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Abstract: Variable selection is often needed in many fields and has been discussed by many authors
in various situations. This is especially the case under linear models and when one observes complete
data. Among others, one common situation where variable selection is required is to identify
important risk factors from a large number of covariates. In this paper, we consider the problem when
one observes interval-censored failure time data arising from generalized linear models, for which
there does not seem to exist an established method. To address this, we propose a penalized least
squares method with the use of an unbiased transformation and the oracle property of the method is
established along with the asymptotic normality of the resulting estimators of regression parameters.
Simulation studies were conducted and demonstrated that the proposed method performed well for
practical situations. In addition, the method was applied to a motivating example about children’s
mortality data of Nigeria.

Keywords: interval-censored data; unbiased transformation; linear model; variable selection; large
sample properties
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1. Introduction

Variable selection is an important field in statistics, and there is a lot of literature on
variable selection, especially in the context of linear models for complete data, such as
stepwise regression, ridge regression, Bayesian variable selection, least absolute shrinkage
and selection operator (LASSO), model averaging, smoothly clipped absolute deviation
(SCAD), elastic net, adaptive LASSO (ALASSO), minimax concave penalty (MCP), seamless-
L0 (SELO) and broken adaptive ridge (BAR) (Goldberger et al., 1961 [1]; Hoerl and Kennard,
1970 [2]; Mitchell and Beauchamp, 1988 [3]; Tibshirani, 1996 [4]; Raftery et al., 1997 [5]; Zou
and Hastie, 2005 [6]; Zou, 2006 [7]; Fan and Li, 2001 [8]; Zhang, 2010 [9]; Dicker et al.,
2013 [10]; Liu and Li, 2016 [11]; Dai et al., 2018 [12]; Zheng et al., 2021 [13]). Among others,
one type of methods that have recently attracted a lot of attention is the penalized method,
for which various penalty functions have been proposed. LASSO by Tibshirani (1996) [4],
SCAD by Fan and Li (2001) [8], elastic net by Zou and Hastie (2005), ALASSO by Zou
(2006) [7], MCP by Zhang (2010) [9], SELO by Dicker et al. (2013) [10], and BAR by Liu and
Li (2016) [11] are included for penalty functions.

Variable selection has been investigated by many authors for incomplete data such
as right-censored and interval-censored failure time data (Cai et al., 2005 [14]; Fan and Li,
2002 [15]; Tibshirani, 1997 [16]; Zhang and Lu, 2007 [17]; Nasrullah Khan et al., 2018 [18];
Zhao et al., 2020 [19]; Li et al., 2020 [20]; Du and Sun 2021 [21]; Ali et al., 2021 [22]). By
interval censored data, we mean that the failure time of interest is known or observed
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only to belong to an interval instead of being observed exactly. It is easy to see that this
is usually the case for periodic follow-up studies such as clinical trials and they include
right-censored failure time data as a special case. Notably, the analysis of interval-censored
data is much more challenging than the analysis of right-censored data. In terms of the
well-known Cox model, the classical partial likelihood method for right-censored data
is no longer available with interval censoring. This is because for the case of interval
censoring, we have to estimate not only regression parameters of interest but also the
nuisance parameters simultaneously. Recently, many authors have discussed the analysis
of interval-censored data in various situations. For example, Zhao et al. (2015) [23],
Wang et al. (2016) [24] and Li et al. (2018) [25] studied inference procedures for the Cox
model, the additive hazard model, and the linear transformation model, respectively. Sun
(2006) [26] provided a relatively complete review of the literature for the interval-censored
failure time data analysis.

As mentioned above, several authors have discussed variable selection for interval-
censored failure time data ([19,20]). However, existing methods cannot be applied directly
to linear models or generalized linear models. In the variable selection procedure proposed
below, we employ the unbiased transformation approach and the main idea behind it is to
transfer two variables representing interval-censored data to a new, single variable that has
the same conditional expectation. One of the early applications of the approach was given
by Buckley and James (1979) [27] in dealing with right-censored data. Among others, one
advantage of the proposed method over the existing methods is that it can be relatively
easily implemented since one can make use of the existing variable selection programs for
complete data with simple modifications.

Deng (2004) [28] and Deng et al. (2012) [29] discussed the use of the unbiased trans-
formation approach for the analysis of interval-censored data. In particular, the latter
considered the situation similar to that discussed here, but not on variable selection, un-
der the assumption that the joint density function of the two variables representing the
observed data is known. It is easy to see that this may not be true in many applications.
To address this, we will adopt the kernel estimation approach [30,31] to estimate the needed
density function and develop a unified approach to variable selection with different penalty
functions for generalized linear models based on interval-censored data.

The rest of the article is organized as follows. In Section 2, we will first introduce some
notations and assumptions to be used throughout the paper and present the proposed
variable selection procedure. For the implementation of the presented method, a coordinate
descent algorithm is developed in Section 3. In Section 4, the asymptotic properties of
the proposed method under the BAR penalty are established, and Section 5 gives some
numerical results obtained from a simulation study, which suggest that the method works
well in practical situations. In Section 6, the method is applied to children’s mortality
data of Nigeria that motivated this study, and Section 7 contains some discussion and
concluding remarks.

