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Abstract: Clustering aims at discovering the natural groupings in a dataset, prevalent in many
disciplines that involve multivariate data analysis. In this paper, we propose a physically inspired
graph-theoretical clustering method, which first makes the data points organized into an attractive
graph, called In-Tree, via a physically inspired rule, called Nearest Descent (ND). The rule of ND
works to select the nearest node in the descending direction of potential as the parent node of each
node, which is fundamentally different from the classical Gradient Descent. The constructed In-Tree
proves a very good candidate for clustering due to its particular features and properties. In the
In-Tree, the original clustering problem is reduced to a problem of removing the inter-cluster edges
from this graph. Pleasingly, those inter-cluster edges are usually so distinguishable that they can
be easily determined by different automatic edge-cutting methods. We also propose a visualized
strategy to validate the effectiveness of the automatic edge-cutting methods. The experimental results
reveal that the proposed method is superior to the related clustering methods. The results also reveal
the characteristics of different automatic cutting methods and the meaningfulness of the visualized
strategy in increasing the reliability of the clustering results in practice.

Keywords: physically inspired; graph-theoretical; nearest descent; In-Tree; nearest ascent density
clustering

1. Introduction

Clustering, or cluster analysis, aims at discovering the natural groupings in a dataset [1].
Clustering methods have been widely used by scientists and engineers to analyze multi-
variate data generated in diverse fields, e.g., microarray gene expression samples in biology,
climate data in earth science and the massive documents or images on the internet [1].
Unlike supervised learning tasks such as classification which requires considerable labeled
samples, clustering is an unsupervised learning task in which no samples are labeled. Thus,
clustering is usually deemed as a more difficult task than classification [1]. Although thou-
sands of clustering methods have been proposed [1–3], clustering currently still remains
quite challenging [1,4].

For instance, as one of the classical partitioning-based clustering methods, K-means [5]
is regarded as the most popular and widely used clustering method [1], despite that it has
some widely known problems. For instance, K-means is sensitive initialization, requires
users to pre-specify the cluster number, and is unable to handle with the non-spherical
or unbalanced clusters. Although another popular partitioning-based clustering method,
Affinity Propagation (AP) [6], does not require users to specify the cluster number in
advance, it requires users to pre-define another non-trivial parameter (i.e., the so-called
“preference”), for which an unsuitable setting may lead to the over-partitioning problem.
Moreover, AP is not as easy and time-saving as K-means, and is not good at detecting
non-spherical clusters. Hierarchical clustering (HC) is another classical clustering type,
consisting of diverse linkage-based clustering methods (e.g., Single Linkage, Complete
Linkage, Average Linkage, etc.) [2]. Since HC clustering methods are generally simple,
intuitive, non-parametric, able to graphically show the cluster structure in a hierarchical
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tree known as a Dendrogram, they are widely used especially in biology [7], despite their
disadvantages such as the sensitivity to the noise and outlier (e.g., for Single Linkage) or the
cluster shape (e.g., for Complete Linkage and Average Linkage). Model-based clustering
is also a very representative clustering paradigm, in which the most popular method is
Gaussian Mixture Model (GMM) [8]. However, GMM is sensitive to initialization and
unable to handle with irregularly shaped clusters. Spectral clustering such as Normalized
cuts (Ncut) [9] and the method proposed by Ng, Jordan and Weiss (N-J-W) [10], and
Density-based clustering such as MeanShift [11–13] and DBSCAN [14] are also widely used,
due to their advantages in detecting non-spherical clusters. However, Ncut and N-J-W
involve time-consuming spectral decomposition [15], MeanShift involves time-consuming
iteration [16–19], and DBSCAN is sensitive to parameter setting and unable to detect
clusters of varying scales [20–22].

Proposed method. Physically inspired clustering also attracts wide interest, especially
the force-based clustering [23–26], which regards each sample as a particle in the physical
world and imitates the motion of the particles under certain forces. Because force-based
clustering methods do not involve any assumption on the clusters, it is possible for them
to handle different shapes of clusters. However, the force-based methods usually involve
many (≈4) user-defined parameters. To address the above drawback of the force-based
clustering, we propose a physically inspired clustering method, based on a density-like
feature, called the potential, which is obtained by assuming that each point is the center
of a local field whose amplitude decreases as the distance to the center increases (the
potential at each point is estimated as a linear superposition of the fields from all the
points). The movements of the particles are driven by the potential difference (rather than
the forces). Additionally, we approximate the moving trajectory of the particle by a zigzag
path consisting of a sequence of “short hops” on other particles. Actually, on this relay-like
trajectory, we only need to make effort to determine the first transfer point (also called the
parent node) by the rule called Nearest Descent (ND), which selects the nearest node in the
descending direction of potential as the parent node of each node. By linking each non-root
node to its parent node, all the samples in a dataset are organized into a directed graph
called the In-Tree. After cutting the inter-cluster edges in it, the initially constructed in-tree
will be divided into several small in-trees. Lastly, all the non-root nodes search on the graph
along the directions of the edges and they will cluster together at the root nodes of those
in-trees. The proposed method, Nearest Descent based Clustering (ND-C), contains only
one parameter involved in the potential estimation step, in contrast to around four in the
force-based clustering methods (note that in this study, we do not view the cluster number
as a parameter). Furthermore, the effectiveness of ND-C is demonstrated by extensive tests
on both synthetic and real-world datasets.

Advantages of the proposed method over some well-known clustering methods.
The proposed method has the following advantages compared with some well-known
clustering methods (mentioned previously):

1. Unlike K-means and GMM, the proposed method does not suffer from the initializa-
tion problem;

2. Unlike Single Linkage, the proposed method is not very sensitive to noise and outlier;

3. Unlike K-means, AP, Complete Linkage, and Average Linkage, the proposed method
is not very sensitive to the cluster shape;

4. Compared with MeanShift, Ncut, and N-J-W, the proposed method has lower time
complexity (being O(N2), where N denotes the number of samples in a dataset);

5. Compared with DBSCAN, the proposed method is not very sensitive to the parameter
setting and cluster scale;

6. Unlike K-means, GMM, and MeanShift, the proposed method is not limited to han-
dling numerical datasets.

Contribution of this study. Admittedly, the idea of the proposed clustering method
is not totally new. Similar ideas have previously appeared in another physically inspired
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clustering method [27] and two density-based clustering methods [28,29]. Nevertheless,
we also make the following contributions:

1. We reveal the nature of the common idea in determining the parent nodes, i.e., Nearest
Descent (from the perspective of physically inspired clustering) or Nearest Ascent
(from the perspective of density-based clustering), which helps make a direct connec-
tion with other gradient-descent-based (or gradient-ascent-based) clustering methods;

2. We find a more effective way to define the edge weight such that the proposed method
is more insensitive to data dimension, outlier, and cluster scale;

3. We give more sophisticated definition on the parent nodes and strictly prove that the
constructed graph is an in-tree (rather than a minimal spanning tree);

4. We propose a visualized strategy to validate the effectiveness of each automatic
edge cutting method, which may help increase the reliability of the clustering results
in practice.

5. We conduct extensive experiments to reveal the characteristics of the proposed method
with regard to the sensitivity to noise, outlier, cluster scales, parameters, and sam-
ple order.

6. We extensively compare the proposed method with the similar methods in [27–29] via
both theoretical analysis and experiments.

Therefore, this study can be viewed as a significant addition to the previous studies [27–29].
This paper is organized as follows. In Section 2, we introduce the related clustering

methods including physically inspired clustering methods and density-based clustering
methods. In Section 3, we make detailed descriptions of the proposed method, including
an intuitive illustration for its key idea (Section 3.1), basic implementation (Section 3.2), and
theoretical analysis (Section 3.3) including the features and properties of its key elements
such as Nearest Descent (in Section 3.3.1) and the In-Tree (in Section 3.3.2), as well as time
complexity analysis (in Section 3.3.3) and theoretical comparison with three most similar
methods (in Section 3.3.4). The experiments are shown in Section 4. The conclusion is
provided in Section 5.

Table 1 summarizes the main notations used in this study. Additionally, the following
notions are noteworthy: the inter-cluster edges are the edges whose two associated nodes
belong to different clusters, in contrast to the intra-cluster edges whose two associated
nodes belong to the same clusters.

Table 1. Summary of the main notations.

Notation Description

X Test dataset (= {xi}N
i=1);

X Index set of X (X = {1, 2, · · · , |X |});
| · | Size of a set;
N Size of dataset X ;
M Number of clusters
di,j Distance between samples xi and xj;
Pi Potential at node i;
fi Density at node i;
Ji Candidate parent node set;
Ii Parent node of node i;
−→
G IT An in-tree;
V(·) Node set of a graph;
E(·) Edge set of a graph;
−→e i,Ii Directed edge started from node i and ended at node Ii;
αi The magnitude of the potential at the start node of −→e i,Ii (∈ E(

−→
G IT));

Wi Distance (= di,Ii ) between the start and end nodes of −→e i,Ii (∈ E(
−→
G IT));
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Table 1. Cont.

Notation Description

κi
The number of nodes in the circle taking the start node of edge −→e i,Ii (∈ E(

−→
G IT))

as the center and the distance between the start and end nodes of −→e i,Ii as the radius;
Ci The i-th cluster;
C A partition of X ;

σ
Kernel bandwidth. In the experiments, we fixed σ to the θ percentile of all the
pair-wise distances.

2. Related Work

This section provides brief introduction to physically-inspired-based clustering
(Section 2.1), density-based clustering (Section 2.2), and hierarchical clustering (Section 2.3),
since they are closely related to the proposed method.

2.1. Physically Inspired Clustering

The following two types of physically inspired clustering methods are closely related
to the proposed method: force-based and potential-based clustering methods.

Force-based clustering can be, at least, traced back to the literature [30] in 1977. Since
then, many force-based methods have been proposed [23–26,31]. Like the proposed method,
most force-based clustering methods assume that (i) the data points have masses, alike
the particles in the physical world and (ii) the particle system undergoes a process of
natural dynamic evolution, through which the data points gradually become clustered at
last and then the members in each cluster are identified. However, unlike the proposed
method, most force-based clustering methods are based on the equations of Newtonian’s
law of gravity and Newtonian’s second Law of motion, such as the algorithms in the
literature [23–26]. Newtonian’s law of gravity describes the universal attractive force be-
tween any two particles i and j, written as F ∝ mimj/di,j, where mi and mj are the masses
of the two particles and di,j denotes the Euclidean distance between the two particles.
Note that for a particle in the particle system, it will be attracted by all the other particles
and thus the resultant force should be considered. Newtonian’s second Law of motion
reveals how a particle will move if a force is exerted on it, which can be symbolically
written as F = m · a, where m is the mass of the particle, a the acceleration, and F the force.
Based on the acceleration, the displacement, s, can be determined due to the relationship
a = d2(s)/dt2. In addition, there are also methods such as the two gravitational algorithms
in the literature [31], which use non-dynamic methods to cluster the data points based on
features of the local resultant forces.

