;
Cauchy-like matrix

1. Introduction

We consider the determination of optimal damping for the vibrating structure which
is represented by a linear vibrational system described by

Mẍ + Dẋ + Kx = 0, (1)

where M and K (called mass and stiffness, respectively) are real, symmetric positive definite
matrices of order n. The damping matrix is defined as

D = Dint + Dext, (2)

where matrices Dint and Dext correspond to internal and external damping, respectively.
Internal damping can be modelled as

Dint = α M1/2
√

M−1/2KM−1/2M1/2, α ∈ (0.005, 0.1), (3)

or
Dint = αM + βK, α, β ∈ (0.005, 0.1). (4)

In Equation (3), we assume that the internal damping is a small multiple of the
critical damping, while (4) corresponds to the so-called Rayleigh damping. Both cases are
important and widely used in literature (see, e.g., books [1,2] or papers [3–5]) and they are
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interesting from a modeling point of view since the matrix that simultaneously diagonalizes
matrices M and K, diagonalizes the internal damping matrix as well. In the Section 2.1 we
give formulas for internal damping matrices in the modal coordinates. Moreover, analysis
of the influence of different internal damping matrices is given in [6].

From the optimization point of view, we are more interested in the external viscous
damping which can be modeled as

Dext = ρ1D1 + ρ2D2 + · · ·+ ρkDk, (5)

where ρi is the viscosity and Di describes a geometry of the corresponding damping
position for i = 1, . . . , k. Throughout this paper, we will refer to the pair (ρi, Di) as a
damper. Typically, the system has very few dampers compared to the full dimension [1,2,7],
which means that k � n. This is also the standard assumption all works from [3,4,8,9],
where more details on the structure of internal and external damping can be found. For the
full derivation of the problem and the solution and modeling procedure, we refer the reader
to [2]. The model of linear vibrational system (1) corresponds to the quadratic eigenvalue
problem

(λ2M + λD + K) x = 0, x 6= 0. (6)

The damping optimization problem, in general, can be stated as follows: determine
the “best” damping matrix D which insures optimal evanescence of each component of x.
In practice, one can usually influence only the external damping. Therefore, the problem is
to determine the optimal external damping matrix Dext, which minimizes the total average
energy of the system.

In order to optimize the external damping matrix from (5), we need to optimize the
damping viscosities (ρ1, . . . , ρk) and the damping positions D1, . . . , Dk such that the chosen
optimization criterion is minimal. There exists several optimization criteria for this problem.
One criterion is the so-called spectral abscissa criterion. This criterion requires that the
maximal real part of the eigenvalues of the quadratic eigenvalue problem (6) are minimized
(see, e.g., [10,11]).

In this paper, we will use a criterion based on the total average energy of the considered
system. Detailed overview of the optimization criteria can be found in [2,12]. This criterion
considers minimization of the total energy of the system (as a sum of kinetic and potential
energy) averaged over all initial states of the unit total energy and a given frequency range.
This criterion is equivalent to finding viscosities for which the trace of the solution of a
certain Lyapunov equation involving the linearization of the quadratic eigenvalue problem
(6) is minimal. Details about this linearization and the construction of the Lyapunov
equation are given in Section 2.1. This criterion has many benefits and it was investigated
widely in the last two decades. More details can be found, e.g., in [3,5,8,9,13–15]. Moreover,
this criterion can be extended to the case where we consider Multiple-Input Multiple-
Output systems that appear in the control theory in many applications, e.g., in paper [16]
authors consider mixed control performance measure that includes also the total average
energy into account.

In practice we optimize the geometry of considered vibrating structures such as n-
mass oscillators or shear frame vibrating structures, for more details see, e.g., [2,6,8,11,17].
However, since the optimization of damping positions is a very hard problem, in this work
we will concentrate only on the optimization of viscosities. This can be then applied for
different damping positions or it can be used within the algorithm that optimizes damping
positions, but we also emphasize that such algorithms are typically heuristic algorithms, see,
e.g., [15]. Moreover, the objective function (which is in our case the total average energy)
that needs to be minimized is a non-convex function that includes viscosity parameters
and damping positions. Therefore, minimization of such objective function requires the
evaluation of objective function a large number of times. Thus, directly applying the
standard method requires O(n3) operations for each run, irrespective of the number of
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dampers. For the case of a small number of dampers k, which is typical in applications [2,7],
we propose a fast method that requires kn2 operations for each run.

In this paper, matrices are denoted by uppercase Greek or Roman letters, vectors
are denoted by lowercase Roman letters, and scalars are denoted by lowercase Greek
letters. As in Matlab, function diag is used twofold: when A is a matrix, diag(A) denotes
the vectors of A’s diagonal elements. When a =

[
a1 · · · an

]T is a vector, diag(a) and
diag(a1, . . . , an) denote the square diagonal matrix with elements of a on its diagonal.

