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Abstract: This paper is aimed at the problem of scheduling surgeries in operating rooms. To solve
this problem, we suggest using some variation of the bin packing problem. The model is based
on the actual operation of 10 operating rooms, each of which belongs to a specific department of
the hospital. Departments are unevenly loaded, so operations can be moved to operating rooms in
other departments. The main goal is to increase patient throughput. It is also necessary to measure
how many operations take place in other departments with the proposed solution. The preferred
solution is a solution with fewer such operations, all other things being equal. Due to the fact
that the mixed-integer linear programming model turned out to be computationally complex, two
approximation algorithms were also proposed. They are based on decomposition. The complexity
of the proposed algorithms is estimated, and arguments are made regarding their accuracy from
a theoretical point of view. To assess the practical accuracy of the algorithms, the Gurobi solver is
used. Experiments were conducted on real historical data on surgeries obtained from the Burdenko
Neurosurgical Center. Two decomposition algorithms were constructed and a comparative analysis
was performed for 10 operating rooms based on real data.

Keywords: health scheduling; approximation algorithms; decomposition; capacity increase; bin
packing problem; scheduling problem

1. Introduction

Health scheduling is an essential component for medicine automation. The develop-
ment of scheduling models and algorithms has gained particular relevance in connection
with the COVID-19 pandemic. In particular, there is a high demand for scheduling op-
erating rooms. In Russia, many operations can be done free of charge according to a
government quota. If the operation is considered urgent, the patient might agree to a
paid service and later apply for compensation. Each surgical department has its own
peculiarities of functioning. This is the time and principles of the work of anesthesiologists,
the possibility of performing operations in other departments and associated overlays,
the scheduling and rotation of doctors, and much more. For a multidisciplinary surgical
hospital, an unbalanced operation of the surgical department is a limiting factor for the
overall functioning of the organization. This is especially important for neurosurgical
clinics, where individual surgical rooms are specialized and equipped to carry out certain
types of surgery.

Due to modern technology, medical care is becoming automated. Therefore, the
study of optimizing service processes is relevant. There are many publications on health
scheduling. Let us consider some papers for the investigated problem of optimizing surgery
rooms. The papers [1,2] are dedicated to an analysis of OR (operating room) and surgery

Mathematics 2022, 10, 784. https://doi.org/10.3390/math10050784 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10050784
https://doi.org/10.3390/math10050784
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0979-8189
https://orcid.org/0000-0002-5311-5552
https://orcid.org/0000-0001-7132-2945
https://doi.org/10.3390/math10050784
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10050784?type=check_update&version=1