2. Unbiased Transformation Variable Selection Procedure

Consider a failure time study that consists of n independent subjects and for subject i,
let Ti denote the failure time of interest and Xi a p-dimensional vector of covariates. Suppose
that for each Ti, two observations are available at the observation times Ui and Vi such
that they divide the axis (0, ∞) into three parts [0, Ui), [Ui, Vi], (Vi, ∞) and we know which
part Ti falls in. Thus, the observed data on subject i have the form Oi = {Ui, Vi, δ1i, δ2i, Xi},
where δ1i = I(Ti ≤ Ui) and δ2i = I(Ui < Ti ≤ Vi) with I(·) being the indicator function,

IA(x) =

{
1 x ∈ A

0 x /∈ A

i = 1, . . . , n. In the following, we will assume that Ti is independent of Ui and Vi given Xi.



Mathematics 2022, 10, 763 3 of 18

To describe the covariate effects, we will assume that given Xi, Ti has the form

H(Ti) = β0 + X>i β + εi, (1)

where H(·) is a known function, εi is a zero mean random error with distribution unknown,
and β0 and β are unknown parameters. Note that for the estimation of the model above,
if Ti was exactly observed, a simple method would be to take H(Ti) as a new response
variable and transform model (1) into a linear model. For the situation here where Ti is
interval-censored, however, the above method cannot be carried out directly.

To overcome the problem, we adopt the unbiased transformation approach to first
convert H(Ti) into the variable

h∗i = φ1(Ui, Vi)δ1i + φ2(Ui, Vi)δ2i + φ3(Ui, Vi)(1− δ1i − δ2i) + H(0) ,

where φ1(·, ·), φ2(·, ·) and φ3(·, ·) are some continuous functions with finite continuous
partial derivatives and also independent of the distribution of Ti. Let g(·, ·) denotes the
joint density function of Ui and Vi and assume that φ1(u, v), φ2(u, v) and φ3(u, v) satisfy
the following conditions

∫ ∞
v=0

∫ v
u=0 φ1(u, v)g(u, v)dudv = 0,∫ ∞

y [φ2(y, v)− φ1(y, v)]g(y, v)dv
+
∫ y

0 [φ3(u, y)− φ2(u, y)]g(u, y)du = H′(y) .
(2)

Then according to Deng et al. (2012) [29], we have that

E(h∗i (Ui, Vi, δ1i, δ2i)) = E(H(Ti))

for i = 1, . . . , n.
Under Equation (2), one can see that φ1(Ui, Vi), φ2(Ui, Vi) and φ3(Ui, Vi) not only

depend on Ui and Vi but also depend on g(Ui, Vi). More specifically, one can rewrite h∗i as

h∗i (Ui, Vi, g(Ui, Vi), δ1i, δ2i) = φ1(Ui, Vi, g(Ui, Vi))δ1i + φ2(Ui, Vi, g(Ui, Vi))δ2i

+φ3(Ui, Vi, g(Ui, Vi))(1− δ1i − δ2i) + H(0) .

Thus, for estimating model (1) or β, it is natural to consider the least squares method
to minimize the mean square of the residual after the unbiased transformation

n−1
n

∑
i=1

(h∗i − β0 − X>i β)2 (3)

if g(Ui, Vi) was known. Of course, in practice, g(Ui, Vi) is unknown and for this, we propose
to first estimate g(Ui, Vi) by the kernel density estimator ĝ(Ui, Vi) and then consider

ĥ∗i = φ1(Ui, Vi, ĝ(Ui, Vi))δ1i + φ2(Ui, Vi, ĝ(Ui, Vi))δ2i

+φ3(Ui, Vi, ĝ(Ui, Vi))(1− δ1i − δ2i) + H(0) .

Note that ĥ∗i given above involves the estimation of the two-dimensional function g
and according to Section 5 of Deng (2004) [28], one could equivalently replace it by

ĥ∗i = φ1(Ui, Vi, ĝu(Ui), ĝv(Vi))δ1i + φ2(Ui, Vi, ĝu(Ui), ĝv(Vi))δ2i

+φ3(Ui, Vi, ĝu(Ui), ĝv(Vi))(1− δ1i − δ2i) + H(0) ,

where ĝu(Ui) and ĝv(Vi) denote the kernel estimators of the marginal density functions
gu(Ui) and gv(Vi). In Lemma A1 given in Appendix A, we show that ĥ∗i converge to
h∗i in probability. Since Ui and Vi are positive variables, we propose to adopt the log-
transformation technique and employ the log kernel density estimator

ĝu(u) = (nh)−1
n

∑
i=1

u−1K((log(u)− log(Ui))/h) ,
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and

ĝv(v) = (nh)−1
n

∑
i=1

v−1K((log(v)− log(Vi))/h)

(Parzen, 1962 [30]). Then by following Deng (2004) [28], one can estimate β by minimizing
the mean squared residual after kernel estimation and unbiased transformation

n−1
n

∑
i=1

(ĥ∗i − n−1
n

∑
q=1

ĥ∗q − X>i β)2. (4)