A common problem for Newtonian’s force-based methods, whether dynamic or non-
dynamic, is that they involve a non-trivial number of parameters, as many as four in the
literature [23,24,31].

Unlike force-based clustering methods, the potential-based clustering methods [27,32] first
associate with each data point a density-like feature, called the potential, based on which
the clusters are then obtained using different strategies. Specifically, in [32], Lu and Wan
proposed a potential-based clustering method, called clustering by sorting potential values
(CSPV), in which the potential is estimated by PCSPV

i = ∑i φ(di,j), where φ(di,j) = − 1
di,j

if di,j ≥ η1 (η1 is a parameter); otherwise, φ(di,j) = − 1
η1

. Then, CSPV visits each node in
ascending order of the potential. For each visited node i, CSPV first finds its parent node,
which is defined as the nearest node among all the visited nodes; if the distance between
node i and its parent node is larger than a threshold η2 (another parameter), then node
i is a cluster center; otherwise, node i is assigned to the same cluster as its parent node.
After visiting all the nodes once, CSPV can directly output the cluster labels of all the nodes.
In [27], Lu and Wan proposed another potential-based hierarchical agglomerative (PHA)
clustering method, which follows the same way as CSPV to estimate the potential at each
node (i.e., PPHA

i = PCSPV
i , ∀i ∈ X). However, unlike CSPV, PHA first seeks a hierarchical
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clustering result. Specifically, after computing the potentials, PHA finds the parent node
IPHA
i of each node i, where

IPHA
i = arg min

j∈X\i:PPHA
j ≤PPHA

i

di,j. (1)

By linking each parent node IPHA
i to each node i, an edge weighted tree is built.

Then PHA transforms the edge weighted tree to a Dendrogram, a data structure that is
widely used by the classical linkage-based hierarchical clustering methods [2,4]. The flat
partitioning clustering result (if needed) can be easily obtained by cutting the Dendrogram.
The proposed method is very similar to PHA; we will give detailed comparison with
it in Section 3.3.4.

In addition, although Ruta and Gabrys [33] proposed a dynamic clustering procedure
based on the potential field, it uses the concept of force again when considering the
movement of each data point, where the force at each point is defined based on the gradient
of the potential field.

2.2. Density-Based Clustering

Density clustering is built on the following assumptions [22,34]: the data points are
sampled from a density function. Many density-based clustering methods have been pro-
posed. Here, we divide them into two major categories: the density-peak-based clustering
methods (e.g., MeanShift [11–13] and Decision Graph [29]) and the density-border-based
clustering methods (e.g., DBSCAN [14]).

Without loss of generality, let us consider a given density function of a continuous
argument x with its domain denoted as the set Ψ. Then density-based clustering can be
simply viewed as a task of separating the set Ψ. For the density-peak-based clustering
(first class), a cluster is defined as a maximal connected sub-set of the data points that
would converge at the same density peak if they are forced to climb on the surface of the
density function. For the density-border-based clustering (2nd class), a cluster is defined
as a maximal connected sub-set of the dataset Ψ for which the corresponding densities are
greater than a threshold. Note that (1) since the proposed method is more related to the
density-peak-based clustering, in the following, we will only introduce the methods in this
class, whereas for completeness, we have also introduced some representative methods in
the 2nd class as well (attached in Appendix A); (2) for simplicity, in the following, we use
fi (or f (x)) to denote the density at node i (or any point x), but we ignore how fi (or f (x))
is computed by different methods.

Density-peak-based clustering. The most intuitive and straight-forward idea in this
category is to first estimate an explicit density function f (x) underlying the dataset X via
kernel density estimation, and then let each point i climb (or ascend) along the direction of
the gradient of the density function using the following numerical iteration

x(n + 1) = x(n) + λ · ∇ f (x(n))
||∇ f (x(n))|| , (2)

where λ defines the shifting step length, x(n) is the current position, x(n + 1) is the
next position, ∇ f (x(n)) denotes the gradient at the position x(n) and || · || computes the
Euclidean norm of a vector in the Euclidean space. This iteration process starts at x(0) = xi
and is expected to stop at a certain optimum of the density function f (x) where the gradient
is zero. At last, the points belonging to the same clusters will converge at the same density-
peak points. The idea of gradient-ascent-based clustering (GA-C) can be traced back to
the literature in 1975 [13]. Despite being theoretically reasonable, clustering via the above
gradient ascent has, at least, the following problems:

(P1) Sensitive to the parameter (i.e., the step length) in the iteration;

(P2) Involving time-consuming iteration (the time-complexity is O(N2T), where N denotes
the size of the dataset and T the number of numerical iterations);
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(P3) Only applicable to numerical datasets (this is due to the nature of the numerical
iteration of the method);

(P4) Not always guaranteed to converge. (The iteration may oscillate around the optimum,
a well-known problem for gradient ascent.)

(P5) Sensitive to the result of density estimation or the kernel bandwidth (an under-
smoothed density surface could lead to the over-partitioned clustering result, while an
over-smoothed density surface could lead to the under-partitioned clustering result).

Some attempts have been made to solve these problems. For example, DENCLUE [35]
solves problem P2 by combining the above gradient ascent and an efficient data structure,
but at the cost of introducing extra parameters.

MeanShift [11–13], a very popular method, derives a variant of the gradient ascent.
MeanShift does not involve the fixed step length parameter λ (i.e., the problem P1 is
solved). Instead, MeanShift is an adaptive steepest ascent in which the shifting step length
can change adaptively with the local density distributions of dataset [11,12]. Moreover,
MeanShift can guarantee to converge under the condition that the kernel is chosen appropri-
ately [12] (i.e., the problem P4 is solved). MeanShift does not change the nature of numerical
iteration of gradient ascent and it is, in effect, equivalent to gradient ascent [11,12]. For
these reasons, MeanShift still suffers from the other problems of gradient ascent; for in-
stance, MeanShift has the same time complexity as GA-C and is limited to handling the
numerical datasets.

Besides MeanShift, a graph-theoretical-based gradient ascent (GGA) has also been
proposed [36]. For GGA, each sample xi ∈ X = {xi|i = 1, · · · , N} is regarded as a node
i ∈ X = {1, 2, · · · , N}. GGA first defines the parent node (denoted as IGGA

i ) for each node
i approximately along the direction of gradient as follows (GGA approximates the gradient

at each point i by max
j∈ηi

σ

f j− fi
dj,i

),

IGGA
i = arg max

j:j∈ηi
ξ

f j − fi

dj,i
, (3)

where ηi
σ

denotes the neighbors of point i within radius ξ, dj,i denotes the distance between
points j and i, and fi denotes the density at nodes i. Then, GGA constructs a directed
graph by linking each node to its parent node, and searches the root nodes (approximately
the density-peak points) on the constructed graph consisting of several unconnected sub-
graphs. Each sub-graph actually represents a cluster. The time complexity of GGA is lower
(O(N2)) than that of GA-C (note that using fast algorithms to determine the neighbors,
the time complexity of GGA could be lower than O(N2)). Since each point in the dataset
is viewed as a node in the graph, GGA is not limited to handle the numerical datasets.
However, despite avoiding the iteration step length λ, GGA brings in another parameter
σ. Furthermore, GGA requires non-trivial effort to avoid cycles in the constructed graph;
otherwise, the search on the graph cannot converge at a certain root node.

Vedaldi and Soatto [28] proposed another graph-theoretical-based fast variant of
MeanShift, called QuickShift. Unlike GGA, QuickShift first organizes all the points into a
tree by linking each point to its parent node, where the parent node IQS

i at any node i is
defined via a non-gradient-based way as follows:

IQS
i = arg min

j: f j> fi
di,j. (4)

After removing the edges with the edge weights higher than a threshold, the initially
constructed tree is divided into a forest; the node set of each component of this forest is
regarded as a cluster. Because of not involving numerical iteration, QuickShift is not limited
to handle the numerical datasets and it has lower (O(N2)) time complexity than GA-C as
well. Since QuickShift does not directly seek a flat partitioning of the dataset, the problem
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P4 is also avoided. Note that, since the start nodes of the removed edges are usually the
density-peak points, the edge-cutting process of QuickShift can be also viewed as a process
to indirectly determine the density-peak points.

In 2014, Rodriguez and Laio (RL) [29] proposed another simple yet effective non-
gradient density-peak-based clustering method, based on the following discovery: different
from the non-density-peak points, the density-peak points not only have higher densities
but also have large distance from the points with higher densities [29]. Accordingly, they
first associate each point i with two variables (or features), the density fi and the distance
δi from node i to its parent node (implicitly defined as the nearest node among the nodes
with higher densities than node i), written as:

δi = min
j: f j> fi

di,j. (5)

Particularly, if point i has the globally highest density, δi = max
j∈X

di,j. Then, based on

the above new representation of each point, all data points are plotted in a 2D scatter plot,
called the Decision Graph, where the density-peak points pop out as outliers and can thus be
interactively determined by users. RL’s method shares almost all the merits of QuickShift.
However, RL’s method is more insensitive to outlier and the cluster scales than QuickShift,
since RL’s method determines the density-peak points based on both the distance and
density variables (in contrast, QuickShift indirectly determines the density-peak points
only based on the distance variable).

Although the proposed method is a potential-based clustering method, it has a close
relationship with QuickShift and RL’s method. We will give a detailed comparison of them
in Section 3.3.4.

2.3. Hierarchical Clustering

HC contains two major branches [1–3]: the Agglomerative HC (AHC) and the Divisive
HC (DHC). AHC first regards each sample as a cluster and then merges the clusters layer
by layer so as to form a cluster hierarchy, while DHC first regards the whole dataset as a
cluster and recursively divides each cluster into smaller clusters. Compared with DHC,
AHC is more popular and more closely related to the proposed method.

Among all the AHC methods, the classical linkage-based AHC methods (e.g., Single
Linage, Complete Linkage, Average Linkage) could be the most popular ones [2,37] and
they are most similar to the proposed method as well. For the classical linkage-based AHC
methods, each layer only merges the two closest clusters. Thus, the key to the merging
procedure is how to define the cluster distance (denoted as dist(Ci, Cj)) between each pair of
clusters Ci and Cj in each layer. Different methods have different rules. For Single Linkage,
dist(Ci, Cj) = minu∈Ci ,v∈Cj du,v; for Complete Linkage, dist(Ci, Cj) = maxu∈Ci ,v∈Cj du,v; for

Average Linkage, dist(Ci, Cj) =
1

|Ci |·|Cj | ∑u∈Ci ∑v∈Cj
du,v. Usually, the merging procedure is

presented by a visualized plot called the Dendrogram, in which each leaf node represents a
sample and each merging operation corresponds to a “∩”-like curved line. The height of
the “∩”-like curved line is defined by the distance between the merged clusters. Although
the linkage-based HC methods are parameter-free, they have non-trivial limitations. For
instance, Single Linkage is sensitive to noise and outliers; Complete Linkage and Average
Linage are sensitive to cluster shape; and for most linkage-based clustering methods, the
straightforward implementations require O(N3) time complexity.