Mathematics 2022, 10, 784 2 of 18

scheduling. They highlight three decision levels in OR scheduling and planning: strategic,
tactical, and operational. The strategic level covers long-term decisions, such as capacity
planning and allocation, which typically take a long time. In such problems, the amount
of time a given OR is dedicated to a surgical specialty is determined in order to optimize
profit/cost over a long period. Problems with cyclic OR schedules, such as master surgical
scheduling, are categorized at the tactical level. Moreover, the last decision level, the
operational level, is the shortest and involves decisions such as resource allocation, surgical
cases, and advanced scheduling. Our problem belongs to the operational level, our main
goal is to distribute elective surgeries in operating rooms. There are also three well-known
scheduling strategies/booking systems that dedicate OR-time to surgical groups: open
scheduling strategy, block scheduling strategy, and modified block scheduling strategy.
In reference [3], the authors used the block scheduling strategy, and tried to maximize
the occupation of the ORs and respect the order of patients in the waiting list as much as
possible. They used normal distribution for the duration of surgeries and cleaning time.
In an objective function, the authors identified three criteria. The first is to maximize the
expected surgery time in each block. The second criteria sets the probability that the total
work duration of each time block does not exceed the available time. Furthermore, the last
criteria ensures that preference is given to the first patients in the waiting list. However,
they do not take into account differences between operating rooms. We also put patients
from the waiting list to ORs using a block scheduling strategy but in our model different
ORs belong to different departments, and we have to take this into account. Paper [4] shows
the operating room scheduling problem, such as the bin packing problem. The authors look
for a schedule with all n activities programmed to run in a container such that the container
capacity is not exceeded and the downtime is minimal. Since the number of possible
schedules grows exponentially, the complexity of solving these problems is due to the
number of combinations that a large set of activities generate. This fact often leads to delays
in the scheduling process, as the ease of finding an efficient schedule is reduced. To solve the
problem, they developed a genetic algorithm. Genes are used to model time spaces in which
jobs can be scheduled. Each gene has a length that cannot be exceeded. A chromosome
contains a group of genes. In other words, each chromosome represents a possible schedule
of work. In this representation, chromosomes may vary in size depending on the number
of operating rooms used in the solution. We decided to use the bin packing problem with a
homogeneous capacity in our model. The authors of paper [5] compare batched and online
scheduling in surgery scheduling; in our model we use batched scheduling, the waiting list
is updated every week, and patients are scheduled for the following week. The policy in
batch schedules works as follows: it ignores new arrivals when the schedule is over. Thus,
this class only cares about the result within the time horizon. Optimal solution methods
for such schedules may include mixed-integer linear programming (MILPs) solvers. These
can be optimal solvers based on branching and cutting methods or metaheuristics. Batch
scheduling works as follows: when a certain number of people in a batch is recruited, a
schedule is made for the current day. People who have already been enrolled are removed
from the upcoming batch, and new patients and those not yet enrolled are put into the next
batch scheduling for the next day. Batch scheduling problems are often simpler, but can
involve many different constraints. Paper [6] solves a problem close to ours. In that paper,
the authors present an optimization framework for batch scheduling within a block-booking
system that maximizes the expected utilization of operating room resources subject to a set
of probabilistic capacity constraints. To understand whether a given schedule is feasible
or not, the scheduler uses an estimate provided by the surgeon and an estimate based on
historical data. If the sum of the point estimates of the duration of the operations assigned
to the same schedule block and the intermediate cleaning time does not exceed the block
length, then the block assignment is considered feasible. Note that we use historical data of
a hospital too. The main purpose of this strategy is to ensure that all scheduled surgeries can
be finished within the allotted block length, avoiding overtime. They solved the problem
with mixed-integer programming and we also use this method. The authors develop an
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algorithm based on a normal approximation for the sum of the surgery duration to provide
near-optimal solutions to the stochastic scheduling problem. The primary aim of paper [7]
is the effective and balanced use of equipment and resources in hospital operating rooms.
In this context, datasets from a state hospital were used via the goal programming and
constraint programming methods. Now, we consider more contemporary papers in surgery
scheduling. In research [8] from 2021, the authors use a weekly surgery schedule with an
open scheduling strategy. In our work, we also construct a weekly schedule. The objective
is to minimize the total operating cost while maximizing the utilization of the operating
rooms, while also minimizing overtime use. Their mathematical model can provide optimal
solutions for a surgery size of up to 110 surgical cases. Furthermore, the authors proposed
two modified heuristics, based on the earliest due date and longest processing time rules, to
quickly find feasible solutions. In article [9] from 2021, the authors find the optimal schedule
of surgeries by minimizing operating rooms’ idle times (in our paper we minimizing idle
times too) while maximizing the number of scheduled surgeries during the most effective
and desirable time windows. Surgeries during ideal time windows are encouraged by
assigning bonus weights in the objective function. The stated and implied benefits of this
strategy include mitigating financial loss, complications, and death rate due to a reduction
in surgery delays. They introduce a binary programming model for scheduling operating
rooms and a mixed-integer binary program for planning and scheduling both operating
and recovery rooms for elected patients under deterministic conditions. The authors apply
an open scheduling strategy for assigning operating rooms to surgeons and a Lagrangian
relaxation method for finding promising solutions. Consider another article, namely [10]
from 2021, which is similar to ours. In this paper, the authors allocate elective patients and
resources (i.e., operating rooms, surgeons, and anesthetists) to days, assign resources to
patients, and sequence patients in each day. They consider patients’ due dates, resource
eligibility, the heterogeneous performances of resources, downstream unit requirements,
and lag times between resources. The goal is to create a weekly surgery schedule that
minimizes fixed and overtime costs. To efficiently and effectively solve the problems of
MILP models, the authors develop new multi-featured logic-based Benders decomposition
approaches. Furthermore, a lot of works, such as [11–13], have an uncertain duration of
surgery, and we plan to include this complication. In this paper, we do not consider the
uncertainty. Our work is organized as follows: We consider the mathematical model in
Section 2. Section 3 reviews the computational experiments. The decomposition algorithms
are shown in Section 4. Section 5 presents the results of the algorithms compared to the
MILP. Furthermore, some remarks are presented in the Conclusion section.

2. Mathematical Model
2.1. Problematic

The goal is to increase throughput according to two factors: reducing gaps in schedules
and increasing the operation time in ORs. We can use the information system of the
Burdenko Neurosurgical Center and doctors’ expert evaluations to solve the problem.
Experts identify subproblems such as hospitalization, surgical department manipulations,
and the monitoring of surgery rooms. The problem is divided into three subproblems: The
first is the problem of allocating specialists to the appropriate rooms at a certain time. The
second problem is to create a schedule for receiving patients for surgery. The third one is
the problem of predicting the idle times of surgery rooms.

In this paper, we consider only assignment patients to ORs. There are 10 departments
in the Burdenko Neurosurgical Center, and each department has its own operating room.
Incoming patients are always assigned to one of these departments. We will consider
only elective patients. The Burdenko Neurosurgical Center information system includes
information about a patient’s hospitalization, the principles of their treatment, and the
work of the department, including occupied beds and the work of the surgical department,
etc. For each patient, information about their operations is generated in the system. This
creates a table that consists of the following columns: number of the patient; date; the host
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department; surgery room ID; complexity category of surgery; start of surgery; end of
surgery. Based on this table, we can conclude that the usage periods of ORs usually have
gaps, which greatly reduces the efficiency of ORs. According to examples for each surgery,
we know the duration, number, and the department in which it should be performed.
By using these examples, we created the frequency dictionary of various parameters and
used it in the generation. Each department has its operating room. However, we can
try to allocate some operations of the busy departments to the operating rooms of less
busy departments.