Now we consider the variable selection or the selection of important covariates.
For this, and motivated by (4), we propose to use the penalized least squares estimation
method and to minimize the mean squared residual after kernel estimation and unbiased
transformation with penalized criteria

n−1
n

∑
i=1

(ĥ∗i − n−1
n

∑
q=1

ĥ∗q − X>i β)2 +
p

∑
j=1

pα,λ(|β j|) , (5)

where pa,λ(|β j|) denotes a penalty function with a and λ (some comments are given below).
In the following, several commonly used penalty functions are considered, including the
LASSO penalty pλ(|β j|) = λ|β j| proposed by Tibshirani (1996) [4] and the SCAD penalty

pλ

(∣∣β j
∣∣; a
)
=


λ
∣∣β j
∣∣ if

∣∣β j
∣∣ ≤ λ

−|β j|2−2aλ|β j|+λ2

2(a−1) if λ <
∣∣β j
∣∣ ≤ aλ

(a+1)λ2

2 if
∣∣β j
∣∣ > aλ

with a > 2 by Fan and Li (2001) [8]. For a in the SCAD penalty, we set a = 3.7 suggested by
Fan and Li (2001) [8]. Furthermore, we investigate the use of the MCP penalty

pλ

(∣∣β j
∣∣; a
)
= λ

∫ |β j|
0

(aλ− x)+
aλ

dx

with a > 1 given in Zhang (2010) [9] and the BAR penalty pλ

(∣∣β j
∣∣) = λβ2

j /β̃2
j discussed in

Zhao et al. (2020) [19], where β̃ j(j = 1, . . . , p) denotes a nonzero “good” estimator of β j.
Note that for the application of the method described above, one needs to choose

the functions φ1, φ2, and φ3 satisfying Equation (2). For this, many functions can be used
and for simplicity, we suggest to employ (I) φ1(Ui, Vi) = 0, φ2(Ui, Vi) = 0, φ3(Ui, Vi) =
H′(Vi)/ĝv(Vi); (II) φ1(Ui, Vi) = 0, φ2(Ui, Vi) = H′(Ui)/ĝu(Ui), φ3(Ui, Vi) = H′(Ui)/ĝu(Ui);
or (III) φ1(Ui, Vi) = 0, φ2(Ui, Vi) = H′(Ui)/2ĝu(Ui), φ3(Ui, Vi) = H′(Ui)/ 2ĝu(Ui) +
H′(Vi)/2ĝu(Vi). The numerical study below indicates that they give satisfactory and robust
results and more discussion on this can be found in Deng et al. (2012) [29].

3. Penalized Least Squares Coordinate Descent Algorithm

Let β̂ denote the estimator of β given by minimizing the penalized criterion function
in (5). In this section, we discuss the determination of β and investigate a coordinate
descent algorithm that takes turn to update each element β j of β while making all other
elements of β fixed at their current estimates except β j.

Define

M(β j) = n−1
n

∑
i=1

(ĥ∗i − n−1
n

∑
q=1

ĥ∗q − X>i β)2.

Then, at the kth iteration, the value of β j is derived by minimizing Q(β j) = M(β j) +

pλ(|β j|) to determine β̂
(k)
j . Note that by drawing the locally quadratic approximation idea

discussed in Fan and Li (2001) [8], the locally quadratic approximation can be presented as

[pλ(|β j|)]′ = p′λ(|β j|)sgn(β j) ≈ {p′λ(|β̂
(k−1)
j |)/|β(k−1)

j |}β j
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when β j 6= 0. In other words, a quadratic function can locally approximate p(|β j|; λ) at

|β̂(k−1)
j | as

pλ

(∣∣β j
∣∣) ≈ pλ

(∣∣∣β̂(k−1)
j

∣∣∣)+ 1/2
{

p′λ
(∣∣∣β̂(k−1)

j

∣∣∣)/
∣∣∣β̂(k−1)

j

∣∣∣}[β2
j −

(
β̂
(k−1)
j

)2
]

.

Meanwhile, M(β j) can be obtained by the second-order Taylor expansion,

M
(

β j
)
≈ M

(
β̂
(k−1)
j

)
+ M′

(
β̂
(k−1)
j

)(
β j − β̂

(k−1)
j

)
+ 1/2M′′

(
β̂
(k−1)
j

)(
β j − β̂

(k−1)
j

)2
,

where M′ and M′′ represent the first and second derivatives of M(·), respectively. Therefore,
minimizing Q(β j) is equivalent to minimizing the function

M
(

β̂
(k−1)
j

)
+ M′

(
β̂
(k−1)
j

)(
β j − β̂

(k−1)
j

)
+

1
2

M′′
(

β̂
(k−1)
j

)(
β j − β̂

(k−1)
j

)2

+ pλ

(∣∣∣β̂(k−1)
j

∣∣∣)+ 1/2
{

p′λ
(∣∣∣β̂(k−1)

j

∣∣∣)/
∣∣∣β̂(k−1)

j

∣∣∣}[β2
j −

(
β̂
(k−1)
j

)2
]

with respect to β j. A closed form solution is given as

β̂
(k)
j =

β̂
(k−1)
j M′′

(
β̂
(k−1)
j

)
−M′

(
β̂
(k−1)
j

)
M′′
(

β̂
(k−1)
j

)
+ p′λ

(∣∣∣β̂(k−1)
j

∣∣∣)/
∣∣∣β̂(k−1)

j

∣∣∣ . (6)