This paper is organized as follows: in Section 2 we describe the standard approach
which uses linearization and minimizes trace of the solution of the respective Lyapunov
equation. An overview of the existing O(n3) solution methods is presented in Section 2.1.
A new approach, which uses complex symmetric linearization and reduces the problem
to a sequence of k eigenvalue problems of complex symmetric diagonal-plus-rank-one
(CSymDPR1) matrices, is presented in Section 2.2. Here, k is the number of dampers from
(5). This approach uses fast multiplication of linked Cauchy-like matrices and needs O(kn2)
operations in each optimization step. This makes the optimization using the new approach
an order of magnitude faster than the standard approach if the number of dampers is small,
k� n. Several large examples and some timings are given in Section 3. Discussion of our
results and algorithms is presented in Section 4 and the conclusions are given in Section 5.

2. Methods

In this section, we describe solution methods for finding the optimal damping of
the linear vibrational system (1) based on minimization of total average energy. First, we
describe a linearization of the system (1), which yields a linearization of the quadratic
eigenvalue problem (6). The linearization is performed by changing the basis and the
linearized problem is further reduced to an eigenvalue problem of a simpler matrix. Of
course, the corresponding quadratic eigenvalue problem can be solved by maintaining the
second-order structure [18,19]. Although such approaches result in methods that works
with matrices of dimension n instead of our approach that uses matrices of dimension 2n,
they still require O(n3) operations in each optimization step and can have numerical issues
in some cases. Further, the linearization of the system is necessary for efficient calculation
of total average energy [2,12].

In Section 2.1, we present an existing direct approach (see, e.g., [2,4]), where each
iteration of optimization requires O(n3) operations. In Section 2.2, we describe the novel fast
method which requires O(kn2) operations in each optimization step, thus outperforming
the standard method in the case of a small number of dampers.

For a structured system, the problem (1) was considered in [8,9] where the authors
proposed dimension reduction to accelerate the optimization process. However, to be
efficient, dimension reduction requires a specific structure, so this approach cannot be
applied efficiently in a general setting.

By symmetric linearization we transform quadratic eigenvalue problem (6) to the
generalized eigenvalue problem (GEVP) (see, e.g., [20])[

0 K
K D

][
y
x

]
= λ

[
K 0
0 −M

][
y
x

]
. (7)

Let
ΦTKΦ = Ω2, ΦT MΦ = I. (8)

be the generalized eigenvalue decomposition of the pair (K, M). Since the calculation of
matrices Φ and Ω does not depend on the damping matrix D, they can be calculated prior
to the optimization procedure.

Both choices of Dint, from (3) and from (4) imply that Dint is diagonal in the Φ-basis.
More precisely,

ΦT DintΦ ≡ Γ = αΩ, (9)
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if Dint is defined by (3), and

ΦT DintΦ ≡ Γ = αI + βΩ2, (10)

if Dint is defined by (4).
The external damping matrix, Dext, is a low-rank matrix of rank k which depends

on the number, positions, and the structure of dampers. For example, if all dampers are
grounded and l is a vector of indices of damping positions, then Dext is zero except for
[Dext]l[i],l[i] = 1.

In the basis [
Φ 0
0 Φ

]
,

problem (7) reduces to GEVP[
0 Ω2

Ω2 Γ + ΦT DextΦ

]
x = λ

[
Ω2 0
0 −I

]
x,

and in the basis [
ΦΩ−1 0

0 Φ

]
we have the hyperbolic generalized eigenvalue problem[

0 Ω
Ω Γ + ΦT DextΦ

]
x = λ

[
I 0
0 −I

]
x. (11)

Now, we can write the linearized system in the so-called modal coordinates. By simple
transformation, (11) is equivalent to the eigenvalue problem for the matrix

A(Dext) =

[
0 Ω
−Ω −(Γ + ΦT DextΦ)

]
. (12)

Let

G =


Is 0
0 0
0 Is
0 0

, (13)

where parameter s determines the number of eigenfrequencies of the system which need to
be damped (for more details, see, e.g., [2,5,8]).

It can be shown (see, e.g., [2,4,12]) that the criterion based on the minimzation of the
total average energy of the considered system is equivalent to

min
Dext

trace(X(Dext))

where X(Dext) is the solution of the Lyapunov equation

A(Dext)X(Dext) + X(Dext)A(Dext)
∗ = −GGT . (14)

For the external damping matrix Dext defined by (5), the problem is to determine
optimal damping positions and damping viscosities such that trace X(Dext) is minimal.
This is a demanding problem, both, from the computational point of view and the point
of optimization of damping positions. The main reason lies in the fact that the criterion
of total average energy has many local minima, so we usually need to optimize viscosity
parameters for many different damping positions.
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2.1. Standard Methods

The Lyapunov Equation (14) with structured matrices A(Dext) and G from (12) and
(13), respectively, can be solved by iterative methods such as ADI method [21,22] used
in [5] or the sign function method [23,24] used in [14]. Here, we are considering only direct
methods due to simplicity of implementation, numerical stability in all cases, and ease of
estimating computational complexity.