2.2. Model

Let M = 1, 2, ..., m–set of operating rooms, O = 1, 2, ..., o–set of departments, and
J = 1, 2, ..., n–set of surgeries. We consider 10 operating rooms mi ∈ M that work 4 days a
week for 11 h every day (from 9:00 to 20:00). Our main goal is to decrease the gaps in these
operating rooms. Gaps there mean that the operating room is not busy at these moments.
Analyzing the hospital report, we can see that the duration of surgeries is quite long. Let us
assume that if the surgery ends at 17:00, then there will be no others after it because there is
a high risk of overtime work. Because of this, there are gaps in the schedule. To solve this
problem, we suggest using some variation of the bin packing problem, as containers will
be operating rooms, the capacity of which is determined by the number of hours during
which the surgeries can be performed (11 h). This model does not include urgent patients.
We receive a patient waiting list at the end of each week and make a schedule for the next
working week. In this case, the schedule is not a specific time for the start of operations,
but only the distribution of surgeries in the ORs and days. The main goal is to decrease
the number of gaps in the OR’s schedule for the whole working week. Furthermore, an
important criterion is a department where the patient is treated, because each department
oi ∈ O has its own OR mi (10 departments), and it is undesirable to operate the patient in an
external OR. In our previous work on this topic [14], we approached this problem in terms
of schedule theory, and we assigned patients strictly to their operating rooms. However,
in this work, for this purpose, a weight matrix W has been added to the model, where
wij = w0 (w0 > 1), if the surgery j is performed in “its” OR mi, and wij = 1 in the other case.
The definition of a guest surgery and a home surgery is introduced; we will call the surgery
“home” if it is performed in “its” operating room, and we will call the surgery “guest” if
it is performed in another operating room. Let us construct a mathematical model. The
parameters of the model are:

• pj—processing time of surgery j, ∀j ∈ J;
• wij—weight of surgery j, if it is being performed in OR i, ∀i ∈ M;
• D—set of days when you can perform the surgery. In our case it is d = 1, 2, 3, 4

(Monday, Tuesday, Wednesday, Thursday);
• A—operating room hours per day (11 h).

The variables of the model are:

• xd
ij = 1, iff surgery j assigned to OR i on day d, and equal 0 otherwise.

Objective function:
∑

d∈D
∑

i∈M
∑
j∈J

xd
ij pjwij → max (1)

Subject to:
∑

d∈D
∑

i∈M
xd

ij ≤ 1, ∀j ∈ J; (2)

∑
j∈J

pjxd
ij ≤ A, ∀i ∈ M, ∀d ∈ D. (3)

The objective function (1) maximizes the weighted number of operating hours during
the week, which, accordingly, minimizes gap hours. Constraint (2) ensures that one
operation is not scheduled more than once. Furthermore, constraint (3) guarantees that the
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total duration of all surgeries in one OR on one day does not exceed the operating time
of that room; in our case all operating rooms work the same number of hours. It is also
necessary to note that this problem is NP-hard and cannot be solved in polynomial time.

3. Computational Experiments

Experiments will be conducted on pseudo-real data. Surgical data were provided to
us by Burdenko Neurosurgical Center. The Burdenko National Medical Research Center
for Neurosurgery is the leading neurosurgical hospital in the Russian Federation and the
world’s leading neurosurgical clinic, with a rich history, state-of-the-art equipment, and a
unique professional team. Every year the National Center performs about 10,000 neuro-
surgical surgeries for the widest range of diseases of the nervous system. The structure of
the center includes 10 clinical departments with 10 main operating rooms. We have data
on all surgery operations made in 2014. It is also important to note that some operating
rooms are busier than others. In other words, operations are assigned to operating rooms
unevenly. The duration of surgical operations is generated randomly, with a variation of
one hour from the average duration of surgeries in a given department. Thus, our dataset
contains the department to which the surgery is attached and the duration of this surgery.
The MILP model in all experiments is solved using Gurobi with an academic license in a
Python environment. We decided to use Gurobi since it is the most powerful mathematical
optimization solver.

The simulation scheme is as follows:

1. At the beginning of the week, N of generated surgeries is added to the waiting list;
2. The problem of mixed-integer linear programming with the above-described con-

straints and objective functions is solved by Gurobi in Python. That is, the optimal
schedule for a given week is made, and the surgeries that could not be assigned
remain in the waiting list and are transferred to the next week;

3. Furthermore, this cycle is repeated.

The number of surgeries N that we add to the waiting list every week is important.
On average, about 130–140 surgeries are performed per week. Accordingly, if we take N
much more than this value, the operations will accumulate in the waiting list, and with
each week the gaps will become smaller because there will be a large selection of surgeries
to schedule. However, the queue will keep steadily growing.

We need to minimize the total gap hours concerning the fact that guest surgeries are
undesirable. Then, we need to check the dependency of OR’s gap hours, and the number
of guest surgeries, depending on the choice of weight w0. The planning period is chosen to
be two weeks and the number of surgeries N = 150, so that a large number of surgeries
would not accumulate. We tested the experiments on five different generated data, where
only the duration of surgeries changes randomly. We took the average values of the total
gap duration and the number of guest surgeries for each experiment.

Figure 1 shows a sharp jump at the beginning. In Figure 2 with the increased scale, you
can see that the jump occurs when the weight coefficients w0 are from 1 to 4. Next, with the
further increasing of weights, the value of the total gaps stabilizes at approximately 11 h.
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Figure 1. The dependency of the total duration of all schedule gaps on the weight w0, 1 ≤ wo ≤ 100.

Figure 2. More detailed dependency diagram of the total duration of all schedule gaps on the weight
w0, 1 ≤ wo ≤ 10.