Note that it is easy to see that the resulting solution (6) and the approximation used
above for the penalty function apply to any penalty function. However, the BAR penalty is
not necessary to do a locally quadratic approximation, due to the fact that it is already a
quadratic function of coefficients. For that situation, we can obtain the closed-form iterative
solution proposed by Wu et al., 2020 [32] as

β̂
(k)
j = β̂

(k−1)
j −

Q′
(

β̂
(k−1)
j

)
Q′′
(

β̂
(k−1)
j

) , (7)

where Q′(β̂
(k−1)
j ) and Q′′(β̂

(k−1)
j ) are the first and second derivatives of Q(β j) with respect

to β j evaluated at β̂
(k−1)
j , respectively. By combining the discussion above, the algorithm

can be implemented as follows:

Step 1: Set k = 0 and choose the initial estimate β̂(0)

β̂(0) = arg min
β

n−1
n

∑
i=1

(ĥ∗i − n−1
n

∑
q=1

ĥ∗q − X>i β)2.

Step 2: Use the coordinate descent algorithm to determine β̂(k) by (6) for LASSO, SCAD
and MCP, respectively. Meanwhile, we determine β̂(k) by (7) for BAR.

Step 3: Repeat Step 2 until the convergence or k exceeds a given large number.

There are many various criteria to check the convergence in Step 3 above. In the
simulation studies below, the proposed algorithm is declared to achieve convergence if the
maximum of the absolute differences of the estimates between two successive iterations is
less than 10−5 (Sun et al., 2019) [33]. To implement the algorithm above, one also needs
to choose the tuning parameter λn. For the results given below, we use the Bayesian
information criterion (BIC) proposed by Schwarz (1978) [34] which is data-dependent and
defined as

BICλ = 2 · n−1
n

∑
i=1

(ĥ∗i − n−1
n

∑
q=1

ĥ∗q − X>i β̂)2 + d fλlog(n).
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In the above, β̂ denotes the final estimator of β and d fλ represents the total number of
nonzero estimates in β̂, which serves as the degree of freedom. Alternatively, one could
employ other methods such as a K-fold cross-validation (CV) (Verweij and Houwelingen,
1993) [35]. For given λn, we define BIC as above. Then, one can choose the value of
λn that minimize BICλ. For variance estimation of the proposed estimators, we suggest
using the nonparametric bootstrap method, which seems to work well as the numerical
study indicates.

4. Asymptotic Properties

In this section, we establish the asymptotic properties of the variable selection proce-
dure or the estimator proposed above with the use of the BAR penalty function. For this,
let β0 =

(
β01, . . . , β0pn

)> denote the true parameter value. Note that here, we replace
p by pn to emphasize the dependence of p on n and assume that pn can diverge to

infinity but pn < n. For simplicity, we write β0 =
(

β>01, β>02
)>

and assume β01 6= 0

and β02 = 0, where β01 ∈ Rqn
n and β02 ∈ Rpn−qn

n . Let β̂∗ =

(
β̂
∗>

1 , β̂
∗>

2

)>
denote the

BAR estimator of β corresponding to the same participation. Set Xα =
(

x1, . . . , xqn

)
,

Xγ =
(

xqn+1, . . . , xpn

)
, Σn1 = X>α Xα/n and Σn = X>X/n, where xj is jth column of

X for j = 1, . . . , pn. Let Ŷ∗i =ĥ∗i − n−1 ∑n
i=1 ĥ∗i , Ŷ∗ = (Ŷ∗1 , . . . , Ŷ∗n ), Y∗i =h∗i − n−1 ∑n

i=1 h∗i ,
Y∗ = (Y∗1 , . . . , Y∗n ) for i = 1, . . . , n. For the asymptotic properties, we need the following
regularity conditions.

C1. For every t ∈ (0, ∞), H′(t) exists, where H′(t) is the derivative of H(t) and
H(0) < ∞.

C2. Ui and Vi are positive i.i.d random vectors with uniformly continuous density
functions gu(u) and gv(v), respectively.

C3. Ti and (Ui, Vi) are independent given Xi.
C4. Var(h∗) < ∞.
C5. Cn = n−1 ∑n

i=1 X>i Xi → C with probability 1 as n tends to ∞, where C is a positive
definite matrix ([19]).

C6. K(t) is uniformly continuous and of bound variation,
∫
|K(t)|dt < ∞ and

K(t) → 0 as |t| → ∞.
∫

K(t)dt = 1 and
∫
|xlog|x||1/2|dK(t)| < ∞. limn→∞ hn = 0,

and limn→∞ nhn/log n = ∞.
C7. There exists a constant E > 1 such that 0 < 1/E < λmin(Cn) ≤ λmax(Cn) < E <

∞ for every integer n.
C8. a0n = min1≤j≤qn

∣∣β0j
∣∣ and a1n = max1≤j≤qn

∣∣β0j
∣∣. As n → ∞, pnqn/

√
n →

0, (pn/n)1/2/a0n → 0, pn/λn → 0 and λna1n(qn/n)1/2/a2
0n → 0.