Standard direct methods calculate the solution of the Lyapunov Equation (14) by
using the Schur form, for example, Hammarling algorithm [25,26] and Bartels-Stewart algo-
rithm [27]. The computation of Schur form requires O(n3) operations, so these algorithms
are O(n3) solutions. The algorithms are implemented in the SLICOT library [28] and are
used in Matlab. The timings for some examples are given in Section 3.

2.2. Fast Method

In this section, we present our novel O(kn2) method, where k is the number of dampers.
In our approach, instead of using the Schur form to solve (14), we use diagonalization
of the matrix A(Dext) from (12), where the external damping matrix Dext is defined by
(5). The eigenvalue problem for the matrix A(Dext) is reduced to k eigenvalue problems
for the complex symmetric diagonal-plus-rank-one (CSymDPR1) matrices, k being the
number of dampers. Each of those EVPs can be efficiently solved in O(n2) operations. It is
important that updating of the eigenvectors can also be performed using O(n2) operations,
due to Cauchy-like structure of eigenvector matrices. In this way, after preparatory steps
from Sections 2.1 and 2.2.3 below, which require O(n3) operations, each computation of
trace(X(Dext)), where X(Dext) is from (14), requires only O(kn2) operations. This makes
trace optimization considerably faster for the case when the number of dampers is small,
which is the case prevalent in practice. If the number of dampers grows towards n, our
algorithm will require O(n3) operations for each iteration, as does the standard approach.

The section is organized as follows. In Section 2.2.1, we present existing results about
Cauchy-like matrices and their fast multiplication. In Section 2.2.2 we develop an efficient
O(n2) method for the solution of the CSymDPR1 eigenvalue problem. In Section 2.2.3, we
describe the reduction to the CSymDPR1 eigenvalue problems. In Section 2.2.4, we develop
a fast O(n2) algorithm for the final trace computation, based on the fast multiplication of
Cauchy-like matrices.

2.2.1. Cauchy-like Matrices

A Cauchy-like matrix C(x, y, P, Q) is the matrix which satisfies the Sylvester-type
displacement equation (see, e.g., [29])

diag(x)C− C diag(y) = P ·Q∗, (15)

where
x =

[
x1 . . . xn

]T , y =
[
y1 . . . yn

]T ∈ Cn, P, Q ∈ Cn×k.

Here the vectors x and y and the matrices P and Q are called the generators of C.
For example, the standard Cauchy matrix C = [1/(xi − yj)] with real vectors x and y

is equal to C(x, y, e, e), where e =
[
1 . . . 1

]T . Clearly, given generators, all elements of a
Cauchy-like matrix can be computed on O(kn2) operations.

For multiplication by Cauchy-like matrices, we have the following results.
Given n× n Cauchy-like matrix A and n-dimensional vector v, the product Av can be

computed in O(nk log n2) operations [29] (Lemma 2.2).
Given two linked Cauchy-like matrices, A = C(a, b, E, F) and B = C(b, c, N, H) where

a, b, c ∈ Cn, E, F ∈ Cn×k1 , N, H ∈ Cn×k2 ,
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the product C = A · B is a Cauchy-like matrix C = C(a, c, P, Q) where P =
[
E AN

]
and

Q =
[
B∗F H

]
[29] (Lemma 2.3), that is, C satisfies the displacement equation

diag(a)C− C diag(c) =
[
E AN

][
B∗F H

]∗. (16)

This generators of C can be computed in O(nk1k2 log n2) operations.

2.2.2. Eigenvalue Decomposition of CSymDPR1 Matrix

Let A be an n× n CSymDPR1 matrix,

A = Ξ + ρyyT , (17)

where Ξ = diag(ξ1, ξ2, . . . , ξn) is a diagonal matrix, y =
[
y1 y2 · · · yn

]T is a vector,
and ρ 6= 0 is a real scalar. Here ξi, yi ∈ C.

Without loss of generality, we assume that A is irreducible, that is,

yi 6= 0, i = 1, . . . , n,

ξi 6= ξ j, i 6= j, i, j = 1, . . . , n.

If yi = 0 for some i, then the diagonal element ξi is an eigenvalue whose corresponding
eigenvector is the i-th canonical vector, and if ξi = ξ j, then ξi is an eigenvalue of the matrix
A.

Let
A = VΛVT

be the eigenvalue decomposition of A, where Λ = diag(λ1, λ2, . . . , λn) are the eigenvalues
and V =

[
v1 · · · vn

]
is a matrix whose columns are the corresponding eigenvectors.

Notice that the eigenvector matrix of a complex symmetric matrix satisfies the relation
V−1 = VT .

The eigenvalue problem for A can be solved by any of the standard methods (see [30]
and the references therein). However, due to the special structure of A, we can use the
following approach (see [31,32] (Section 8.5.3)): the eigenvalues of A are the zeros of the
secular equation

1 + ρ
n

∑
i=1

y2
i

ξi − λ
≡ 1 + ρyT(Ξ− λI)−1y = 0, (18)

and the corresponding eigenvectors are given by

vi =
xi
‖xi‖2

, xi = (Ξ− λi I)−1y, i = 1, . . . , n. (19)

It is important to notice that V is a Cauchy-like matrix,

V = C(diag(Ξ), diag(Λ), y, Ψ), Ψ =

[
1
‖x1‖2

· · · 1
‖xn‖2

]T
. (20)

Equation (18) can, for example, be solved by the secular equation solver from the
package MPSolve package [33,34].