Although the proposed method also seeks to make the dataset organized in the first
stage, the samples are organized into an in-tree, in which each node represents a sample.
For the proposed method, the objects of each merging are the samples rather than clusters,
based on distance and potential features rather than distance feature only. Consequently, the
proposed method has lower time complexity than most linkage-based clustering methods.
Compared with Single Linkage, the proposed method is not very sensitive to noise and
outliers; compared with Complete Linkage and Average Linkage, the proposed method
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is not very sensitive to cluster shape. Compared with the Dendrogram, the in-tree graph
structure also makes it more flexible for edge cutting as well; for instance, (1) the edge
weights can be defined in different ways even after the in-tree is constructed; and (2) there
are more features that can be relied on to determine the undesired edges.

3. Method

In this section, we first introduce the key idea of the proposed clustering method
in Section 3.1. Then, we introduce the basic implementation of the proposed method in
Section 3.2, followed by the theoretical analysis in Section 3.3. The theoretical analysis
includes the analysis of the key elements of the propose method such as Nearest Descent
(in Section 3.3.1) and the In-Tree (in Section 3.3.2), as well as time complexity analysis
(in Section 3.3.3) and detailed theoretical comparison with the most similar methods
(in Section 3.3.4).

3.1. Overview of the Proposed Method

The proposed clustering method starts from an assumption: what if data points had
mass? They would evolve like particles in the physical world. Take the two-dimensional
(2D) data points for instance (Figure 1a) and imagine the 2D space as a horizontally stretched
rubber sheet (It is actually a popular illustration of Einstein’s General Relativity, the core
of which is summarized, by John Wheeler, as “matter tells space-time how to curve and
space-time tells matter how to move”; see also http://einstein.stanford.edu/SPACETIME/
spacetime2, accessed on 28 March 2014). Intuitively, with the data points put on it, the
rubber sheet would be curved downward (Figure 1b) and the points in the centroids of
clusters would have lower potentials. This would in turn trigger the points to move in the
descending direction of potential and gather at the locations of locally lowest potentials in
the end. The cluster members can then be identified.

In this paper, we aim to propose a clustering method by following the above natural
evolution and aggregation process of the point system. To this end, we need to answer two
basic questions: (i) how to estimate the potential and (ii) how to find the moving trajectories
of the points. As for the 1st question, we assume that each point is the center of a local
field whose amplitude decreases as the distance to the center increases and that the final
potential at each point is estimated as a linear superposition of the fields from all the points.
As for the 2nd question, inspired by literature [38], we approximate each trajectory by a
zigzag path consisting of a sequence of ”short hops” on some transfer points in this point
system. For each hop, the nearest point in the descending direction of potential is selected
as the transfer point.

Actually, on this relay-like trajectory, we only need to make effort to determine the first
transfer point (also called the parent node) for each point. The reason is that once linking
each point to its first transfer point by a directed line (also called the edge), one can obtain
an attractive network (or graph), called the In-Tree, in which the discrete data points are
efficiently organized (Figure 1c). This In-Tree can then serve as a map, on which the next
hops (or the next transfer points) can be easily determined by following the directions of
the edges (one can view this graph-based relay based on other points of the group as a sort
of Swarm Intelligence).

One problem for this In-Tree is that there exist some inter-cluster edges (i.e., the red
edges between clusters in Figure 1d) that require to be removed before conducting the rest
steps. Pleasingly, those inter-cluster edges are quite distinguishable; for instance, they are
generally much longer than the intra-cluster edges. For this reason, if we define the weight
of each directed edge as the distance between its start and end nodes, then we can simply
regard the m longest edges as the inter-cluster edges, where m can be determined either
based on the pre-specified cluster number or the plot in which all the edge lengths are
ranked in decreasing order (Figure 1e). In Section 3.2, we will show other more effective
edge-cutting methods. After removing the determined inter-cluster edges, the initial graph
will be divided into several sub-graphs (Figure 1f), each containing a special node called

http://einstein.stanford.edu/SPACETIME/spacetime2,
http://einstein.stanford.edu/SPACETIME/spacetime2,
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the root node (corresponding to the point with the lowest potential of one cluster). Within
each sub-graph, all the sample points will reach their root node by successively hopping
along the edge directions (Figure 1g,h show two intermediate results). Lastly, the samples
that are associated with the same root nodes will be assigned into the same clusters (Figure
1i).
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Figure 1. The idea of the proposed clustering method. (a) A synthetic dataset from literature [39].
(b) An illustration for the potential surface. As the isopotential lines vary from red to blue, the
potentials in the corresponding areas become lower and lower. (c) The constructed In-Tree. The
colors on nodes denote the potentials corresponding to the cases in (b). (d) The constructed in-tree,
in which the inter-cluster edges are colored in red while the intra-cluster edges are in black. Note
that the graph structures in (c,d) are the same. (e) The plot in which the lengths of all the edges
in the In-Tree are arranged in decreasing order. (f) The result after removing the undesired edges
(i.e., the inter-cluster edges). The nodes in red are the root nodes of sub-graphs. (g) The result after
the first round of parallel searching of the root node for each non-root node. (h) The results after the
last round of parallel searching of the root nodes. All the non-root nodes are directly linked to their
root nodes. (i) The clustering result. The samples in the same colors are assigned to the same clusters.
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3.2. Basic Implementation

Let X = {xi|i = 1, · · · , N} be a dataset of N sample points and X = {i|i = 1, · · · , N}
be the corresponding data indexes. Each point xi can be either a real-valued or character-
typed vector. The proposed method contains 3 stages and 10 steps (stage I: steps 1∼5; stage
II: steps 6∼8: stage III: 9∼10), as follows:

• Stage I : make the dataset organized into the In-Tree structure. This stage contains
the following steps:

– Step 1, compute the distance between each pair of points i, j ∈ X:

di,j = d(xi, xj). (6)

where d(xi, xj) denotes the distance between sample xi and xj (in this paper, the
Euclidean distance is used, for which d(xi, xj) = ||xi − xj||2).

– Step 2, compute the potential at each point i ∈ X:

Pi = −
N

∑
j=1

e−
di,j
σ , (7)

where σ is a parameter, usually called the kernel bandwidth. It is noteworthy

that the magnitude of Pi, i.e.,
N
∑

j=1
e−

di,j
σ , can be also viewed as the density at node i

estimated via the exponential kernel function.
– Step 3, determine all the candidate parent node set of each point i ∈ X:

Ji = {j|Pj < Pi, j ∈ X} ∪ {j|Pj = Pi, j < i, j ∈ X}. (8)

– Step 4, determine the parent node Ii of each point i ∈ X:

Ii =

{
min(arg min

j∈Ji
di,j), i f Ji 6= ∅;

i, otherwise.
(9)

– Step 5, build a directed graph, denoted as
−→
G IT , for which the node set V(

−→
G IT) =

X and the edge set E(
−→
G IT) = {−→e i,Ii |Ji 6= ∅, i ∈ X}. In Section 3.3.2, we will

demonstrate that
−→
G IT is an In-Tree, in which each point i has one and only one

directed edge started from it and there is a particular node in
−→
G IT , called the root

node (denoted as r), for which Jr = ∅. Note that (1) the min operation outside
the parentheses of Equation (9) serves to guarantee the uniqueness of Ii; (2) the
second term (i.e., {j|Pj = Pi, j < i, j ∈ X}) of Ji serves to select the nodes with
smaller indexes among the nodes with same potential as node i. However, if
there is no such node with the same potential as node i (this case is very common
in practice), Ji is actually determined by {j|Pj < Pi, j ∈ X}.

• Stage II: cut the inter-cluster edges. This stage contains the following steps:

– Step 6, define the edge weight. First, we have the following observation: each

edge ~ei,Ii in
−→
G IT is associated with the following three features Wi, αi, and

κi, where

* Wi denotes the distance between the start and end nodes of −→e i,Ii (i.e., Wi =
di,Ii );

* αi (= |Pi|) denotes the magnitude of the potential at the start node of −→e i,Ii
(accordingly, αi can be viewed as the density at the start node of −→e i,Ii );
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* κi denotes the number of points in the circle taking the start point of edge
−→e i,Ii as the center and the distance between the start and end nodes of −→e i,Ii
as the radius.

Since the inter-cluster edges are usually much longer than the intra-cluster edges,
the distance Wi could be used as the weight of the edge −→e i,Ii to determine
the inter-cluster edges. However, such Wi-based cutting is quite sensitive to
outliers and cluster scales (we will demonstrate this in the experiments). To
solve the above problem, we also propose other approaches to define the edge
weight. Specifically, the weight of the edge −→e i,Ii can be also defined as one of the
following variables Wi × αi and κi.

– Step 7, determine the inter-cluster edges. After defining the edge weight (by
either Wi, Wi × αi, or κi), we then regard the M− 1 edges with the largest edge
weights as the inter-cluster edges, where M is the number of clusters. We will
compare the above three different edge-weight definition methods in the exper-
iments. Therefore, if the cluster number is pre-defined, the inter-cluster edges
can be determined automatically. Otherwise, one can determine the inter-cluster
edges interactively following the Decision-Graph-based strategy proposed by
Rodriguez and Laio [29]. Specifically, one can represent each directed edge by
two features such as Wi and αi. Then, all the edges can be displayed in a 2D
scatter plot (Figure 2a). Since only the inter-cluster edges have large values on
both Wi and αi, they will pop out in the scatter plot and thus can be interactively
determined. Actually, similar results can be obtained if replacing αi by βi = |PIi |
(Figure 2b) or γi = (|Pi|+ |PIi |)/2 (Figure 2c). Nevertheless, it is noteworthy that,
in the experiments, we will not use the Decision-Graph-based cutting method to
determine the inter-cluster edges, since sometimes it is hard for users to make
a decision when the Decision Graph does not show very clear pop-out points.
Instead, we will use the Decision Graph (referring to the 2D scatter plot based on
features W and α) to validate the effectiveness of the automatic cutting methods
(we will detail this in Section 4).
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Figure 2. Illustration of different Decision-graph-based methods for determining the inter-cluster
edges. (a–c) Different types of scatter-plot-based cutting (Type I: a; Type II: b; Type III: c). The pop-out
points within the red rectangles correspond to the inter-cluster edges.

– Step 8, remove the inter-cluster edges. Assume that π1, π2, · · · , πM−1 are the
indexes of the start nodes of the M − 1 determined inter-cluster edges. Then,
the inter-cluster edges are removed by setting Ii = i (∀i ∈ {π1, π2, · · · , πM−1}).
Each node i ∈ {π1, π2, · · · , πM−1} will become a new root node of the generated
graph.