Note that Conditions C1–C5 are necessary to obtain an unbiased transformation ([29]),
where uniformly continuous density functions gu(u) and gv(v) are needed to make kernel
estimation ĝu(u) and ĝv(v) converging to density functions gu(u) and gv(v) almost surely
and Condition C6 guarantees that ĥ∗i converges to h∗i in probability ([31]). Condition C7
assumes that Cn is positive definite almost surely and its eigenvalues are bounded away
from zero and infinity. Condition C8 gives some sufficient, but not necessary, conditions
needed to prove the convergence and asymptotic properties of the BAR estimator and
nonzero coefficients are assumed to be uniformly bounded away from zero and infin-

ity ([12]). Define β =
(
α>, γ>

)>
, where α and γ are qn × 1 and (pn − qn) × 1 vectors,

respectively. The following theorem gives the asymptotic properties.

Theorem 1. Assume that Conditions C1–C8 given above hold and φ1(·, ·), φ2(·, ·), and φ3(·, ·)
are continuous functions with finite continuous partial derivatives. Then, we have that:
(i) The fixed point of f (α) =

{
X>α Xα + λnD1(α)

}−1
X>α Ŷ∗ exists and is unique, where D1(α) =

diag
(

α−2
1 , . . . , α−2

qn

)
.
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(ii) (Oracle property) the BAR estimator β̂∗ =
(

β̂∗
>

1 , β̂∗
>

2

)>
exists and is unique, where β̂∗2 = 0

and β̂∗1 is the unique fixed point of f (α).

(iii) (Asymptotic normality)
√

n
(

β̂∗1 − β01

)
→ N(0, Σ(1)) in distribution, where Σ(1) is defined

in Appendix A.

5. Simulation Study

Now we present some results from a simulation study to assess the finite sample
performance of the variable selection procedure presented in the previous sections. In
the study, we generated the vector of covariates Xi from N (0, ΣX) and the covariance
matrix ΣX with the (l, m) element being 0.5|l−m|. Given the Xi’s, the true failure times were
generated based on model (1) with H(T) = log(T + 1) and the εi’s following the standard
normal distribution. For the generation of the observed interval-censored data or the two
observation times for each subject, they were set to be times from the homogeneous Poisson
process with the interexamination times being independently and identically distributed in
the exponential distribution with a mean of 0.4 (Li et al., 2019 [20]).

For the application of the proposed variable selection procedure, we set

h∗ = δ1 ∗ 0 + δ2 ∗ 0 + δ3 ∗
1

1 + v
/gv(v) (8)

by following Deng et al. (2012) [29]. Meanwhile, we set

h∗ = δ1 ∗ 0 + δ2 ∗
1

1 + u
/gu(u) + δ3 ∗

1
1 + u

/gu(u) (9)

and
h∗ = δ1 ∗ 0 + δ2 ∗

1
1 + u

/2gu(u) + δ3 ∗ (
1

1 + u
/2gu(u) +

1
1 + v

/2gv(v)). (10)

For the kernel estimators ĝ(u) and ĝ(v), we considered the following biquadratic
kernel function

K(t) =
{

3/4
(
1− t2), |t| ≤ 1,

0, else,

and several different bandwidths. They include (a) n−1/5, (b) 1.06 · σ̂ · n−1/5, (c) 1.06 ·
min(σ̂, R̂/1.34) · n−1/5 with R̂ being the 0.75 quantile minus the 0.25 quantile, and (d)
c1 · n−1/5, where σ̂ denotes the sample standard deviation and c1 is selected by the CV
method over 20 numbers from (0.5, 1.5) with equal distance. The simulation results of
above four circumstances are listed in Supplemental Materials. We also considered the
selection of the tuning parameter λn and the bandwidth choice (d) together, based on the
BIC described above with λn over 50 numbers from 0.001 to 0.01 with equal distance and
c1 over 10 numbers from (0.5, 1.5) with equal distance. The results given below are based
on the sample size n = 300 or n = 500 with 100 replications and p = 10, 30, 50, or 100.

Tables 1, 2 and 3 are based on (8), (9), (10), respectively. Tables 1–3 present the results on
the covariate selection with β0 = (0.5, 0.5, 0>p−2)

> and β0 = (0.5, 0.7, 0>p−2)
>, corresponding

to relatively moderate and weak signals, respectively, as well as β0 = (0.5, 0.5, 0.5, 0.5, 0>p−4)
>.

They include the average number of nonzero estimates of the parameters whose true values
are not zero (TP) and the average number of nonzero estimates of the parameters whose
true values are zero (FP). In addition, we calculated and included in the table the median
mean squared errors (MMSE) given by (β̂− β0)

>ΣX(β̂− β0), measuring the prediction
accuracy, and the standard deviation of MSE (SD), where ΣX denotes the population
covariance matrix of the covariates. In the table, in addition to the BAR penalty function,
we also considered the LASSO, MCP, and SCAD penalty functions, and the joint selection
of the tuning parameter λn and the bandwidth based on the BIC was used. We also added
backward stepwise variable selection based on BIC and for β0 = (0.5, 0.5, 0>p−2)

> in Table 1.
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Table 1. Simulation results based on the joint selection of the tuning parameter and bandwidth for (I).

n = 300 n = 500

β = (0.5, 0.5, 0, . . . , 0)

p Method TP FP MMSE (SD) TP FP MMSE (SD)