If A is real, the eigenvalues interlace the diagonal elements of Ξ and can be computed
highly accurately by bisection [35]. In this case, orthogonality of computed eigenvectors
follows from the accuracy of computed λs. In the complex symmetric case, there is no
interlacing, but orthogonality is not an issue, so we developed a version of the Rayleigh
quotient iteration.

Standard Rayleigh quotient iteration (RQI) is as follows [36]: given starting x repeat

µ =
x∗Ax
x∗x

, x := (A− µI)−1x. (21)



Mathematics 2022, 10, 790 7 of 17

Then, µ→ λ. In our case

(A− µI)−1 = Ξ−1 + ρ1(Ξ− µI)−1yyT(Ξ− µI)−1,

ρ1 = − ρ

1 + ρyT(Ξ− µI)−1y
.

is again a CSymDPR1 matrix which is computed in O(n) operations.
For real symmetric or Hermitian matrices, RQI converges quadratically to the abso-

lutely largest eigenvalue. In the complex symmetric case, the convergence of RQI is slow
and it is better to use the Modified Rayleigh Quotient Iteration (MRQI) which is as follows:
given starting x repeat

µ =
xT Ax
xTx

, x := (A− µI)−1y. (22)

MRQI method converges quadratically [36,37].
For a CSymDPR1 matrix, having in mind the eigenvector formulas (19), we further

modify the method as follows: given starting x repeat

µ =
xT Ax
xTx

, x := (Ξ− µI)−1y. (23)

This modification showed very good convergence properties in all our large damping
problems.

Once µ has converged to an eigenvalue, this eigenvalue can be deflated [38] (Section 7.2).
In particular, if for some l < n we have computed eigenvalues λn−l+1, . . . , λn of A,
then we can compute the remaining n− l eigenvalues λ1, . . . , λn−l as eigenvalues of the
(n− l)× (n− l) CSymDPR1 matrix

Ã = Ξ̃ + ρỹỹT , (24)

where Ξ̃ = diag(ξ1, ξ2, . . . , ξn−l) and

ỹi = yi

n−l

∏
j=1

ξi − ξn+1−j

ξi − λn+1−j
, i = 1, . . . , n− l. (25)

In our implementation, the first steps use RQI from (21) and, after that, MRQI from
(23) is used until convergence.

The operation count to compute all eigenvalues of A is O(n2), construction of genera-
tors for the eigenvector matrix V from (20) takes O(n2) operations (computing Ψ), and the
reconstruction of V from its generators, if needed, takes another O(n2) operations. This
amounts to O(n2) operations to compute the complete eigenvalue decomposition of A.

2.2.3. Reduction to CSymDPR1 Eigenproblems

Let Ξ and Q denote the solution of the hyperbolic GEVP[
0 Ω
Ω Γ

]
x = λ

[
I 0
0 −I

]
x, (26)

where Ω and Γ are defined by (8)–(11), such that

QT
[

0 Ω
Ω Γ

]
Q = Ξ, QT

[
I 0
0 −I

]
Q = I. (27)
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Due to the sparse structure of the eigenvalue problem from Equation (26), the matrices
Q and Ξ are computed by solving n hyperbolic GEVPs of dimension 2: for i = 1, 2, . . . , n,[

Qii Qi,i+n
Qi+n,i Qi+n,i+n

]T[ 0 Ωii
Ωii Γii

][
Qii Qi,i+n

Qi+n,i Qi+n,i+n

]
=

[
Ξii 0
0 Ξn+i,n+i

]
,[

Qii Qi,i+n
Qi+n,i Qi+n,i+n

]T[1 0
0 −1

][
Qii Qi,i+n

Qi+n,i Qi+n,i+n

]
=

[
1 0
0 1

]
,

and all other elements of Q and Ξ are zero. For example, if α and Γ are given by (3) and (9),
respectively, then [

Ξii 0
0 Ξn+i,n+i

]
=

[
γ̄Ωii 0

0 γΩii

]
, (28)

[
Qii Qi,i+n

Qi+n,i Qi+n,i+n

]
=

 1√
1−γ̄2

1√
1−γ2

γ̄√
1−γ̄2

γ√
1−γ2

,

where γ = −α + ı
√

4− α2 and ı is the imaginary unit.
The problem (26) is equal to the problem (11), but without external damping. Instead

of solving the generalized eigenvalue proglem (11), or the unsymmetric eigenvalue problem
(12), we compute the eigenvalue decomposition of the complex symmetric diagonal-plus-
low-rank matrix

A(Dext) = Ξ + QT
[

0 0
0 ΦT DextΦ

]
Q, (29)

which is then used to solve (14).
Assume, for example, that there is only one damper with viscosity ρ positioned at

the mass l. Instead of solving (11), we compute the eigenvalue decomposition of the
CSymDPR1 matrix