• Stage III: make cluster assignments. This stage contains the following steps:
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– Step 9, update the parent nodes. In each round of updating, the parent node of

each node i (∈ X) is updated in this way I(t+1)
i ← I(t)h , where I(t)i denotes the

parent node of node i in the t-th round of updating (I(0)i = Ii), and h = I(t)i . The
updating stops in a certain round when the parent nodes of all nodes no longer
change, which means each node is directly linked to its root node (i.e., at this
moment, Ii stores the index of the root node that node i reaches), as shown in
Figure 1h.

– Step 10, obtain the clustering result (a partition of X). Let πM = r, where r is the

root node of
−→
G IT . The original dataset X is divided into M clusters as follows:

C = {Cj|j = 1, · · · , M}, where Cj = {xi|Ii = πj, i ∈ X} (∀j ∈ {1, 2, · · · , M}).

The pseudocode of the proposed method is shown in Algorithm 1.

Algorithm 1 ND-C

Require: X : test dataset; σ: kernel bandwidth; M: cluster number;
Ensure: C; // a partition of X containing M clusters;

1: let X = {1, 2, · · · , |X |} be the index set of all the samples in X ;
2: // Step 1, compute the pair-wise distances.
3: ∀i, j ∈ X, determine the distance di,j by Equation ( 6).
4: // Step 2, compute the potentials.
5: ∀i ∈ X, determine the potential Pi by Equation (7). // σ is involved in this step;
6: // Step 3, determine the candidate parent node set.
7: ∀i ∈ X, determine the candidate parent node set Ji by Equation (8).
8: // Step 4, determine the parent nodes.
9: ∀i ∈ X, determine the parent node Ii by Equation (9).

10: // Step 5, build a directed graph.
11: Build

−→
G IT for which V(

−→
G IT) = X and E(

−→
G IT) = {−→e i,Ii |Ji 6= ∅, i ∈ X}.

12: Let r be the root node of
−→
G IT .

13: // Step 6, define the edge weight.
14: ∀~ei,Ii ∈ E(

−→
G IT), define its weight by either Wi, Wi × αi, or κi.

15: // Step 7, determine the inter-cluster edges.
16: Regard the M − 1 edges in

−→
G IT with the largest weights as the inter-cluster edges,

where M is the number of clusters.
17: // Step 8, remove the inter-cluster edges.
18: Let π1, π2, · · · , πM−1 be the indexes of the start nodes of the M− 1 determined inter-

cluster edges.
19: Set Ii = i (∀i ∈ {π1, π2, · · · , πM−1}).
20: // Step 9, update the parent nodes.
21: Initialize I(0)i = Ii;
22: while I(t+1) 6= I(t) do
23: for i ∈ X do
24: Set h = I(t)i ;

25: Set I(t+1)
i = I(t)h ;

26: end for
27: end while
28: // Step 10, obtain the clustering result.
29: Set πM = r.
30: Obtain the partition of dataset X : C = {Cj|j = 1, · · · , M}, where Cj = {xi|Ii = πj, i ∈

X} (∀j ∈ {1, 2, · · · , M}) and Ii is the parent node of i determined by step 9.

In the following, we also provide an example to illustrate the result of each step of the
proposed method on a 1-dimensional dataset as follows: X = {xi|i ∈ X}, where x1 = 1,
x2 = 2, x3 = 3, x4 = 4, x5 = 7, x6 = 8, x7 = 9 and X = {1, 2, 3, 4, 5, 6, 7}. This dataset can
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be seen in Figure 3. We set the cluster number M = 2 and the kernel bandwidth σ = 1. The
main results of each step of the proposed method are listed as follows.

• Step 1: di,j denotes the (i, j)-entry of the following matrix:

0 1 2 3 6 7 8
1 0 1 2 5 6 7
2 1 0 1 4 5 6
3 2 1 0 3 4 5
6 5 4 3 0 1 2
7 6 5 4 1 0 1
8 7 6 5 2 1 0


.

• Step 2: P1 = −1.56, P2 = −1.88, P3 = −1.90, P4 = −1.63, P5 = −1.58, P6 = −1.76,
and P7 = −1.51;

• Step 3:

– J1 = {2, 3, 4, 5, 6};
– J2 = {3};
– J3 = ∅;
– J4 = {2, 3, 6};
– J5 = {2, 3, 4, 6};
– J6 = {2, 3};
– J7 = {1, 2, 3, 4, 5, 6};

• Step 4: I1 = 2, I2 = 3, I3 = 3, I4 = 3, I5 = 6, I6 = 3, and I7 = 6;

• Step 5: for
−→
G IT ,

– V(
−→
G IT) = X = {1, 2, 3, 4, 5, 6, 7};

– E(
−→
G IT) = {−→e 1,2,−→e 2,3,−→e 4,3,−→e 5,6,−→e 6,3,−→e 7,6};

– r = 3.

• Step 6:

– W1 = 1, W2 = 1, W4 = 1, W5 = 1, W6 = 5, and W7 = 1;
– α1 = 1.56, α2 = 1.88, α4 = 1.63, α5 = 1.58, α6 = 1.76, and α7 = 1.51;
– κ1 = 1, κ2 = 1, κ4 = 1, κ5 = 1, κ6 = 4, and κ7 = 1;

• Step 7: π1 = 6; note that for the test data here, no matter which feature (Wi, Wi × αi,

or κi) was used to define the weight of each edge −→e i,Ii ∈ E(
−→
G IT), π1 = 6.

• Step 8: I1 = 2, I2 = 3, I3 = 3, I4 = 3, I5 = 6, I6 = 6, and I7 = 6;

• Step 9: I1 = 3, I2 = 3, I3 = 3, I4 = 3, I5 = 6, I6 = 6, and I7 = 6;

• Step 10: π2 = r = 3, C1 = {1, 2, 3, 4}, C2 = {5, 6, 7}, and C = {C1, C2}.

1 2 3 4 5 6 7 8 9
x

Figure 3. A 1-dimensional test dataset. Each point represents a 1-dimensional sample.

3.3. Analysis

This section contains the analysis of the two key elements involved in the proposed
method, i.e., Nearest Descent (Section 3.3.1) and the In-Tree (Section 3.3.2), as well as the
analysis of the time complexity of the proposed method (Section 3.3.3) and the relationship
between the proposed method and three most similar methods (Section 3.3.4).
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3.3.1. Nearest Descent

The second term in Equation (8) serves to (i) guarantee the uniqueness of the parent
node and (ii) avoid the unexpected “singleton cluster phenomenon” in some special cir-
cumstances (see details in Appendix B). If we simply define the candidate parent node set as
Ji = {i|Pj < Pi} by ignoring the second term in its original definition given by Equation (8),
a more explicit understanding is obtained toward the nature of parent node, i.e., for each
point, its parent node is the nearest one among the nodes in the descent direction of poten-
tial. Furthermore, we name this parent node selection method simply as Nearest Descent
(ND) (in contrast to the classical method of Gradient Descent or Steepest Descent), where

• “Nearest” specifies the local choice (or criterion).

• “Descent” specifies the global direction (i.e., in the descending direction of potential),
which serves as a constraint to the local choice.

Thus, ND is actually a constrained proximity rule, different from the classical prox-
imity rules such as k-Nearest-Neighbor (k-NN) and ε-Nearest-Neighbor (ε-NN) in which
the neighbors (or the parent nodes) of any node i are simply defined as the k nearest
nodes to node i (i.e., k-NN) and the nodes within a radius ε centered at node i (i.e., ε-NN),
respectively. Both k-NN and ε-NN can be viewed as non-constrained proximity criterions.
In addition, ND abandons the term Gradient, which makes ND essentially different from
the Gradient Descent (GD).

Moreover, since ND regards the samples as nodes in Graph Theory, the proposed
clustering method is blind to the underlying features of the samples. Consequently,
though inspired from the physical world, ND turns out to be a generalization of the
physical world, applicable to the datasets in any high-dimensional space irrespective of
whether it is Euclidean space or not. This allows the proposed clustering algorithm to have
wide applications.

3.3.2. In-Tree

In Graph Theory [40], as opposed to the Out-Tree, an In-Tree, also called in-arborescence
or in-branching, is a digraph that meets the following conditions:

(a) Only one node has outdegree 0;

(b) Any other node has outdegree 1;

(c) There is no cycle in it;

(d) It is a connected graph.

Accordingly, we have the following result (see the proof in Appendix ??).

Proposition 1. The physically inspired graph
−→
G IT constructed in Stage I is an In-Tree.

In Figure 4, we compare this physically inspired In-Tree with other popular graphs
like the k-nearest-neighbor graph (k-NNG) and Minimal Spanning Tree (MST) on the same
dataset. Both k-NNG and MST are widely used in graph-based clustering [41–50]. From
Figure 4, we can see the following two features:

1. Like MST and k-NNG, this physically inspired In-Tree follows well the cluster struc-
ture in the dataset.

2. Although there are some inter-cluster edges in this physically inspired In-Tree, those
edges are quite distinguishable, in contrast to the cases in MST and k-NNG.

The 2nd feature makes it possible to easily and reliably determine those inter-cluster
edges by diverse methods. The 1st feature guarantees the meaningfulness of the
discovered clusters.

Besides the above specialties of this physically inspired In-Tree, the In-Tree graph
structure itself has very good properties [40], which facilitate the reliability and efficiency
of clustering:
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1. Removing any edge in the In-Tree will divide the In-Tree into two sub-graphs, each
still being an In-Tree.

2. There is one and only one directed path between each non-root node and the root node.
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Figure 4. Comparison between the physically inspired In-Tree (left), k-NNG (middle) and MST
(right). Unlike the physically inspired In-Tree whose inter-cluster edges (in red) are relatively longer
than the rest inter-cluster edges, both k-NNG and MST contain very short inter-cluster edges (see the
local areas circled by the red boxes).

The 1st property guarantees that, after removing M− 1 inter-cluster edges, there will
be M sub-graphs and thus the original dataset X will be divided into M non-empty clusters
C1, C2, · · · , CM, with

⋃M
i=1 Ci = X; Ci ∩ Cj = ∅, ∀i, j ∈ {1, · · · , M}, i 6= j.

The 2nd property guarantees that when searching along the directed edges on the
generated sub-graphs, each non-root node is sure to reach its root node in the same sub-
graph in finite steps. Note that this search on the graph is in essence different from the
numerical iteration in the methods such as MeanShift.

3.3.3. Time Complexity

Steps 1∼3 require O(N2) time. Steps 4∼6 require O(N) time. Since step 7 requires
to sort the weights of N − 1 edges, the time complexity of this step is O(N log N). Step
8 requires O(M) time. For step 9, since each time of updating the parent nodes of all the
nodes means that the length of path from each leaf node to the reached root node in the
previous graph is halved, the time complexity of this step is O(N log H) = O(N log N),
where H is the length of the longest path in

−→
G IT . The time complexity of step 10 is O(N).

Thus, the total time complexity of the proposed method is O(N2).