10 Stepwise 1.49 0.12 0.179 (0.097) 1.96 1.58 0.144 (0.060)
LASSO 2.00 1.03 0.174 (0.071) 2.00 1.21 0.164 (0.065)
SCAD 1.95 0.92 0.145 (0.070) 1.97 0.90 0.132 (0.063)
MCP 1.92 0.77 0.139 (0.064) 1.95 0.76 0.131 (0.061)
BAR 1.89 0.49 0.242 (0.090) 1.95 0.48 0.134 (0.058)

30 Stepwise 1.90 5.65 0.279 (0.115) 1.98 5.05 0.208 (0.069)
LASSO 1.99 3.17 0.216 (0.145) 2.00 2.86 0.186 (0.056)
SCAD 1.93 2.97 0.187 (0.085) 1.99 2.51 0.145 (0.059)
MCP 1.90 2.68 0.187 (0.092) 1.98 2.01 0.137 (0.056)
BAR 1.98 1.14 0.143 (0.055) 1.98 1.14 0.143 (0.054)

50 Stepwise 1.84 9.90 0.400 (0.140) 1.96 9.69 0.292 (0.083)
LASSO 1.97 4.86 0.233 (0.063) 2.00 4.66 0.193 (0.054)
SCAD 1.90 4.54 0.206 (0.079) 1.96 4.25 0.151 (0.063)
MCP 1.88 4.32 0.220 (0.099) 1.95 3.78 0.155 (0.068)
BAR 1.73 1.45 0.205 (0.079) 1.93 1.76 0.158 (0.066)

100 Stepwise 1.87 25.96 0.875 (0.277) 1.96 21.61 0.542 (0.137)
LASSO 1.99 9.83 0.255 (0.079) 2.00 8.67 0.211 (0.064)
SCAD 1.86 9.55 0.228 (0.103) 1.97 8.12 0.173 (0.081)
MCP 1.87 8.85 0.299 (0.133) 1.95 7.32 0.189 (0.095)
BAR 1.75 2.99 0.253 (0.101) 1.91 3.27 0.196 (0.082)

β = (0.5, 0.7, 0, . . . , 0)

10 LASSO 2.00 1.13 0.278 (0.086) 2.00 1.25 0.225 (0.074)
SCAD 1.94 0.85 0.225 (0.080) 1.97 0.86 0.209 (0.070)
MCP 1.94 0.84 0.220 (0.076) 1.97 0.77 0.204 (0.067)
BAR 1.89 0.29 0.229 (0.082) 1.95 0.45 0.214 (0.067)

30 LASSO 2.00 3.06 0.311 (0.096) 2.00 2.85 0.276 (0.069)
SCAD 1.90 2.80 0.248 (0.099) 1.99 2.53 0.209 (0.069)
MCP 1.91 2.69 0.258 (0.109) 1.99 2.12 0.207 (0.063)
BAR 1.85 0.91 0.254 (0.102) 1.98 1.08 0.214 (0.065)

50 LASSO 1.98 4.78 0.337 (0.082) 2.00 4.13 0.278 (0.059)
SCAD 1.90 4.64 0.284 (0.092) 2.00 3.55 0.214 (0.069)
MCP 1.93 4.32 0.292 (0.115) 1.98 3.25 0.214 (0.067)
BAR 1.82 2.07 0.373 (0.578) 1.97 1.48 0.221 (0.063)

100 LASSO 1.99 9.44 0.343 (0.092) 1.99 8.14 0.312 (0.069)
SCAD 1.94 9.50 0.298 (0.121) 1.98 8.04 0.241 (0.079)
MCP 1.90 8.45 0.346 (0.137) 1.99 7.19 0.249 (0.082)
BAR 1.83 2.72 0.309 (0.113) 1.99 3.12 0.262 (0.079)

β = (0.5, 0.5, 0.5, 0.5, 0, . . . , 0)

10 LASSO 3.92 1.03 0.649 (0.134) 3.97 1.10 0.588 (0.109)
SCAD 3.60 0.81 0.591 (0.132) 3.81 0.87 0.530 (0.120)
MCP 3.39 0.58 0.586 (0.137) 3.67 0.64 0.533 (0.125)
BAR 3.24 0.25 0.615 (0.138) 3.61 0.37 0.552 (0.126)
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Table 1. Cont.

β = (0.5, 0.5, 0.5, 0.5, 0, . . . , 0)

30 LASSO 3.89 2.79 0.705 (0.127) 3.99 2.58 0.643 (0.112)
SCAD 3.56 2.62 0.630 (0.139) 3.76 2.59 0.557 (0.121)
MCP 3.38 2.27 0.614 (0.136) 3.67 2.07 0.540 (0.110)
BAR 3.15 0.75 0.630 (0.140) 3.64 0.96 0.547 (0.109)

50 LASSO 3.90 4.49 0.754 (0.119) 3.98 4.40 0.663 (0.108)
SCAD 3.51 4.30 0.679 (0.132) 3.70 4.38 0.578 (0.122)
MCP 3.45 3.82 0.660 (0.144) 3.57 3.60 0.555 (0.123)
BAR 3.08 1.19 0.673 (0.138) 3.57 1.68 0.566 (0.111)

100 LASSO 3.84 9.20 0.793 (0.139) 3.97 7.62 0.695 (0.086)
SCAD 3.38 9.15 0.724 (0.157) 3.64 7.80 0.616 (0.094)
MCP 3.05 8.04 0.742 (0.191) 3.52 6.50 0.600 (0.100)
BAR 3.00 2.57 0.735 (0.172) 3.53 2.99 0.607 (0.101)

Table 2. Simulation results based on the joint selection of the tuning parameter and bandwidth
n = 300 for (II).