A(Dext) = Ξ + ρyyT , (30)

where y = QT
n+1:2n,:Φl,:. In the case of k dampers, the procedure is repeated. For example,

in the case of two dampers we need to solve the eigenvalue problem for the matrix

A(Dext) = Ξ + ρ1y1yT
1 + ρ2y2yT

2 . (31)

We start by computing the eigenvalue decomposition of the matrix

Ξ + ρ1y1yT
1 = S1Λ1ST

1 . (32)

Then, the eigenvalue decomposition of the matrix A(Dext) is computed as

A(Dext) = S1Λ1ST
1 + ρ2y2yT

2

= S1(Λ1 + ρ2S−1
1 y2yT

2 S−T
1 )ST

1 (33)

= S1S2ΛST
2 ST

1 ≡ SΛST .

Since all involved matrices are complex symmetric, we have

S−1
1 = ST

1 , S−1
2 = ST

2 , S−1 = ST . (34)

From Equation (20), it follows that S1 and S2 are Cauchy-like matrices,

S1 = C(diag(Ξ), diag(Λ1), y1, Ψ1), S2 = C(diag(Λ1), diag(Λ), ST
1 y2, Ψ2),
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where elements of the vectors Ψ1 and Ψ2 are reciprocals of the norms of the un-normalized
eigenvectors xi from Equation (19). The matrices S1 and S2 are linked, so according to
Equation (16), S = S1 · S2 is a Cauchy-like matrix,

S = C(diag(Ξ), diag(Λ), P, Q), P =
[
y1 S1(ST

1 y2)
]
, Q =

[
ST

2 Ψ1 Ψ2
]
. (35)

Using Equation (34), the expression for P further simplifies to P =
[
y1 y2

]
. This

procedure is easily generalized to k > 2 dampers. The computation of Λ, P and Q requires
O(kn2) operations.

2.2.4. Trace Computation

Let A(Dext) be given by (29) and let A(Dext) = SΛST be its eigenvalue decomposition
computed with the method from Section 2.2.2. Then S is a Cauchy-like matrix defined by
S = C(diag(Ξ), diag(Λ), P, Q) for some P, Q ∈ Cn×k satisfying S−1 = ST , where k is the
number of dampers.

Let Ā(Dext) denote the element-wise conjugated matrix A(Dext). Inserting the eigen-
value decomposition of A(Dext) into the Lyapunov Equation (14) gives

SΛSTX(Dext) + X(Dext)(SΛST)∗ = SΛSTX(Dext) + X(Dext)S̄Λ̄S∗ = −GGT (36)

Premultiplying Equation (36) by ST = S−1, postmultiplying by S̄ = S−∗ and setting
Y = STX(Dext)S̄, gives a displacement equation

ΛY + YΛ̄ = −STGGT S̄. (37)

Here Y is a Cauchy-like matrix, Y = C(diag(Λ), diag(−Λ̄),−STG, STG). Notice that
STG is not an actual matrix multiplication – due to the special form of G from (13), this is
just a selection of columns of ST . Generating full Y, if needed, requires O(sn2) operations.

To finish the computation, we need to compute trace(X(Dext)). Set Z = SY. Then

trace(X(Dext)) = trace(SYS∗) = trace(ZS∗) = trace(S∗Z). (38)

The matrices S and Y are linked Cauchy-like matrices, so, according to Equation (16),
the matrix Z is a Cauchy-like matrix

Z = S ·Y = C(diag(Ξ), diag(Λ), P, Q) · C(diag(Λ), diag(−Λ̄),−STG, STG)

= C(diag(Ξ), diag(−Λ̄), P′, Q′), (39)

where
P′ =

[
P −SSTG

]
=
[
P −G

]
, Q′ =

[
Y∗Q STG

]
. (40)

Computating Q′ requires O(nks log2 n) operations (see Section 2.2.2).
Finally, trace(S∗Z) from (38) is computed by using scalar products or respective

columns of the matrices S and Z:

trace(S∗Z) =
n

∑
i=1

n

∏
k=1

S̄ikZki. (41)

Computation of columns of S̄ requires O(kn2) operations, computation of columns of
Z requires O((k + s)n2) operations, and computation of scalar products requires O(n2)
operations.

2.2.5. Algorithms

In this section, we give pseudocodes of algorithms that comprise our method.
Algorithm 1 is the function that changes the basis of the symmetric linearization of the
given vibrational system to obtain a diagonal-plus-low-rank matrix.
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Algorithm 1 Change of basis

function CHANGEOFBASIS(M, K, Dint) . Input is the vibrational system (1)–(4).
compute matrices Φ and Ω from (8) . Use any of the standard methods, O(n3).
Γ← ΦT DintΦ . See (9) and (10), O(n).
compute matrices Q and Ξ from (27) . See also (28), O(n)
return Φ, Q, Ξ

end function

Algorithm 2 computes the eigenvalue decomposition of the CSymDPR1 matrix A from
(17). The computed eigenvalues are diagonal elements of the diagonal matrix Λ and the
eigenvector matrix V is returned as a Cauchy-like matrix (20).