3.3.4. Comparison with Three Similar Clustering Methods

Admittedly, the proposed method is very similar to the following three clustering
methods: PHA [27], Quickshift [28], and RL’s method [29]. We briefly introduced these
three similar methods in Section 2. Based on the above detailed introduction of the proposed
method, here we will make detailed comparison between the proposed method and the
above similar methods.

Comparison with PHA. The proposed clustering method is also a potential-based
graph-theoretical hierarchical clustering method such that the whole procedure of the
proposed method is very similar to that of PHA. However, unlike PHA, (1) we define the
potential based on the exponential kernel function (we will show the advantage of this
change in the experiments); (2) we give more sophisticated definition for the parent node
and we link each node i to its parent node (we also prove that the constructed graph is an
in-tree); (3) besides using the Euclidean distance between each node and its parent node to
define the edge weight, we also use other more effective ways to define the edges; and (4)
we use a scatter-plot-based visualization method to validate the effectiveness of the edge
cutting (we will demonstrate its effectiveness in the experiments).

Comparison with QuickShift and RL’s method. The relationship between the pro-
posed method and density clustering (especially QuickShift and RL’s method) is due to the
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close relationship between the potential and density. Specifically, the magnitude of Pi, i.e., αi,
can be viewed as the density of node i estimated based on the exponential kernel function.
In addition Ji can be equivalently written as Ji = {j|αi < αj, j ∈ X} ∪ {j|αj = αi and j < i}.
Accordingly, the parent node selection rule can be viewed as the method of Nearest As-
cent in the density perspective; here Nearest Ascent means that each point jumps to the
nearest point in the ascending direction of density, or simply speaking, each point as-
cends to the nearest point. Thus, the proposed method can be viewed as a non-gradient
density-peak-based clustering method using Nearest Ascent (NA).

If we let fi = αi (for both QuickShift and RL’s method), we will find that NA is very
similar to QuickShift and RL’s method in terms of parent node definition, as compared in Ta-
ble 2. Note that for RL’s method, the parent node IRL

i of each node i is not explicitly defined;
the expression of IRL

i in Table 2 is derived from the definition of δi in Equation (5). Actually,
RL’s method does not explicitly construct a graph, either. However, the density-peak points
can be viewed as the start nodes of the inter-cluster edges in the graph constructed by the
proposed method. In other words, RL’s method is in the perspective of nodes, while our
method and QuickShift are in the perspective of edges. From Table 2, we can see that the
difference among QuickShift, RL’s method, and NA on the parent node definition is very
small (mainly involving the consideration of some special cases), which has a very limited
influence on the ultimate clustering results, as revealed by the experimental results.

Table 2. Comparison between QuickShift, RL’s method, and NA on the definition for the parent
node Ii. JQS

i = JRL
i = {j|αi < αj, j ∈ X}, JNA

i = {j|αi < αj, j ∈ X} ∪ {j|αj = αi, j < i, j ∈ X}, and

αi =
N
∑

j=1
e−

di,j
σ .

Method Parent Node (Ii)

QuickShift IQS
i =

{
arg minj∈JQS

i
di,j, if JQS

i 6= ∅;

Undefined, if JQS
i = ∅.

RL IRL
i =

{
arg minj∈JRL

i
di,j, if JRL

i 6= ∅;

arg maxj∈X di,j, if JRL
i = ∅.

NA INA
i =

{
min(arg minj∈JNA

i
di,j), if JNA

i 6= ∅;

i, if JNA
i = ∅.

Compared with QuickShift, the contributions of this paper are as follows:

1. We find a more effective feature (i.e., feature κ) to define the edge weight such that the
proposed method is more insensitive to the data dimension, outlier, and cluster scale.

2. We give more sophisticated definition on the parent nodes and strictly prove the
constructed graph is an in-tree (rather than a minimal spanning tree).

3. We combine the proposed method with RL’s method, using RL’s Decision Graph to
validate the effectiveness of each automatic edge cutting method.

Compared with RL’s method, the contributions of this paper are as follows:

1. We reveal the nature of the common idea, i.e., Nearest Ascent (from the perspective of
density) or Nearest Descent (from the perspective of potential), which helps make a
direct connection and significant comparison with the classical ones such as gradient-
ascent-based density clustering methods;

2. We introduce the graph structure, In-Tree, into the clustering field;

3. We present a more general framework (i.e., first estimate the potential, then construct
the In-Tree, and lastly remove the inter-cluster edges in the In-Tree), in which RL’s
method can be viewed as a scatter-plot-based method to determine the
inter-cluster edges.
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Actually, a similar clustering idea can be also found in the literature [51], where the
clustering method, called Nearest-better clustering, was proposed to enable niching on
the multimodal fitness landscapes rather than to solve the general clustering problems.
Consequently, the effectiveness of this Nearest-better clustering method is not fully revealed
in literature [51] and as a result, it receives little attention. Moreover, the literature [51]
claims that the constructed graph is a minimal spanning tree, which is not accurate as
revealed Figure 4 by this study.

4. Experiments

First in Section 4.1, we compare three different automatic implementations of the
proposed method with other related methods on both synthetic and real-world datasets.
Then in Section 4.2, we further compare the three different automatic implementations
of the proposed method with regard to the sensitivity to noise, outlier, cluster scales,
parameters, and sample order. Additionally, we will also demonstrate the effectiveness
of the Decision-Graph-based visualization method for validating the effectiveness of the
automatic cutting methods.

4.1. Comparison with Other Methods

Test datasets. The characteristics of the datasets are shown in Table 3, where the
first ten datasets are synthetic datasets (see their cluster structures in Figure 5) while
the other eight datasets are real-world ones. For the real-world datasets OrlFace, Coil20,
USPS, Pendigits, and Coil100, they does not involve the feature extraction process (i.e., the
pixel values of the images were directly used); for the Banknote and Mfeat datasets, more
sophisticated features were extracted from the input images [52]. The MetRef dataset was
derived from the nuclear magnetic resonance spectra of urine samples [53].

Table 3. Characteristics of the test datasets. N: number of samples; Dim: number of dimensions; CN:
cluster number; TS: this study; RW: Real-world; CV: computer vision.

Index Data
Name Type N Dim CN Source Field

1 2G_e Synthetic 600 2 2 TS —
2 3G Synthetic 300 2 3 TS —
3 AGG Synthetic 788 2 7 [39] —
4 Flame Synthetic 240 2 2 [54] —
5 Spiral Synthetic 312 2 3 [55] —
6 2G_u Synthetic 1050 2 2 TS —
7 S1 Synthetic 5000 2 15 [56] —
8 S2 Synthetic 5000 2 15 [56] —
9 UB Synthetic 6500 2 8 [56] —
10 R15 Synthetic 600 2 15 [57] —
11 Banknote RW 1372 4 2 [52] CV
12 OrlFace RW 400 10,304 40 [58] CV
13 Coil20 RW 1440 1024 20 [59] CV
14 Mfeat RW 2000 649 10 [52] CV
15 MetRef RW 873 375 22 [53] Biology
16 USPS RW 11,000 256 10 [52] CV
17 Pendigits RW 10,992 16 10 [52] CV
18 COIL100 RW 7200 1024 100 [60] CV
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Figure 5. Visualization of the 2-dimensional synthetic datasets.

Compared methods. Since the proposed method simultaneously belongs to the cate-
gories such as physically-inspired clustering, density-based clustering, and hierarchical
clustering, we selected the most relevant methods from these classes. Since the proposed
method requires the cluster number as a priori information, all the compared methods can
make use of the cluster number as well. What is more, to maximally reduce the influence
of the parameter setting, the compared methods either have no parameter or have the
suggested empirical settings for the contained parameters. The details of the compared
methods are introduced as follows.

• S-Link: Single Linkage hierarchical clustering method [61].

• A-Link: Average Linkage hierarchical clustering method (also called the unweighted
pair group method with arithmetic means algorithm) [62].

• PHA: a fast potential-based hierarchical agglomerative clustering method [27]. In the
experiments, we used two versions of PHA, denoted as PHA-1 and PHA-2, where

– PHA-1 uses the default potential estimation method of PHA;
– PHA-2 uses the same potential estimation as the proposed method.

• QuickShift: a density-based hierarchical agglomerative clustering method [28]. In
the experiments, QuickShift used the same kernel (i.e., an exponential kernel) as the
proposed method to estimate the density at each node.

• RL: a density-peak-based clustering method proposed by Rodriguez and Laio [29]. In
the experiments, we used two versions of RL, denoted as RL-1 and RL-2, where

– RL-1 uses the default Gaussian kernel to estimate the density;
– RL-2 uses the same kernel function (i.e., the exponential kernel function) as the

proposed method to estimate the density.

• DLORE_DP: a recent variant of RL [63].

• ND-C: the proposed method. We used three automatic versions of ND-C, denoted
as ND-C(1), ND-C(2), and ND-C(3), which only differ in how they define the edge
weight. Specifically,

– For ND-C(1), the distance feature Wi is used to define the weight of each edge
−→e i,Ii in the constructed in-tree;

– For ND-C(2), feature Wi × αi is used to define the weight of each edge −→e i,Ii in
the constructed in-tree;

– For ND-C(3), feature κi is used to define the weight of each edge −→e i,Ii in the
constructed in-tree;
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where Wi, αi and κi are the three features associated with each edge −→e i,Ii in the
constructed in-tree; see more details in Section 3.2 (stage II).

Parameter setting. Both S-Link and A-Link do not contain any parameter. Note that,
in this study, we do not view the cluster number as a parameter. For all the compared
methods, we set the cluster number as the true number of classes of each test dataset.
For all the methods that involve the parameters, their default parameter settings were
used. Specifically, For PHA-2, QuickShift, RL-1, RL-2, ND-C(1), ND-C(2), and ND-C(3),
we fixed the kernel bandwidth to the θ (=0.01) percentile of all the pair-wise distances.
PHA-1 contains a density-related parameter, which was set by its default setting (=10).
DLORE_DP also contains a parameter, for which we chose its default setting (=0.15).
Besides, to make the results of the compared methods producible, for RL-1, RL-2, and
DLORE_DP, the density-peak points were determined using the automatic methods based
on the cluster number and the product (i.e., the defined variable γ in [29]) of the density
and the distance from each node to its parent node.

Evaluation indexes. Two widely used external evaluation indexes were used to
evaluate the accuracy of the clustering result, which are the normalized mutual information
(NMI) [64] and the adjusted Rand index (ARI) [65]. The value of NMI ranges from 0 to
1, while the value of ARI ranges from −1 to 1. Higher values of NMI and ARI indicate
better performance of clustering methods. Note that different evaluation indexes (e.g., NMI
and ARI) are defined using different principles (see the definitions of NMI and ARI in
Appendix D), which evaluate the clustering accuracy from different aspects.