Now, let us consider the graph of dependence of the number of guest surgeries on the
same w0 weighting coefficients (Figures 3 and 4). This graph behaves almost in the same
way; there is a sharp jump down with small values of w0. Next, with the further increasing
of weights, the number of the guest surgeries becomes stable, starting with the same values
of w0 as in the previous graph. The following conclusion can be drawn from these graphs:
Even if it is very important to perform home surgeries (w0 � 1), we need to assign some
guest surgeries (Figure 4) to make an optimal schedule. Furthermore, it appeared that the
total duration of gaps also does not change at large values of w0. The problem appeared
to be computationally difficult for weights, at which there is a sharp jump in the graphics.
That is the reason for adding a time limit to the experiment. If for a certain weight w0 it
takes a long time to calculate the result, then we skip this value and proceed with the next
value of weight.
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Figure 3. The dependency of the number of guest surgeries on the weight w0, 1 ≤ wo ≤ 100.

Figure 4. More detailed dependency diagram of the number of guest surgeries on the weight w0,
1 ≤ wo ≤ 10.

4. Algorithms

Since our MILP model is computationally difficult, we consider two approximate
algorithms and compare them with each other. First, the algorithm constructs a schedule
for each department separately, and after that, it changes some surgeries to more opti-
mal solutions. In the second algorithm, we construct a decomposition graph to divide
departments into groups and solve the MILP problem for each group.

4.1. Vertex Decomposition with Balanced Distribution

Vertex decomposition with balanced distribution further in the text will be called
Algorithm 1. The main idea of this algorithm is to assign patients to ORs in their depart-
ments at first. This is the first stage. After this distribution, we have a schedule without
guest surgeries and some patients remained on the waiting list. Next, at the second stage,
we check if the patients from the waiting list can be assigned to any OR on any day of
the week. Next, at the third stage, our algorithm checks if it is possible to assign patients



Mathematics 2022, 10, 784 8 of 18

from the waiting list to the OR if the surgery with the minimum duration is removed from
it. Removed surgeries are added back to the waiting list and all steps of the algorithm
are repeated for these surgeries. The third stage of the algorithm may be repeated several
times. We look at the maximum value of the following values for all operation rooms and
for all days: the remaining hours in the operating room if we remove the surgery with the
minimum duration. Furthermore, this value is compared to the duration of the minimal
surgeries on the waiting list; if it is more than the duration of two or one surgeries, we
repeat the third stage twice or once, respectively. In our case, we always get one repetition
of the third stage. As a reminder, our main goal is to minimize gaps in all ORs during the
week. At first, we need to set a problem for the first step, whereby we construct a schedule
without guest surgeries. It is a MILP model with the following parameters, objective
functions, and constraints:

• pj—processing time of surgery j, ∀j ∈ J;
• D—set of days when you can perform the surgery. In our case it is d = 1, 2, 3, 4

(Monday, Tuesday, Wednesday, Thursday);
• A—operating room hours per day (11 h).

The variables of the model are:

• xd
j = 1, iff surgery j assigned to OR on day d, and equal 0 otherwise.

Objective function:
∑

d∈D
∑
j∈J

xd
j pj → max (4)

Subject to:
∑

d∈D
xd

j ≤ 1, ∀j ∈ J; (5)

∑
j∈J

pjxd
j ≤ A, ∀d ∈ D. (6)

The solution of this MILP model presents an optimal weekly schedule for one depart-
ment if there are no guest surgeries. We solve this problem 10 times for each department
(for each OR) and put all unassigned patients in the general waiting list. For a better
understanding, we present the pseudocode of our Algorithm 1.

In our first experiment, we constructed a schedule for two weeks. Now we need to
construct a schedule for two weeks for this algorithm. To achieve this, it is necessary to use
the algorithm twice, but the second time the waiting list will not be empty, it will remain
from the previous week. Furthermore, we can construct a schedule for N weeks, we just
need to perform this algorithm N times and add unscheduled surgeries from previous
weeks to the waiting list.

Remark 1. At the third stage, we have restriction remains_hours[i] > T, which means that we
consider only ORs with more than T hours left for surgeries. Here, we took T = 1 h, but in
future works, we will find the cost of an operational hour and the cost of one guest surgery, and
then calculate T based on these considerations, because T affects gap hours and the number of
guest surgeries.



Mathematics 2022, 10, 784 9 of 18

Algorithm 1: pseudocode
Departments = 10
surgeries = []
remains_hours = []
waiting_list = []
guest_surgeries = 0
for i = 1 to Departments do

// The first stage:
Solve MILP model with Gurobi for department i;
surgeries += surgeries[i]
remains_hours += remains_hours[i]
waiting_list += waiting_list[i]
// Solution of MILP model return remains_hours[i], it is an array with four

elements, and each element shows the unused hours of the operating room on
one day of the work week (4 working days per week). It also returns
waiting_list[i], which have the durations of surgeries that are not scheduled
for this week. Furthermore, it returns surgeries[i]; it is the array with four
arrays inside that contain surgeries, which are scheduled on one day(four
arrays because of 4 working days per week).