Algorithm 2 Eigenvalue decomposition of a CSymDPR1 matrix

function EIGEN(Ξ, y, ρ) . Input is the CSymDPR1 matrix from (17).
for i← 1 : n do . O(n2) operations.

choose starting vector x
for i← 1 : 4 do . Repeat 4 times.

compute µ and new x using (21) . Rayleigh Quotient Iteration.
end for
repeat

compute µ and new x using (22) . Modified RQI.
until convergence
Λii ← µ
deflate A→ Ã using (24) and (25)

end for
set V = C(diag(Ξ), diag(Λ), y, Ψ) . See (20).
return Λ, V

end function

Given the geometries Di and the viscosities ρi of external dampers from (5), Algorithm 3
computes trace(X(Dext)) from (38), where X(Dext) is defined by (36).

Algorithm 3 Trace computation

function TRACEX(Φ, Q, Ξ; D1, . . . , Dk; ρ1, . . . , ρk; G) . Inputs are from Algorithm 1, (5)
and (13).

factor Di = ddT

compute y = QT
n+1:2n,:Φ

Td
Λ, S← EIGEN(Ξ, y, ρ1) . Algorithm 2, O(n2).
for i← 2 : k do . O(kn2) operations.

factor Di = ddT

compute y = STQT
n+1:2n,:Φ

Td . See (33).
Λ, V ← EIGEN(Λ, y, ρi) . Algorithm 2, O(n2).
S← S ·V . Multiplication of Cauchy-like matrices, see (35).

end for
Y ← C(diag(Λ), diag(−Λ̄),−STG, STG) . See (37).
Z ← S ·Y . See (39) and (40).
TRACEX ← trace(S∗Z) . See (41).
return TRACEX

end function

Finally, optimal viscosities ρ1, . . . , ρk with fixed geometries Di, . . . , Dk from (5) are
computed by Algorithm 4.
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Algorithm 4 Optimization of viscosities

function OPTIMIZE(ρ1, . . . , ρk)
use Φ, Q, Ξ computed by Algorithm 1
choose geometries of dampers D1, . . . , Dk . See (5).
choose matrix G . See (13).
define TRACEX(ρ1, . . . , ρk) ≡ TRACEX(Φ, Q, Ξ; D1, . . . , Dk; ρ1, . . . , ρk; G)
ρ̄1, . . . , ρ̄k ← argmin

ρ1,...,ρk

TRACEX(ρ1, . . . , ρk) . Use standard software.

return ρ̄1, . . . , ρ̄k
end function

2.2.6. Accuracy

Generally speaking, analyzing the accuracy of the solution X of the Lyapunov
Equation (14), which is a special form of the Sylvester equation, is a complex task. The
solution X is usually computed with a small relative residual, but can at the same time
have a large backward error [39] (Chapter 16).

Let us analyze all four steps of the proposed method.
The first step is solving the GEVP (8). Perturbation bounds and accuracy of the

computed solution is given by the standard results from [32] (Section 8.7.2) and [40], and
depends on the spectral condition number of the positive definite matrix M−1/2KM−1/2.
In addition, small changes in elements of K and M, cause small changes in eigenvalues
Ω2 [2]. In some cases, (8) can be computed with high relative accuracy [41], but this is
generally not needed for standard structures. The spectral condition numbers

κ(K, M) = κ2(M−1/2KM−1/2) (42)

for our examples are displayed in Section 3.
The second step is solving hyperbolic GEVP (26). If Γ is defined by (9) for small α,

then all elements of the matrices Q and Ξ from (27) are computed using (28) with very high
accuracy.

The third step is solution of a sequence of CSymDPR1 eigenvalue problems (31)–
(33). The perturbation theory for a general eigenvalue problem is given by the Bauer-Fike
Theorem [32]. It is expected that the errors in the computed eigenvalue decomposition
(33) is governed by the quantity εκ(S)‖A‖, where ε is the machine precision. Due to (34),
κF(S) = ‖S‖2

F is computed in O(n2) operations. Maximal κ(S) over all matrices S1, S2 and
S encountered during computations (31)–(33) is displayed in Section 3.

The final step is the trace computation from Section 2.2.4. Let Y and Z denote the
exact matrices and Ŷ and Ẑ denote the computed matrices from (37) and (39), respectively.
Although the complete error analysis is very tedious, from (37) we expect that

|Ŷ−Y|ij ≤
|STG|i,:|GTS|:,j
|Λi + Λ̄j|

ε. (43)

Combining Equations (39) and (40), we expect that

|Ẑ− Z|ij ≤
P̂i,:Q̂:,j

|Ξi + Λ̄j|
ε, (44)

where
P̂ =

[
P −SSTG

]
=
[
|P| |G|

]
, Q̂ =

[
|Y|T |Q| |S|TG

]
.