Results. The NMI and ARI scores of the compared methods are shown in Tables 4 and 5,
respectively, where we can see that ND-C(3) achieves overall the best performance. Specifically,

1. ND-C(1), ND-C(2), and ND-C(3) show the same NMI and ARI scores on all the
synthetic datasets (in italics). However, on the real-world datasets (which are high-
dimensional datasets), ND-C(1) performs much worse than ND-C(3). However, by
taking both distance and potential features into account, ND-C(2) performs overall
better than ND-C(1), but it still performs overall worse than ND-C(3).

2. Besides ND-C(1) and ND-C(2), ND-C(3) also achieves overall better performance than
all the other compared methods.

Furthermore, it is noteworthy that PHA-2, QuickShift and ND-C(1) achieve the same
performance on all the datasets (this is also the case for RL-2 and ND-C(2)), which demon-
strates again the close relationship between PHA, QuickShift, RL, and the proposed method.

4.2. Further Comparison of ND-C(1), ND-C(2), and ND-C(3) and the Usage of the Visualization
Tool for Validation

In the following, we will further compare the three different automatic implementa-
tions (i.e., ND-C(1), ND-C(2), and ND-C(3)) of the proposed method with regard to the
sensitivity to noise, outlier, cluster scales, parameters, and sample order.

Remark: In step 7 of the proposed method (Section 3.2), besides the automatic cutting
methods, we also introduce the Decision-Graph-based interactive methods to determine
the inter-cluster edges. In this section, we will not directly validate the effectiveness of the
Decision Graph by interactively determining the inter-cluster edges based on it. Instead,
we will validate the effectiveness of Decision Graph indirectly by taking it as a visualization
tool to reveal the effectiveness of different automatic cutting methods. Specifically, in the
Decision Graph, the points will be colored based on whether the corresponding edges are
removed by the automatic cutting methods or not. If the edges are removed, the corre-
sponding points in the Decision Diagram are colored in red; otherwise the corresponding
points in the Decision Diagram are colored in blue. We call the above Decision Graph with
two classes of points the 2-classification Decision Diagram. Note that we use Diagram
rather than Graph in the above term in order to distinguish it from the graph concept in
graph theory. Similar to the assumption for the density-peak points in [29], the inter-cluster
edges in the in-tree are assumed to have large values in both features (i.e., W and α) in
the Decision Graph. Thus, the expected 2-classification Decision Diagrams are the ones in
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which the red points are all the pop-out points. If there are two pop-out points, the pop-out
point with higher density is more likely to correspond to the inter-cluster edge. Note that
since the 2-classification Decision Graphs based on features W and α are almost the same
as the 2-classification Decision Graphs based on features W and β (or γ), we only show the
2-classification Decision Graphs on features W and α in the experiments.

Sensitivity to noise. To study the noise sensitivity of ND-C(1), ND-C(2), and ND-C(3),
we added random noise to eight test datasets. For each test dataset, the number of the
noise points is 10 percent of the total number of the samples it contains. The first column of
Figure 6 shows the datasets with the added noise points. The clustering results of ND-C(1),
ND-C(2), and ND-C(3) are shown in the 2nd, 3rd, and 4th columns of Figure 6, respectively;
note that for clarity purposes, we removed the noise points in those clustering results and
use the red rectangles to mark the failure cases (in each of which there are at least two
clusters not separated). The results in Figure 6 show that all of the three implementations
are not very sensitive to the the added noise points. Relatively, ND-C(2) and ND-C(3)
perform slightly better than ND-C(1). Furthermore, Figure 7 shows the corresponding
2-classification Decision Diagrams of ND-C(1), ND-C(2), and ND-C(3) on all the test noise-
contaminated datasets. From the 2-classification Decision Diagrams marked by the red
rectangles, we can see that there are some saliently pop-out points (pointed by the red
arrows) falsely colored in blue; specifically, since those points pop out in the scatter plots,
the corresponding edges are more likely to be the inter-cluster edges, but from their colors,
we know that they are not removed by the automatic cutting methods. This explains the
underlying reason of the corresponding failure cases in Figure 6. In contrast, for the rest of
the 2-classification Decision Diagrams, we can clearly see that all the pop-out points are
colored in red (denoting that the corresponding edges are removed).

Table 4. The NMI scores of different methods on different datasets (the names of synthetic datasets
are in italics). The best performance on each dataset is highlighted in bold.
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2G_e 0.00 0.00 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
3G 0.58 0.58 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
AGG 0.80 0.99 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00 1.00
Flame 0.01 0.47 0.46 1.00 1.00 0.40 1.00 0.90 1.00 1.00 1.00
Spiral 1.00 0.00 1.00 1.00 1.00 0.70 1.00 0.63 1.00 1.00 1.00
2G_u 0.00 0.53 0.96 0.96 0.96 0.02 0.96 0.81 0.96 0.96 0.96
S1 0.66 0.98 0.99 0.99 0.99 0.95 0.99 0.91 0.99 0.99 0.99
S2 0.00 0.93 0.93 0.94 0.94 0.90 0.94 0.64 0.94 0.94 0.94
UB 0.98 1.00 1.00 1.00 1.00 0.65 1.00 0.74 1.00 1.00 1.00
R15 0.80 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Banknote 0.00 0.09 0.03 0.17 0.17 0.05 0.93 0.02 0.17 0.93 0.93
OrlFace 0.41 0.77 0.57 0.57 0.57 0.74 0.83 0.71 0.57 0.83 0.89
Coil20 0.39 0.47 0.44 0.48 0.48 0.41 0.72 0.47 0.48 0.72 0.71
Mfeat 0.01 0.55 0.58 0.55 0.55 0.57 0.67 0.60 0.55 0.67 0.76
MetRef 0.02 0.03 0.02 0.02 0.02 0.37 0.39 0.05 0.02 0.39 0.52
USPS 0.00 0.04 0.00 0.00 0.00 0.28 0.00 0.23 0.00 0.00 0.27
Pendigits 0.00 0.57 0.45 0.45 0.45 0.58 0.60 0.64 0.45 0.60 0.70
COIL100 0.08 0.42 0.09 0.09 0.09 0.37 0.52 0.64 0.09 0.52 0.70
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Table 5. The ARI scores of different methods on different datasets. The best performance on each
dataset is highlighted in bold. The names of synthetic datasets are in italics.
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2G_e 0.00 0.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
3G 0.57 0.56 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
AGG 0.80 0.99 1.00 1.00 1.00 0.71 1.00 1.00 1.00 1.00 1.00
Flame 0.01 0.44 0.43 1.00 1.00 0.33 1.00 0.95 1.00 1.00 1.00
Spiral 1.00 0.00 1.00 1.00 1.00 0.68 1.00 0.63 1.00 1.00 1.00
2G_u 0.00 0.74 0.99 0.99 0.99 −0.06 0.99 0.92 0.99 0.99 0.99
S1 0.46 0.98 0.99 0.99 0.99 0.91 0.99 0.82 0.99 0.99 0.99
S2 0.00 0.91 0.91 0.93 0.93 0.85 0.93 0.30 0.93 0.93 0.93
UB 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.71 1.00 1.00 1.00
R15 0.54 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Banknote 0.00 0.10 0.01 0.13 0.13 −0.01 0.96 0.03 0.13 0.96 0.96
OrlFace 0.04 0.41 0.14 0.14 0.14 0.38 0.53 0.42 0.14 0.53 0.67
Coil20 0.14 0.22 0.19 0.22 0.22 0.18 0.46 0.12 0.22 0.46 0.43
Mfeat 0.00 0.40 0.44 0.41 0.41 0.40 0.55 0.47 0.41 0.55 0.63
MetRef 0.00 0.00 0.00 0.00 0.00 0.13 0.16 0.02 0.00 0.16 0.29
USPS 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.06 0.00 0.00 0.12
Pendigits 0.00 0.41 0.33 0.33 0.33 0.40 0.47 0.49 0.33 0.47 0.51
COIL100 0.00 0.05 0.00 0.00 0.00 0.07 0.08 0.11 0.00 0.08 0.15

Sensitivity to outliers. To study the outlier sensitivity of ND-C(1), ND-C(2), and
ND-C(3), we added an outlier to each selected dataset (i.e., a point that is further apart from
the cluster structure). The clustering results are shown in Figure 8, where the 1st column
shows the outlier-contaminated test datasets, in each of which the leftmost point is the
added outlier. The clustering results of ND-C(1), ND-C(2), and ND-C(3) are shown in the
2nd, 3rd, and 4th columns of Figure 8, respectively; for clarity purposes, we also removed
all the outliers in those clustering results and use the red rectangles to mark the problematic
results (in each of which there are two major clusters not separated, since the outlier itself
is regarded as a singleton cluster). From Figure 8, we can see that ND-C(1) is severely
affected by the outliers with all the results being problematic. ND-C(2) performs much
better than ND-C(1), but it still contains two problematic results. ND-C(3) performs the
best without any problematic result. We also show the 2-classification Decision Diagrams
in Figure 9, which shows high consistency with the clustering results in Figure 8. Specifically,
for all the problematic clustering results in Figure 8, their corresponding 2-classification
Decision Diagrams are also problematic in Figure 9, which are marked by the red rectangles
as well, where we also point out the pop-out points that are colored in blue (for those
points, the corresponding edges could be the inter-cluster edges but are not removed by
the automatic cutting methods).
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ND-C(1) ND-C(2) ND-C(3)Dataset (with noise)

Figure 6. Comparison of clustering performance of ND-C(1), ND-C(2), and ND-C(3) on noise-
contaminated datasets. The subplots within the red rectangles are the ones containing obvious false
assignments. In each subplot (in columns 2, 3, and 4), different colors on points indicate different
clustering assignments on them.