end
for j = 1 to waiting_list.length do

// For each surgery on the waiting list:
for i = 1 to remains_hours.length do

// for each day in each department
// The second stage:
if waiting_list[j] ≤ remains_hours[i] then

remains_hours[i] − = waiting_list[j]
// If the surgery can be put on that day in the OR of this department,

we deduct from the remaining unused time of that OR on that day’s
duration of surgeries:

guest_surgeries + = 1
// We add one to the counter of guest surgeries because this surgery is

not scheduled in its department:
waiting_list[j] := 0

else

end
// The third stage:
if waiting_list[j] ≤ remains_hours[i] + min(surgeries[i]) AND

waiting_list[j] ≥ min(surgeries[i]) AND remains_hours[i] ≥ 1 hour then
remains_hours[i] − = waiting_list[j]
// Do the same things, but now we remove the surgery with the

minimum duration, which was scheduled on that day in this OR.
Furthermore, the last restriction in the condition is needed so that
there are not many guest surgeries in the final schedule.

guest_surgeries + = 1
waiting_list[j] := 0
waiting_list + = min(surgeries[i])
// We need to add removed surgery to the waiting list.

else

end
end

end
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4.2. Graph Decomposition

Graph decomposition further in the text will be called Algorithm 2. Furthermore,
we consider another approach to solve this problem. It is based on the mathematical
model (1)–(3) (our exact approach); however, there, we break down the departments into
groups. In other words, we solve several of the same problems with a smaller set of
variables instead of one big problem with 10 departments. We can use the historical data of
surgeries of each department and see which departments are overloaded and which are
not, and combine them into groups. It can be represented with a graph (Figure 5): vertexes
are the departments, one department can operate on patients from another department if
there is an edge between them. We also solve this problem for N times to do the schedule
for N weeks. In our case N = 2.

Figure 5. Decomposition graph.

So we need to solve our MILP model for every component of this graph. Now, we
can compare three approaches on the same generated data in terms of the number of guest
operations, the amount of unused work time in two weeks, and computing time. Below is
the pseudocode of this algorithm.

Algorithm 2: pseudocode

Departments_blocks = [[1], [2], [3, 4, 5, 6], [7, 8, 9, 10]]
gaps_hours = []
waiting_list = []
guest_surgeries = 0
for i in Departments_blocks do

// Solve MILP model with Gurobi for Departments_blocks[i]
gaps_hours += gaps_hours[i]
waiting_list += waiting_list[i]
guest_surgeries += guest_surgeries[i]
// Solution of MILP model return objective function in gaps_hours[i] for a

given block of operating rooms, It also returns waiting_list[i], which have the
duration of surgeries that are not scheduled for this week. Furthermore, it
returns guest_surgeries[i] – a number of guest surgeries in a given block of
ORs.

end

4.3. Complexity of the Algorithms

In general, the upper bound of the efficiency of our MILP problem using the exact
approach is brute force: 2n. In our case, n is equal to the number of binary variables xd

ij,
n = N ·M · D, where N—the number of the surgeries, M—the number of the operation
rooms, and D—the number of workdays in a week. Let the efficiency estimate of the
algorithm for solving a discrete optimization problem with n binary variables be:

φ(n) = 2n. (7)
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Furthermore, let there be a tree that divides the problem into r blocks. It is argued that
when decomposing the problem into blocks, the efficiency estimate of the entire problem
will be equal to:

∑
i∈r

φ(ni) = ∑
i∈r

2ni , (8)

where n = n1 + n2 + ... + nr.

Property 1. The estimate (8) is better than (7).

Proof. Using the well-known inequality 2x+y > 2x + 2y, x, y > 1 we can write the following
chain of inequalities:

2n1+n2+...+nr > 2n1 + 2n2+...+nr > ... > 2n1 + 2n2 + ... + 2nr . (9)

As a result, we observe that the decomposition increases the efficiency of the algorithm.

In Algorithm 2, we decompose our problem into four subproblems: n = n1 + n2 +
n3 + n4. Furthermore, the MILP problem becomes much easier, because the efficiency
estimate now is equal to 2n1 + 2n2 + 2n3 + 2n4 , and with Property 1, it is better than 2n. In
Algorithm 1, we decompose the problem into 10 subproblems n = n1 + n2 + ... + n10, but
in each subproblem the dimension of the variable is reduced by one: xd

ij → xd
j . n1 = D · N1,

n2 = D · N2, ... ,n10 = D · N10, where Ni is the number of surgeries in i-th department and
N = ∑i∈I Ni. So let us find the complexity of Algorithm 1 exclusive of the complexity of
Gurobi. At the first stage, we solve the MILP problem by Gurobi for each department. At
the second stage, we check for each surgery on the waiting list to see if it can be placed
in an operating room on any given day. In the worst case, the number of surgeries on
the waiting list can be N, then the complexity of the second stage is O(D ·M · N). At the
third stage, we check for each surgery on the waiting list to see if it can be changed with
the scheduled surgery with a minimum duration in an operating room on any given day.
Furthermore, the complexity of this stage is the same as the second stage. The complexity
of Algorithm 1, exclusive of the complexity of Gurobi, is O(D · N ·M) and it is less than
∑i∈I 2D·Ni . Therefore, the efficiency estimate of Algorithm 1 is equal ∑i∈I 2ni and with
Property 1, it is better than 2n.