3. Examples

In this section, we present three examples of vibrating structures that are represented
by an n-mass oscillator. The size of the problem is n = 801 for the “small” example,
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n = 1601 for the “large” example, and n = 2001 for the “homogeneous” example with
more homogeneous masses. We compare our algorithm with the O(n3) algorithm from [8].
The computations are performed on an Intel i7-8700K CPU running at 3.70 GHz with 12
cores.

Let us describe the large example. The small example has the same structure, we just
use an n-mass oscillator with a smaller number of masses. The code used to generate both
examples is available in the file src/GenerateExamples.jl in the GitHub repository [42].
We consider the mechanical system shown in Figure 1. Similar examples were considered
in [3,5,8,9,13,15]. In all our examples the mass oscillator contains two rows of d masses that
are grounded from one side, while on the other side masses are connected to one mass
which is then grounded. Therefore, we consider 2d + 1 masses and 2d + 3 springs, while
the system has three dampers of different viscosities ρ1, ρ2 and ρ3. However, we include
several different configurations since system dimension n and parameters that determine
system configuration are changed as we will describe below.

ρ

ρ

ρ

Figure 1. 2d + 1 mass oscillator.

For configuration given by Figure 1, one can derive the system of differential equations
that describe the behavior of displacements from equilibrium for each mass separately. In
particular, for each mass one can write an equation that follows Newton’s law and describes
displacement for corresponding mass. For that purpose, one should take into account that
the elastic force from the neighboring springs is negatively proportional to the relative
displacement and forces that arise due to the damping effects. This can be written in the
matrix form using Equation (1) (see, e.g, [2]). We obtain the mass matrix

M = diag(m1, m2, . . . , mn), (45)

and the stiffness matrix

K =

 K11 −κ1
K22 −κ2

−κT
1 −κT

2 k1 + k2 + k3

, (46)

where

Kii = ki


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

, κi =


0
...
0
ki

, i = 1, 2, k j ∈ R, j = 1, 2, 3.
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We consider the following configuration:

k1 = 100, k2 = 150, k3 = 200,

mi = 2000− 4i, i = 1, . . . , d/2,

mi = 3i− 800, i = d/2 + 1, . . . , d,

mi = 500 + i, i = d + 1, . . . , 2d,

m2d+1 = 1800

for d = 800 and n = 1601 masses and the internal damping Dint determined by (3) for
α = 0.02. As shown in Figure 1, we consider three dampers. The first two dampers are
grounded, while the third damper connects two rows of masses. This means that external
damping is determined by (5) with

D1 = ei1 eT
i1 , D2 = ei2 eT

i2 and D3 = (ei3 − ei3+400)(ei3 − ei3+400)
T ,

where ei corresponds to the i-th canonical vector.
Here, we would like to emphasize that in general one needs to determine indices i1, i2,

i3 and corresponding viscosities ρ1, ρ2 and ρ3 such that the total average energy is minimal.
As we mentioned in the introduction, here we do not consider optimization of damping
positions since our main aim was to accelerate the calculation of objective function. Thus,
here we fix damping positions and optimize viscosities as we state below.

In particular, here we present results for only one configuration
[
i1 i2 i3

]
. We would

like to damp the 27 smallest eigenfrequencies of the system, that is, the matrix G is defined
by (13) with s = 27.

In the homogeneous example n = 2001, M = diag(m1, m2, . . . , mn), where the first
thousand masses are mi = 1000, the next thousand masses are mi = 1500, the last mass is
m2001 = 2000, and

K =



200 −100
−100 200 −100

−100 200
. . .

300 −150
−150 450


.

In this example we choose s = 20 in Equation (13). The code used to generate the
homogeneous example is available in the file src/GenerateExamples.jl in the GitHub
repository [42].

Our problems and solutions are described in Table 1. The timings for the stan-
dard method computed using Matlab and our new method using Julia [43] are given
in Tables 2 and 3, respectively. In Tables 2 and 3, comparison is made between Matlab
and Julia. Julia is known to be faster than Matlab since the functions are pre-compiled
before execution. In this case we are using Matlab’s built-in function lyap(), which uses
pre-compiled routines from the SLICOT library [28]. Even more, Matlab’s implementation
of the SLICOT library in a multithreading environment is more than twice faster as Julia’s,
so the comparison between the standard algorithm and our method is fair. To see the
influence of the number of dampers, the times for single trace computation and complete
optimization for 3, 4, and 5 dampers are given in Table 4. In Table 5, we display the norm
of residuals of the computed solution X of the Lyapunov Equation (36). We also display
the maximal relative errors between minimal trace and optimal viscosities computed by
our method from Section 2.2 and the standard method from Section 2.1 (see also [8]), where
solutions of (14) with A(Dext) given by (12), are computed using Matlab’s function lyap().
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Table 1. Description of examples. For above described examples we present: size of test problem, size
of linearized problem, indices defining configuration of dampers, and resulting optimal viscosities.