β = (0.5, 0.5, 0, . . . , 0)

p Method TP FP MMSE (SD)

10 LASSO 2.00 0.52 0.174 (0.047)
SCAD 1.99 0.38 0.129 (0.048)
MCP 1.99 0.32 0.127 (0.044)
BAR 1.96 0.08 0.132 (0.047)

30 LASSO 2.00 1.47 0.197 (0.053)
SCAD 1.99 1.20 0.151 (0.055)
MCP 1.99 1.12 0.133 (0.049)
BAR 1.92 0.31 0.150 (0.057)

50 LASSO 2.00 1.96 0.204 (0.048)
SCAD 2.00 1.99 0.159 (0.054)
MCP 1.96 1.57 0.140 (0.050)
BAR 1.96 0.29 0.144 (0.048)

100 LASSO 2.00 4.01 0.215 (0.058)
SCAD 2.00 1.99 0.159 (0.054)
MCP 1.98 3.60 0.149 (0.057)
BAR 1.97 0.70 0.159 (0.053)

β = (0.5, 0.7, 0, . . . , 0)

10 LASSO 2.00 0.55 0.277 (0.055)
SCAD 1.99 0.35 0.218 (0.053)
MCP 1.99 0.28 0.213 (0.050)
BAR 1.95 0.10 0.222 (0.055)

30 LASSO 2.00 1.40 0.304 (0.070)
SCAD 1.98 1.07 0.232 (0.064)
MCP 1.99 1.14 0.216 (0.062)
BAR 1.95 0.29 0.231 (0.057)

50 LASSO 2.00 2.25 0.320 (0.061)
SCAD 2.00 1.94 0.238 (0.062)
MCP 2.00 1.85 0.227 (0.057)
BAR 1.98 0.34 0.233 (0.056)
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Table 2. Cont.

β = (0.5, 0.7, 0, . . . , 0)

100 LASSO 2.00 3.76 0.325 (0.060)
SCAD 1.99 3.82 0.251 (0.067)
MCP 1.98 3.42 0.236 (0.062)
BAR 1.94 0.68 0.249 (0.061)

β = (0.5, 0.5, 0.5, 0.5, 0, . . . , 0)

10 LASSO 3.97 0.40 0.673 (0.102)
SCAD 3.71 0.33 0.599 (0.100)
MCP 3.58 0.23 0.594 (0.090)
BAR 3.32 0.06 0.634 (0.106)

30 LASSO 3.99 1.43 0.731 (0.106)
SCAD 3.77 1.20 0.645 (0.105)
MCP 3.61 1.30 0.600 (0.107)
BAR 3.44 0.26 0.626 (0.106)

50 LASSO 3.99 2.05 0.751 (0.092)
SCAD 3.74 2.22 0.648 (0.103)
MCP 3.63 1.81 0.618 (0.103)
BAR 3.41 0.38 0.624 (0.112)

100 LASSO 3.96 3.55 0.775 (0.081)
SCAD 3.76 3.77 0.692 (0.102)
MCP 3.64 3.25 0.627 (0.118)
BAR 3.38 0.55 0.644 (0.112)

Table 3. Simulation results based on the joint selection of the tuning parameter and bandwidth
n = 300 for (III).

β = (0.5, 0.5, 0, . . . , 0)

p Method TP FP MMSE (SD)

10 LASSO 2.00 0.63 0.165 (0.057)
SCAD 1.98 0.42 0.125 (0.054)
MCP 1.92 0.77 0.139 (0.064)
BAR 1.95 0.14 0.128 (0.053)

30 LASSO 2.00 1.82 0.191 (0.057)
SCAD 1.98 1.44 0.142 (0.058)
MCP 1.90 2.68 0.187 (0.092)
BAR 1.94 0.37 0.139 (0.055)

50 LASSO 2.00 2.83 0.200 (0.046)
SCAD 1.99 2.31 0.153 (0.058)
MCP 1.88 4.32 0.220 (0.099)
BAR 1.96 0.42 0.137 (0.050)

100 LASSO 2.00 5.25 0.214 (0.055)
SCAD 1.95 5.45 0.171 (0.071)
MCP 1.96 1.57 0.140 (0.050)
BAR 1.92 1.04 0.161 (0.066)

β = (0.5, 0.7, 0, . . . , 0)

10 LASSO 2.00 0.78 0.261 (0.068)
SCAD 1.98 0.53 0.204 (0.060)
MCP 1.98 0.47 0.202 (0.056)
BAR 1.94 0.13 0.211 (0.063)
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Table 3. Cont.