Mathematics 2022, 10, 764 23 of 37

5 10 15 20

2.0
4.0
6.0
8.0

5 10 15 20

2.0
4.0
6.0
8.0

5 10 15 20

2.0
4.0
6.0
8.0

5 10 15 20 25

4.0

8.0

12.0

5 10 15 20 25

4.0

8.0

12.0

5 10 15 20 25

4.0

8.0

12.0

2 4 6 8

2.0

4.0

6.0

2 4 6 8

2.0

4.0

6.0

2 4 6 8

2.0

4.0

6.0

10 20 30 40

0.1
0.2
0.3
0.4
0.5

10 20 30 40

0.1
0.2
0.3
0.4
0.5

10 20 30 40

0.1
0.2
0.3
0.4
0.5

102
101
102
103
104
105

102
101
102
103
104
105

102
101
102
103
104
105

5 10 15

1.0
2.0
3.0
4.0
5.0

5 10 15

1.0
2.0
3.0
4.0
5.0

5 10 15

1.0
2.0
3.0
4.0
5.0

50 100 150

102
103
104
105

50 100 150

102
103
104
105

50 100 150

102
103
104
105

W

ND-C(1) ND-C(2) ND-C(3)

α α α

Figure 7. The 2-classification Decision Diagrams of ND-C(1), ND-C(2), and ND-C(3) on all the noise-
contaminated test datasets shown in Figure 6. Each row shows the 2-classification Decision Diagrams
of the test dataset shown in the same row of Figure 6. The blue points correspond to the edges that are
not automatically removed by the cutting methods; the red points correspond to the edges that are
automatically removed by the cutting methods. The red rectangles mark the 2-classification Decision
Diagrams with falsely classified points, which are in blue and indicated by the red arrows.
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ND-C(1) ND-C(2) ND-C(3)
Dataset 

(with an outlier)

Figure 8. Comparison of clustering performance of ND-C(1), ND-C(2), and ND-C(3) on the outlier-
contaminated datasets. The subplots within the red rectangles are the ones containing obvious false
assignments. In each subplot (in columns 2, 3 and 4), different colors on points indicate different
clustering assignments on them.
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Figure 9. The 2-classification Decision Diagrams of ND-C(1), ND-C(2), and ND-C(3) on all the outlier-
contaminated test datasets shown in Figure 8. Each row shows the 2-classification Decision Diagrams
of the test dataset shown in the same row of Figure 8. The blue points correspond to the edges that are
not automatically removed by the cutting methods; the red points correspond to the edges that are
automatic removed by the cutting methods. The red rectangles marker the 2-classification Decision
Diagrams with falsely classified points, which are in blue and pointed by the red arrows.
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Sensitivity to cluster scale. To study the sensitivity of ND-C(1), ND-C(2), and ND-C(3)
to the scale difference of the clusters, we generated ten datasets (named Scale-1, Scale-2,
. . . , Scale-10) with different scales of clusters, as shown in Figure 10. In Figure 11, we
compared the NMI scores on those scale-different datasets, where we can see that only ND-
C(3) shows almost ideal performance on all the scale-different datasets; this is further
demonstrated by the clustering results shown in Figure 12, where only ND-C(3) correctly
finds all the clusters in the considered scale-different datasets. The 2-classification Decision
Diagrams of ND-C(1), ND-C(2), and ND-C(3) on the first five scale-different datasets also
reveal that only ND-C(3) successfully finds all the inter-cluster edges; see Figure 13.
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Figure 10. Ten datasets with different scales of clusters visualized. Except datasets Scale-1 and Scale-2,
all the other datasets are visualized in logarithmic scale (in the linear scale, some clusters could not
be visually found).
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Figure 11. The NMI scores of ND-C(1), ND-C(2), and ND-C(3) on ten datasets with very different
scales of clusters.
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Figure 12. Comparison of the clustering results of ND-C(1), ND-C(2), and ND-C(3) on the first five
scale-different datasets (Scale-1, Scale-2, . . . , Scale-5) shown in Figure 10. The red rectangles mark the
sub-plots with false clustering assignments (pointed by the red arrows).
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Figure 13. The 2-classification Decision Diagrams of ND-C(1), ND-C(2), and ND-C(3) on the first five
scale-different datasets shown in Figure 10. The red rectangles mark the 2-classification Decision
Diagrams with falsely classified points, which are in blue and pointed by the red arrows . For each
sub-graph in the first column, there are actually three circles, two of which are overlapped.

Sensitivity to parameters. To study the parameter sensitivity of ND-C(1), ND-C(2),
and ND-C(3), we applied them on twenty datasets with the value of parameter θ ranging
from 0.01 to 0.09 with a step of 0.02. From the ARI scores in Figure 14, we can see that ND-
C(1), ND-C(2), and ND-C(3) are overall not very sensitive to the parameter setting, with
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very robust performance on datasets 2G-e (Figure 14A), Spiral (Figure 14E), UB (Figure 14I),
Scale-3 (Figure 14K), Scale-4 (Figure 14L), OrlFace (Figure 14N), Coil20 (Figure 14O), USPS
(Figure 14R). Nevertheless, ND-C(3) still performs slightly better than ND-C(1) and ND-
C(2); see the results on datasets 2G-u (Figure 14F), Mfeat (Figure 14P), MetRef (Figure 14Q),
COIL100 ( Figure 14T). What is more, the values of the ARI scores of ND-C(3) are overall
higher than that of ND-C(1), and ND-C(2), especially on the scale-different datasets (see
Figure 14 K,L) and most real-world datasets (see Figure 14N,P–T). We also show the 2-
classification Decision Diagrams of ND-C(3) with different values of θ on the seven datasets
(3G, AGG, S1, R15, S2, USPS, and Pendigits). The red rectangles in Figure 15 mark the
problematic 2-classification Decision Diagrams in which there exist the circles that are not
well separated from the blue ones, which are very consistent with the corresponding results
in Figure 14 where the corresponding ARI scores are relatively low. Specifically, for the
AGG dataset, Figure 14 shows that the ARI score is almost ideal only when θ = 0.01. In
Figure 15, we can also see that, only in the case of θ = 0.01, all the red circles are well
separated from the blue points. For USPS, Figure 14 shows that the ARI score is very low
in any setting of θ. In Figure 15, we can also see that in all the 2-classification Decision
Diagrams of USPS, the red circles are totally mixed with the blue points, showing the
very low reliability of the automatic trimming method on these data. The reason could
be that the clusters of this image dataset could lie in the manifold space. Actually, when
we embedded USPS dataset to a lower dimension (e.g., 20) by the non-linear dimension
reduction method t-SNE [66] and then applied ND-C(3) on it, we obtained much better
performance on both the ARI scores and the 2-classification Decision Diagrams, as revealed
by Figure 16, where we can also see the consistency of the ARI scores (Figure 16A) and the
quality of the 2-classification Decision Diagrams (Figure 16B). Specifically, when θ = 0.03
and θ = 0.05, the red circles in the 2-classification Decision Diagrams are all the pop-out
points, and the corresponding ARI scores are also the highest.
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Figure 14. Comparison of the sensitivity of ND-C(1), ND-C(2), and ND-C(3) to parameter θ.
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Figure 15. The 2-classification Decision Diagrams of ND-C(3) with different values of θ on different
datasets. From top to bottom, the test datasets are 3G, AGG, S1, R15, S2, USPS, and Pendigits,
respectively. From left to right, the values of θ of ND-C(3) are 0.01, 0.03, 0.05, 0.07, and 0.09,
respectively. The red rectangles mark the 2-classification Decision Diagrams in which there exist the
red circles that are not well separated with the blue ones.
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tion by t-SNE. (A) the ND scores. (B) the 2-classification Decision Diagrams.
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Sensitivity to sample order. To study the sample order sensitivity of ND-C(1), ND-
C(2), and ND-C(3), we tested them on nine datasets multiple times. Specifically, we tested
each dataset 20 times using each method with the samples randomly permuted each time.
The results of ND-C(3) are shown in Figure 17; the results of all the other cutting methods
are almost the same as that of ND-C(3) and thus omitted here. These experimental results
reveal that ND-C(1), ND-C(2), and ND-C(3) are not very sensitive to the sample order.
We also give a detailed analysis for the underlying reason in Appendix B.
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Figure 17. The NMI scores of ND-C(3) on nine datasets. For each dataset, we applied ND-C(3) on it
20 times and each time we randomly permuted the orders of the samples in the dataset.

5. Conclusions

In this study, we propose a physically inspired graph-theoretical density-based hier-
archical clustering method, using a non-gradient paradigm (i.e., Nearest Descent) and a
particular digraph (i.e., In-Tree). We demonstrate its effectiveness on both synthetic and
real-world datasets. We reveal the connection and difference between the proposed method
and the similar methods via both theoretical analysis and experiments. Experimental
results also reveal that all the three automatic implementations of the proposed method
are not very sensitive to the noise and sample order. Nevertheless, feature κ proves overall
more effective than the feature W and feature W × α to determine the inter-cluster edges
especially when handling the high-dimensional datasets, the outlier-contaminated datasets,
and the datasets containing different scales of clusters. The experimental results also reveal
the meaningfulness of the visualization strategy in increasing the reliability of the clustering
results in practice [67].

6. Future Work

In the future, we would like to apply the proposed method to handle more real-world
datasets generated in different fields. Additionally, since the proposed method has O(N2)
time complexity, which means that the proposed method would be efficient to handle
the medium-size datasets (e.g., the datasets containing tens of thousands of samples),
but would not be very efficient when handling the large-size datasets (e.g.,the datasets
containing millions of samples). Thus, next, we would also like to accelerate the proposed
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method using more efficient algorithms in order to efficiently handle the datasets with very
large sizes.
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Appendix A. Density-Border-Based Clustering

This category (the density-border-based) can be traced back to the work of Hartigan
in 1975 [68], while the most popular and widely used algorithm is the one called DBSCAN
proposed in 1996 [14]. DBSCAN implicitly defines the density at each data point i as
the number of the r-neighboring points of point i within the radius centered at point i,
and accordingly defines the points with densities beyond a pre-defined density threshold
(MinPts) as the core points. Here we say that point j is a r-neighboring point of i if point
j is within the radius r centered at point i (note that this r-neighborhood relationship is
symmetric. i.e., point i is also a r-neighboring point of point j with respect to r). For the
non-core points (with densities below MinPts), they are further divided into two parts: the
border points and noise points, which differs in that the border points are the neighboring
points of certain core points. A cluster is then defined as a maximum set (denoted of S1)
of core points in which any core point is the r-neighboring or transitively r-neighboring
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point of any other core point in this set, plus a maximal set (denoted as S2) of the border
objects which are the neighboring nodes of certain core objects in S1. Here we say that point
j is a transitively r-neighboring point of i if there is a chain of points p1, · · · , pn (where
p1 = i and pn = j) such that pk and pk+1 (for any k ∈ {1, · · · , n− 1}) are the r-neighboring
points to each other. Obviously, this transitively neighboring relationship is also symmetric.
DBSCAN has two major problems: (i) the two parameters, r and MinPts, are hard to set;
(ii) Using a global density threshold MinPts, DBSCAN could fail to detect the clusters with
varying densities [20–22].

Among the various variants of DBSCAN (see a review in [22]), OPTICS [69] and
HDBSCAN [70] are more representative.

Unlike DBSCAN which directly seeks for a flat partitioning of the dataset, clustering
based on OPTICS (or OPTICS for short) belongs to HC, which divides the clustering
process into two distinguishable phases. In the 1st phase of HC, OPTICS first seeks for
an effective linear arrangement of the samples in the dataset, via a walk on a minimal
spanning tree based on the so-called reachability distances [22]. Then, similar to the
Decision Graph [29], OPTICS represents each data point by two variables, its index in the
new order and its smallest reachability distance, and then shows the original dataset in a
2D bar plot, called the reachabiltiy plot (each valley in the reachability plot represents a
optimal cluster). Actually, there is a close relationship between this reachability plot and the
Dendrogram [71]. In the 2nd phase of HC, like Dendrogram, one can obtain a flat clustering
result from the reachability plot by such as setting a global threshold (for the parameter r).
Compared with DBSCAN, the advantages of OPTICS are threefold. (i) OPTICS is relatively
insensitive to the two parameters, r and MinPts, especially for r which is usually set as
infinity (in the first phase of HC). (ii) By choosing different distance thresholds in the
reachability plot (for the parameter r, it is usually set as infinity in the first phase so as to
output a complete hierarchical data representation, and is set as a specific threshold in the
2nd phase so as to obtain an optimal flat partitioning of the original dataset), one can easily
get all the flat clustering results obtained by DBSCAN* with same values for MinPts and r
(note that DBSCAN and DBSCAN* differ in that the latter one only takes the core points
as the elements of a cluster). (iii) OPTICS can discover the clusters in varying densities
that DBSCAN cannot. The underlying reason is that in the 2nd phase one can choose other
flexible methods [71] to detect the clusters in more complicated reachability plots in which
simply setting a global threshold would fail. Furthermore, OPTICS also benefits another
significant variant of DBSCAN, called HDBSCAN [70] (also a HC method).