Problem Size Linearized Size
[
i1 i2 i3

]
Optimal Viscosities

Small 801 1602
[
50 550 120

] [
561.4 651.8 310.6

]
Large 1601 3202

[
50 950 220

] [
721.1 656.5 415.4

]
Homogeneous 2001 4002

[
850 1950 20

] [
620.0 1047.1 970.2

]
Table 2. Standard method in Matlab. For all three examples we present run times in seconds for
the standard O(n3) method using Matlab with 12 cores. The individual problems are solved using
the function lyap() from the SLICOT library [28], and the unconstrained optimization is performed
using the function fminsearchbnd(). In the parentheses is the number of calls of the function lyap().

Problem Lyap(SLICOT) Optimization

Small 1.8 162 (95 calls)
Large 11.2 1050 (97 calls)

Homogeneous 22.9 2608 (109 calls)

Table 3. New method in Julia. For all three examples we present run times in seconds for the new
O(n2) method using Julia with 12 cores. The first column displays times for eigenvalue decomposition
of a CSymDPR1 matrix computed by the function EIGEN() from Algorithm 2. The second column
displays times for single trace computation using the function TRACEX() from Algorithm 3. The
third column displays times for the optimization of viscositites using the function OPTIMIZE from
Algorithm 4. The optimization is performed using the function ConjugateGradient() from the Julia
package Optim.jl [44]. In the parentheses is the number of calls of the function TRACEX(). Our Julia
programs are available on GitHub [42].

Problem EIGEN TRACEX OPTIMIZE

Small 0.14 0.72 60 (79 calls)
Large 0.48 2.4 182 (79 calls)

Homogeneous 0.94 4.2 350 (71 calls)

Table 4. Various number of dampers. We present timings for the large problem varying the number of
dampers from three, as in Table 3, to five. The first column displays times for single trace computation
using the function TRACEX(). The second column displays times for the optimization of viscositites
using the function OPTIMIZE(). In the parentheses is the number of calls of the function TRACEX().

Number of Dampers TRACEX OPTIMIZE

3 2.4 182 (79 calls)
4 3.25 412 (128 calls)
5 4.06 628 (154 calls)

Table 5. Condition numbers, residuals and relative errors. The first column displays condition
number (42) for each problem. The second column displays maximal condition number of all
eigenvector matrices S and S1 from (32) and (33) which appear during the entire optimization process.
The third column displays maximal relative residuals of the computed solutions of the Lyapunov
Equation (14) with A from (29) over the entire optimization process. The fourth column displays
maximal relative errors between trace and optimal viscosities computed by our method and the
standard method using Matlab’s function lyap().

Problem κ(K, M) max κ(S) Residual Relative Error

Small 1.4× 105 594.8 2.6× 10−9 0.0008
Large 6.3× 105 120.2 1.3× 10−9 0.0005

Homogeneous 4.1× 105 463.9 1.5× 10−9 0.0005
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4. Discussion

Comparing Tables 2 and 3, we see that the speedup of our method over the standard
method grows with dimension (more precisely: 2.24, 4.03, and 4.8, computed by adjusting
the number of trace computations). From Table 2 we see that the computation times
for the standard method for both, individual eigenvalue computations and optimization
procedure, are proportional to O(n3). Also, the computation times in Table 3 for both,
individual eigenvalue decomposition from the column EIGEN and trace computation from
the column TRACEX, are clearly proportional to n2. This confirms the fact that our method
is asymptotically an order of magnitude faster than the standard direct method in the
typical case when the number of dampers is small.

Timings from Table 4 show that the duration of computation is indeed linearly propor-
tional to the number of dampers, as predicted by the analysis.

The condition numbers κ(K, M) in Table 5 govern the overall accuracy of the com-
putation. The maximal condition numbers of all eigenvector matrices S and S1 from (32)
and (33) which appear during the entire optimization process are smaller than κ(K, M), so
our method does not introduce extra errors. Maximal relative residuals of the computed
solutions of the Lyapunov Equation (14) with A(Dext from (29) over the entire optimization
process, displayed in the third column of Table 5, are very small. This behavior is expected
according to the analysis from Section 2.2.6. Maximal relative errors between optimal traces
and optimal viscosities computed by our method and the standard method, shown in
the fourth column of Table 5, are small enough, which demonstrates that our method is
comparable in accuracy to the standard one.

5. Conclusions

The proposed direct algorithm, based on the fast algorithm for the solution of the
eigenvalue problems for CSymDPR1 matrices and fast multiplication of Cauchy-like matri-
ces, is simple, stable, and outperforms the standard direct counterpart, especially when
the size of the problem n is large and the number of dampers k is small. It is also easy to
implement in Julia’s multithreading environment.

After the initial eigenvalue decomposition of the linearized problem, our algorithm
computes optimal viscosities for each choice of external dampers in O(kn2) operations.
Hence, if the number of dampers is small, the subsequent optimization is the order of
magnitude faster than in the standard approach, while maintaining accuracy.

Future work may include a more detailed analysis of the new method and develop-
ment of the eigenvalue decomposition algorithm for block complex symmetric diagonal-
plus-low-rank matrices, which could treat all k dampers simultaneously and, thus, be even
faster.
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