4.4. Algorithms Accuracy Estimation

Now, let consider evaluating the accuracy of our algorithms. Let us discuss this
question using the following examples:

Example 1. To illustrate the accuracy of Algorithm 1, consider a simple example. Let p1 = [2, 5, 2],
p2 = [4, 3, 4], p3 = [3, 4, 3], and p4 = [2, 1, 3], where pi is the processing time in hours of surgeries
that are related to department i. There are a total of four departments and four operating rooms.
Let each operating room work only 9 h and only one day. The total duration of all surgeries is 36
h. The optimal solution of this problem using model (1)–(3) constructs the schedule without gaps,
all operations are scheduled, all 36 of the 36 h of operating time is used, and the number of guest
surgeries is equal to three. To use Algorithm 1 for this example, we construct a schedule for each
department using model (4)–(6) and then rearrange some surgeries if they will increase the objective
function, according to Algorithm 1. We get the following results: 33 of the 36 h of operating time is
used and only one guest surgery. Thus, the relative error of the objective function of Algorithm 1 for
this example is 8.3%.

Example 2. To illustrate the accuracy of Algorithm 1, consider the same example as for the
Algorithm 1. To use Algorithm 2 for this example, we break down the departments into groups and
solve model (1)–(3) for each group. In this example, the total processing time of the surgeries for
each department are 9 h, 11 h, 10 h, and 6 h, respectively. Thus, in the worst case we can divide the
departments into the following groups: [1, 4] and [2, 3]. Let me remind you that this means that
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surgeries can only be transferred from one department to another within its group. After scheduling
each group using model (1)–(3), we get the following results: only 32 of the 36 h of operating time
were used and the number of guest surgeries is equal to two. Since our main criterion is the total
duration of surgeries, Algorithm 2 gives a relative error equal to 11.1% of the optimal solution in
this example.

In order to measure the accuracy of Algorithm 2, it is necessary to take the model (1)–(3),
and according to the decomposition in Figure 5, construct a special example using addi-
tional parameters. These parameters must be related to the number of generated operations
N described in the beginning of Section 3. It is necessary to describe these parameters in
such a way that this special case is the worst case for the Algorithm 2. The estimate of the
accuracy in the worst case will be the accuracy of the algorithm. For Algorithm 1, every-
thing is done similarly, but instead of a decomposition graph, each operation is considered
separately and then there is a balancing process according to Steps 2 and 3 of Algorithm 1.

Worst case of Algorithm 1. The problem of calculating the absolute error for the
NP-hard problem is quite time consuming. The study of this problem is planned to be
covered in future papers. However, let us show a rough estimation of the algorithm
accuracy without taking into account some restrictions existing in practice. Let us neglect
the restriction on the total number of operations and the number of operations that are
assigned to each operation to construct the worst case of the problem. The exact algorithm
allows for an even distribution of operations between operations, so we will construct the
worst-case example so that the distribution of operations is unequal. Furthermore, the exact
algorithm allows you to go through all possible combinations, to construct the worst case
so that the approximate algorithm works least accurately due to the order of operations
of the different durations. To increase the error of the approximate algorithm we will use
only the minimum and maximum operations. In our case, the minimum duration of the
operation is h = 1 h, and the maximum is H = 6 h. We took these durations based on
historical data. Furthermore, we use the restriction on the size of one day in the operating
room–A = 11 h of work. We construct the jobs in such a way that by using the largest
duration of the surgery in each working day we get the gaps of a maximum size. Let the
next set of surgeries be assigned to the first department for this week: eight surgeries with
a duration of A/2 h, 180 surgeries with a duration of h hours, and 36 surgeries with a
duration of H hours. Furthermore, the rest of the departments are empty. Following the
exact approach, the schedule will be constructed as follows: all surgeries of A/2 h will be
assigned to the first operating room (two surgeries for each day). Furthermore, the rest
of the operating rooms will have one surgery of a duration of H and five surgeries of a
duration of h on each day. Thus, there will be no gaps in the schedule at all. Applying
the first algorithm to this example yields the following results: Since at the first step of
the algorithm we construct the schedule for all departments separately, all surgeries of
A/2 h will be assigned to the first operating room, but then all other surgeries will be on
the waiting list. According to the second and third steps of Algorithm 1 on page 9, the
operations from the waiting list will be distributed as follows: operating rooms number
2, 3, 4, and 5 will be “packed” with surgeries of a duration of h = 1 h, this will require
4·A·D

h = 176 surgeries, where D = 4 days. The remaining four surgeries of a duration of
h will be assigned to OR six on the first day. Finally, one surgery of a duration of H will
be assigned to operating room numbers 6, 7, 8, 9, and 10 for each day. So, it turns out that
the number of gap hours is equal to M′ · D · (A− H)− 4 = 96 h, where M′ = 5 it is the
number of not-fully-filled operating rooms. As a result, we obtain that a rough estimate of
the absolute error of Algorithm 1 is 96 h.