HDBSCAN [70] was proposed recently in 2015, which follows the two phases utilized
in OPTICS. However, compared with OPTICS, HDBSCAN presents a more concise and
comprehensible procedure in the 1st phase to make the dataset organized into a condensed
Dendrogram based on the concepts such as the minimum cluster size and cluster shrink.
In the 2nd phase, HDBSCAN proposes an effective automatic cutting method to extract
the flat partitioning result from the condensed Dendrogram. The cutting method is mainly
based on the concept of cluster stability and the objective that the sum of the stabilities
of the extracted clusters should be the maximal. Theoretically, this automatic cutting
method could extract the clusters in varying densities. Compared with OPTICS, HDBSCAN
completely abandons the parameter r, and like OPTICS, HDBSCAN is not sensitive to the
parameter MinPts (the only parameter in HDBSCAN). However, this is at the cost of a
time complexity of O(N2) (corresponding to the worst case of OPTICS when r is set as
infinity) [72].

Appendix B. About the Data Index

In the original formula of Nearest Descent (see step 4 of stage I), the data indexes (i.e.,
the order in which data points are processed), together with the potential values, serve to
provide references for parent node selection. The role of the data indexes is to deal with
the special case that the close points (or the extreme case, the overlapping ones) could
have the same potential. Specifically, the data index term could help the proposed method
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to choose only one point from those close points to communicate with other points with
lower potentials, which can avoid the unexpected “singleton cluster phenomenon" after
edge cutting.

However, introducing data index term does not mean that the clustering result is
sensitive to the change of data indexes. The influence is very limited, as demonstrated by
the experimental results in Section 4.2. The undelying reason is analyzed as follows:

If point i is not with the local minimal potential, then since its candidate point set Ji
consists of two groups of points, i.e., the points with smaller potentials (group A) and the
points with the same potential but smaller data indexes (group B), only points in group B
are affected by data index. The points in group B are so special that they do not always exist.
Even if group B is non-empty, according to the “constrained proximity criterion" claiming
that only the nearest point or the point with the smallest index among the nearest ones in Ji
will be selected as the parent node, the selected parent node Ii is at least very close to point
i. Therefore, the change of the data indexes only affects the connections or edges in local
areas, whereas these local edges, even they are changed, are in general much shorter than
those inter-cluster edges among groups and thus less likely to be cut off. Consequently, the
near points connected by these local edges can be clustered into the same groups.

Otherwise, the candidate points with lower potential values in set Ji will come from
other groups. So, no matter how data indexes are assigned to those points, the edge
between point i and its parent node Ii will in general be much longer than the edges among
points within group, and thus will be cut off later. This is what we expect. Consequently,
the clustering result will not be largely affected. The above analysis is further demonstrated
by a test with different random permutations to dataset “S1”, as shown in Figure A1.

Figure A1. The experiment for showing the negligible influence of data index. Take dataset “S1” for
instance. In order to show the effect of data index, we first generated lots of vertices with identical
potentials, since only for these vertices, their data index may serve as a reference for identifying
parent nodes. We set σ as 10, much less than the average pair-wise distance. Consequently, only
151 potential values are unique, which means that most vertices have the same potentials. We
randomly changed the data index for 50 times, and the In-Trees of two of the 50 runs are shown in
this figure. It is clear that for the edge points in the red rectangles, local difference occurs in their
neighborhood relationships, whereas this difference makes very little effect on the final clustering
results. In fact, (i) for the in-trees of all 50 tests, we found that the longest 100 edges are the same;
(ii) for the clustering results of all 50 tests, when we took one (e.g., the first clustering result) as the
benchmark and compared it with the other 49 clustering results, relative clustering error rate were
very small, 0.0074 ± 0.0041 (mean ± standard deviation), which means that on average, 37 points out
of 5000 get different assignments. To summarize, although the nearest descent rule involves data
index item, the change of the data indexes makes negligible influence on the final clustering result.
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Appendix C. proof of the In-Tree

Let d(v), d−(v), and d+(v) denote the degree, indegree and outdegree of a node v,
respectively. Let G denote any graph. Before proving, we first give the following properties
on G [40,73].

(P1) If G is a cycle, then, for any node v ∈ V(G), d(v) = 2. Typically, when the cycle is a
directed cycle, d−(v) = d+(v) = 1.

(P2) If G is a tree, then m(G) = n(G)− 1, where m(G) and n(G) denote the number of
edges and the number of nodes, respectively.

(P3) If G is a digraph, then d(v) = d−(v) + d+(v), and
∑

v∈V(G)
d+(v) = ∑

v∈V(G)
d−(v) = m(G).

Proof of Proposition 1. First, according to the definition of the graph
−→
G IT , we have the

following facts:

(F1) For each node i in
−→
G IT , Ji (= {i|Pj < Pi} ∪ {j|Pj = Pi and j < i}) is defined as the

points with smaller potentials or the same potential but smaller data indexes;

(F2) For each node i in
−→
G IT with Ji 6= ∅, its parent node Ii is unique, i.e., d+(i) = 1;

(F3) For each node i in
−→
G IT with Ji = ∅, it has no parent node, i.e., d+(i) = 0.

The following proof is then made by showing how the requirements (F1∼F3) can meet
the definitions (a∼d) of the In-Tree in Section 3.3.2 of the main body of this paper.

(i) Let P̂ be the globally minimal potential among the potentials at all nodes, i.e., P̂ =

min
i∈X

Pi. According to; F1, for each node i with Pi < P̂, Ji 6= ∅. If only one node i has

the minimum potential value, then, according to F1, Ji = ∅. If several nodes are of
the minimum potential, the node with the smallest index among the above nodes has
empty Ji. In conclusion, there is always one and only one node, denoted as r, with
Jr = ∅, for which, according to F3, d+(r) = 0. The condition (a) is met.

(ii) According to F1, for any other node v( 6= r), there will be at least one node (e.g., node
r) which makes Jv 6= ∅. Then, according to F2, we have d+(v) = 1. The condition (b)
is met.

(iii) Suppose there is a cycleQ in digraph
−→
G IT . IfQ is a directed cycle vi → vj → · · · → vi,

then according to F1, the potential values for these nodes should meet Pi ≥ Pj ≥ · · · ≥
Pi, which is true only when Pi = Pj = · · · = Pi. Then according to F1 again, the data
indexes for these nodes should meet i > j > · · · > i, resulting in i > i, an obvious
contradiction. If Q is not a directed cycle, we claim that there exists at least one node
of Q, say w, then, according to P1, there will be either d+(w) = 2 or d−(w) = 2 in this
cycle Q. If d+(w) = 2, then it will contradict with the result in (ii); If d−(w) = 2, since
every node v on a cycle has degree 2, i.e., d+(v) + d−(v) = 2, and according to P3,

∑
v∈V(Q)

d+(v) = ∑
v∈V(Q)

d−(v), (A1)

there must be at least one node in Q having outdegree 2, which contradicts the result
in (ii) again. Therefore, there is no cycle in digraph

−→
G IT . The condition (c) is met.

(iv) Suppose
−→
G IT is not connected, e.g., containing T connected sub-graphs

−→
G IT

1 ,
−→
G IT

2 ,

· · · , −→G IT
T . Since digraph

−→
G IT has no cycle, there should be no cycle in each subgraph

as well. Hence, each subgraph
−→
G IT

k is at least a tree. Assume the node r of outdegree

0 is in
−→
G IT

i , then nodes in any other subgraph
−→
G IT

k (k 6= i, k ∈ {1, 2, · · · , T}) are all
with outdegree 1, thus, according to P3,

m(
−→
G IT

k ) = ∑
v∈V(

−→
G IT

k )

d+(v) = ∑
v∈V(

−→
G IT

k )

1 = n(
−→
G IT

k ), (A2)
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which contradicts P2. Therefore, the digraph
−→
G IT is connected. The condition

(d) is met.

According to (i), (ii), (iii) and (iv), we can conclude that the digraph
−→
G IT is an In-Tree.

Appendix D. NMI and ARI

Let A = {A1, A2, · · · , AL} and B = {B1, B2, · · · , BL′} be the two partitions of the
dataset X = {xi|i = 1, · · · , N}, which means that ∪L

i=1 Ai = X and Ai ∩ Aj = ∅ (∀i, j ∈
{1, · · · , L},i 6= j); ∪L′

i=1Bi = X and Bi ∩ Bj = ∅ (∀i, j ∈ {1, · · · , L′},i 6= j). Note that Ai
(i ∈ {1, · · · , L}) and Bj (j ∈ {1, 2, · · · , L′}) denote two clusters, and that in the experiments,
A or B denotes the partition of X determined by the proposed method or determined
based on the class labels provided by the benchmark dataset. Then, we have the following
definitions of NMI and ARI (note that NMI is a measure based on information theory, while
ARI is a measure based on pair counting. Consequently, on certain dataset, a clustering
method may show very good performance on one index rather than on all indexes).

(1) The NMI scores between A and B is defined as

NMI(A,B) = 2 ·MI(A,B)
max(H(A), H(B)) ,

where MI(A, B) (= ∑L
i=1 ∑L′

j=1
|Ai∩Bj |

N log2(
|Ai∩Bj |/N
|Ai |/N∗|Bj |/N )) denotes the mutual information

between A and B, H(A) (= −∑L
i=1

|Ai |
N log2(

|Ai |
N )) denotes the entropy with regard to

A, and H(B) (= −∑L′
i=1

|Bi |
N log2(

|Bi |
N )) denotes the entropy with regard to B. Note that

NMI(A,B) = NMI(B,A).
(2) The ARI score between A and B is defined as

ARI(A,B) = b0 − b3

(b1 + b2)/2− b3
,

where b0 = ∑L
i=1 ∑L′

j=1 (
|Ai∩Bj |

2 ), b1 = ∑L
i=1 (

|Ai |
2 ), b2 = ∑L′

j=1 (
|Bj |

2 ) and b3 = b1 · b2/(N
2 ) and

(N
2 ) is the binomial coefficient (= (N − 1) · N/2). Note that ARI(A,B) = ARI(B,A).
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