Worst case of Algorithm 2. To construct the worst case for Algorithm 2, we introduce
an additional restriction: 10 to 20 patients must be admitted to each department. Without
this restriction, Algorithm 2 does not make much sense for extreme cases. To construct the
worst case, we distribute the surgeries as follows: In each department of the first subgraph
of the decomposition graph in Figure 5, we place 10 surgeries of duration (A− H) = 5 h.
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Furthermore, in each department of the second subgraph we place 10 surgeries of duration
H = 6 h. We also place 10 surgeries of duration (A− H) hours and 10 surgeries of duration
H hours, respectively, in department one and two. Thus, the exact approach would give
an optimal solution with the number of gap hours equal to zero: each operating room
would have one surgery of duration (A− H) and one surgery of duration H on each day.
Furthermore, following Algorithm 2, we obtain that half of the operating rooms for each
day have one surgery of duration H, and the other half of the operating rooms for each
day have two surgeries of duration (A− H). We get the following estimate of the absolute
error of gap hours for Algorithm 2:

Gapabs =
M
2
· D · (A− H) +

M
2
· D · (A− 2(A− H)) =

M
2
· D · H = 120, (10)

where M = 10—the number of operating rooms.
The result is that a rough estimate of the absolute error of Algorithm 2 is 120 h.

However, although Algorithm 2 has a worse accuracy estimate, Algorithm 1 performs
worse on average, as will be shown in the results below.

Our problem is a generalization of the 0–1 multiple knapsack problem. This problem is
NP-hard, and it is shown in [15], where our problem is called LEGAP—a special case of the
generalized assignment problem. Since it is NP-hard, it is not possible to obtain theoretical
estimates for these algorithms. To estimate the practical accuracy of the algorithms, the
extreme cases of the examples were constructed. In the first case, the surgeries with the
minimum variation in the duration of surgeries were taken, and in the second case, with
the maximum variation. As shown in [16,17], for examples with a large scatter of surgery
duration, the core-type algorithms work badly, and for examples with a small scatter of
surgery duration, the graphical-type algorithms work badly. For this experiment, the data
were divided into two types. In the first case, the duration of the surgeries varies from 1.5 h
to 9 h, with a uniform distribution. That is, the duration of surgeries has a very large scatter.
In the second case, the duration of surgeries varies from 4.5 to 5.5 h, also with a uniform
distribution. Using this experiment, we analyze the accuracy estimate of our algorithms
depending on the width of the range of the duration of the surgeries. The other parameters
of data remained the same as for the previous experiments. The assignment of surgeries
to each of the 10 departments for each case is the same. However, in this experiment, half
of the working week was taken, i.e., 2 days. Accordingly, half as many surgeries were
taken. This was done so that the MILP solver could solve all the examples in a reasonable
time. For each type, 100 examples were generated and tested for each of our approaches.
Figures 6 and 7 show a graph of the dependence of the gap hours in the examples with
a small variation of the duration of surgeries and on the examples with a large variation
of the duration, accordingly. In Figure 6, it can be seen that Algorithm 1 performs better
in almost all examples compared to Algorithm 2. The absolute error of the algorithms
compared to the exact approach is not very large for surgeries with a small scatter, while
it is already significantly larger for surgeries with a large scatter. Furthermore, it can be
noticed that the scatter of the gap hours in Figure 6 is smaller than in Figure 7, which is
quite logical, since the examples in Figure 6 are close to each other.



Mathematics 2022, 10, 784 14 of 18

Figure 6. Graph of the dependence of the gap hours on the examples with a small variation of
the duration.

Figure 7. Graph of the dependence of the gap hours on the examples with a large variation of
the duration.

The average values of the objective function and the number of guest surgeries are
shown in Table 1. In the case of surgeries with a wide variation of duration, the absolute
error of the gap hours for Algorithm 1 is 7.2 h, and for Algorithm 2 it is 8.9 h, while the
number of guest surgeries for each approach is about the same. Now consider the case
of surgeries with a small variation of duration. The absolute error of the gap hours for
Algorithm 1 is only 0.2 h, and for Algorithm 2 it is 2.1 h. However, the average number of
guest surgeries is different for each approach. For the exact approach, the average number
of guest surgeries is equal to one. This can be explained by the fact that in each department
the duration of the surgeries is almost the same. In Algorithm 2, the number of guest
surgeries is not too large either, but Algorithm 1 has an average of 12 guest surgeries. This
is due to the fact that in the second and third steps of Algorithm 1, surgeries are transferred
from one department to another, even with a small improvement in the objective function.
To summarize, our approaches work better for surgeries with a wide range of duration.
This is a good factor for us, since in real life, the durations of surgeries are very different.
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Table 1. Average values.

Data Type Average Exact Approach Algorithm 1 Algorithm 2

Surgeries with a wide Gap hours, hours 5.7 12.9 14.6
variation in duration Guest surgeries 10.2 12.1 8.8

Surgeries with a small Gap hours, hours 17.7 17.9 20.8
variation in duration Guest surgeries 1.0 11.9 4.0

5. Results

Now we need to compare all approaches on the same data. All results are present
in Tables 2–5; “-” means that the solve time limit is exceeded. The time limit is 30 min.
All 10 examples were generated in the same way described in Section 3. Furthermore, we
present an example schedule with the help of Gantt charts in Figure 8. Guest surgeries are
marked in black.

Figure 8. Example of schedule for exact approach.

Figure 8 presents that there are not many guest surgeries, and the duration of the
surgeries is widely scattered.

Table 2. Computing Time.

Experiment Exact Approach, sec Algorithm 1, sec Algorithm 2, sec

1 1500 1.92 7
2 340 1.97 13
3 1350 2.35 31
4 310 2.99 21
5 150 1.91 9
6 - 2.16 13
7 - 2.15 7
8 - 2.3 11
9 - 2.2 48
10 - 2.5 15

Table 2 shows the computing times for each approach for different examples. The
computational time for the exact approach is extremely data-dependent. Furthermore,
some examples cannot be solved at all within the time limits we set. Furthermore, the
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examples that are solved are solved long enough. Algorithms 1 and 2 solve the problem
faster. In particular, Algorithm 1 is on average several times faster than Algorithm 2.

Table 3. Gap hours (objective function).

Experiment Exact Approach, Hours Algorithm 1, Hours Algorithm 2, Hours

1 8 18.5 9
2 6 23 16
3 7.7 22 13
4 7 20.5 11.5
5 4.8 16 9
6 - 21.5 12.5
7 - 15.5 7
8 - 17 12.5
9 - 25 13

10 - 23 8

Table 3 compares the total number of gap hours for each approach. The results
obtained by the exact algorithm show that the gaps range from 4.8 to 8 h for the groups of
examples considered, but the results obtained by Algorithm 1 on average differ by 13.1 h
compared to the exact approach. At the same time, the gaps obtained for the examples that
the exact algorithm was unable to calculate averaged 20.4 h for Algorithm 1. Algorithm 2
in turn differs from the exact solution by 5.1 h for the first five examples. Furthermore, for
the following examples, which do not have an exact solution, the gaps average 10.6 h for
Algorithm 2.

Table 4. Guest surgeries.

Experiment Exact Approach Algorithm 1 Algorithm 2

1 17 15 9
2 12 20 13
3 16 26 13
4 13 16 13
5 14 26 7
6 - 31 12
7 - 22 13
8 - 20 13
9 - 18 8
10 - 19 10

Table 4 shows the number of guest surgeries. We have chosen the parameters so that
the number of guest surgeries would be acceptable for each approach. It can be seen that
for Algorithm 2, guest surgeries on average turn out even less than the exact approach;
this is due to the decomposition of the problem into several groups of departments, while
Algorithm 1 has more guest surgeries than the exact approach, because in it we transfer
surgeries from one department to another at steps 2 and 3 of the algorithm.

Table 5. Average values.

Average Exact Approach Algorithm 1 Algorithm 2

Computing time, sec 730 2.2 17.5
Gap hours, hours 6.7 20.2 11.1
Guest surgeries 14.4 21.3 11.2
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It can be seen that the exact approach can not find the optimal solution within the time
limit for all generated examples. Thus, it can be observed that algorithms have a much
shorter computation time, and at the same time do not lose much in the objective function.
As we can see in Table 4, Algorithm 1 is the fastest, but Algorithm 2 has a running time
not much longer and the objective function is half the size of Algorithm 1. However, pay
attention to the gap hours relative to all available work times of all ORs in these two weeks.
There are 880 h of work time. Furthermore, even in Algorithm 1, the gap hours are only
2.3% of all work time. It is not much different from the optimal solution with 0.8%.

6. Conclusions

This paper presents a formal statement of the problem of the predictive planning of
surgery units in a large medical hospital and outlines the methods for its optimal solution.
The experiments were carried out on real data that was generated based on data provided
by the Burdenko Institute. The managerial insights of this work are to implement a program
for scheduling operating rooms to automate this process and increase patient throughput
at the Burdenko Neurosurgical Center. To achieve this, the plan is to make the existing
model more complex, so that it is as similar as possible to the real situation in the hospital.
In future works, we plan to add the uncertainty of the duration of surgery, urgent patients,
and the work of anesthesiologists.

The hospital report shows some departments are busier than others. Furthermore, our
model implies the possibility of transferring the patients to the operating rooms of other
departments if they are not busy. Our main goal was to increase patient throughput. This
can be achieved by maximizing the number of operating hours. Operating rooms should be
out of work for as little time as possible. The MILP model allows us to construct a long-term
schedule with fewer gaps. Since we have to make a new schedule every time a patient is
removed or added to the waiting list, a new schedule should be made in a short period
of time. Furthermore, since our model is computationally complex, two decomposition
algorithms were presented that significantly reduce the time calculations.

This paper shows that the complexity of the proposed algorithms is significantly
reduced compared to the complexity of the exact approach. This thesis is confirmed in
practice: the exact solution was obtained only in half of the cases. The problem with
the exact approach is that for cases with the same number of applications but different
distributions of surgery durations across operating rooms this approach may not find an
exact solution in an acceptable time. Discussions are carried out regarding the theoretical
estimation of the accuracy of the algorithms. For those examples for which the exact
solution was obtained, the relative error of the solution was calculated. It can be seen that
the first algorithm is further from the exact solution than the second. For further examples,
in the accuracy of which has not been estimated we can also see this pattern. The objective
function value obtained by the first algorithm is much higher than for the second. At the
same time, we see that the computation time for the first algorithm is much less than for
the second. This paper contributes to solving the problem of scheduling operating rooms.
The peculiarity of the problem is that the operating rooms are multidisciplinary. That is,
the operating rooms are assigned to certain departments where patients are admitted. The
MILP model was invented for this problem. This problem is NP-hard. Therefore, it took a
long time to construct the schedule. To solve this problem, two decomposition algorithms
were developed to reduce the solution time. Furthermore, the complexities and rough
estimates of the accuracies of these algorithms are given. In the future, we plan to expand
the model for emergency patients and to add uncertainty, and we also will try a metric
approach [18] for this case.
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