β = (0.5, 0.7, 0, . . . , 0)

30 LASSO 2.00 1.80 0.275 (0.067)
SCAD 2.00 1.20 0.217 (0.064)
MCP 2.00 1.42 0.201 (0.065)
BAR 1.95 0.31 0.222 (0.064)

50 LASSO 2.00 2.54 0.305 (0.062)
SCAD 1.95 2.36 0.223 (0.066)
MCP 1.97 2.25 0.220 (0.061)
BAR 1.96 0.58 0.225 (0.063)

100 LASSO 2.00 4.8 0.231 (0.081)
SCAD 1.97 4.45 0.231 (0.066)
MCP 1.97 4.70 0.158 (0.063)
BAR 1.91 0.90 0.232 (0.070)

β = (0.5, 0.5, 0.5, 0.5, 0, . . . , 0)

10 LASSO 3.96 0.58 0.618 (0.110)
SCAD 3.74 0.40 0.553 (0.108)
MCP 3.63 0.32 0.544 (0.104)
BAR 3.43 0.11 0.578 (0.114)

30 LASSO 3.96 1.36 0.694 (0.106)
SCAD 3.77 1.79 0.588 (0.104)
MCP 3.59 1.07 0.571 (0.109)
BAR 3.42 0.32 0.594 (0.113)

50 LASSO 3.97 2.19 0.702 (0.096)
SCAD 3.69 2.54 0.627 (0.095)
MCP 3.63 1.94 0.576 (0.102)
BAR 3.39 0.58 0.600 (0.106)

100 LASSO 3.96 4.93 0.738 (0.093)
SCAD 3.63 4.79 0.642 (0.102)
MCP 3.57 4.70 0.612 (0.099)
BAR 3.35 1.17 0.615 (0.117)

Furthermore, we added lower and greater sample sizes n = 100 and n = 5000 with
p = 5 in Table 4 with β0 = (0.5, 0.5, 0>p−2)

>. Furthermore, we added an extra simulation to
demonstrate how this method works in the presence of noncontinuous covariates, i.e., the
last covariates are generated from a Bernoulli distribution with a 0.5 success probability.
The simulation results of this setup are presented in Table 5 with n = 300, p = 10, 30, 50,
and β0 = (0.5, 0.5, 0>)>. Finally, we considered a toy example in which the left endpoint
imputation is considered (Sun, 2006). We illustrated the results in Table 6 to show the error
that would be made if the data were considered as uncensored with n = 100, p = 5 and
β0 = (0.5, 0.5, 0>p−2)

>.

Table 4. Simulation results based on the joint selection of the tuning parameter and bandwidth for
n = 100 or n = 5000 with p = 5.

n = 100 n = 5000

β = (0.5, 0.5, 0, . . . , 0)

p Method TP FP MMSE (SD) TP FP MMSE (SD)

5 LASSO 1.81 0.68 0.234 (0.104) 2.00 0.74 0.084 (0.065)
SCAD 1.60 0.58 0.220 (0.103) 2.00 0.36 0.077 (0.018)
MCP 1.55 0.50 0.218 (0.107) 2.00 0.30 0.076 (0.019)
BAR 1.21 0.14 0.267 (0.117) 2.00 0.03 0.079 (0.021)
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Table 5. Simulation results based on the joint selection of the tuning parameter and bandwidth
n = 100 for existing noncontinuous covariate.

β = (0.5, 0.5, 0, . . . , 0)

p Method TP FP MMSE (SD)

10 LASSO 1.98 1.25 0.188 (0.074)
SCAD 1.93 1.04 0.156 (0.076)
MCP 1.90 0.94 0.155 (0.078)
BAR 1.81 0.38 0.162 (0.085)

30 LASSO 1.99 3.42 0.229 (0.077)
SCAD 1.93 3.07 0.199 (0.087)
MCP 1.89 2.69 0.199 (0.093)
BAR 1.82 1.26 0.200 (0.090)

50 LASSO 1.99 5.60 0.232 (0.074)
SCAD 1.92 5.32 0.202 (0.086)
MCP 1.90 4.83 0.218 (0.092)
BAR 1.79 1.61 0.206 (0.087)

Table 6. Comparison of the proposed method to the left endpoint method.

Proposed Method Left Endpoint Imputation

β = (0.5, 0.5, 0, . . . , 0)

p Method TP FP MMSE (SD) TP FP MMSE (SD)

5 LASSO 1.81 0.68 0.234 (0.104) 1.89 0.10 0.313 (0.086)
SCAD 1.60 0.58 0.220 (0.103) 1.58 0.06 0.305 (0.084)
MCP 1.55 0.50 0.218 (0.107) 1.52 0.13 0.313 (0.071)
BAR 1.21 0.14 0.268 (0.117) 0.97 0.02 0.385 (0.089)

One can see from Tables 1–3 that the proposed approach seems to perform well with
all penalty functions considered and in general, the method with the BAR penalty function
gave smaller FP and thus parsimonious models. Meanwhile, results are similar for (I), (II),
and (III). As expected, the method with the LASSO penalty function gave slightly larger FP
and tended to select more noises than other penalty functions, and the method gave better
results on both variable selection and prediction accuracy when the sample size increased.
Furthermore, as expected, the important covariates with weak effects were more difficult
to be identified than moderate effect covariates. The stepwise variable selection gave the
largest MMSE and SD. One can see from Table 4 that the results with a larger sample have
lower MMSE and SD. The proposed method only needed 17 s, 15 s, 20 s, and 5 s for LASSO,
SCAD, MCP and BAR, respectively, on average in Table 4. One can see from Table 5 that
the proposed procedure works in the presence of noncontinuous covariates. The unbiased
transformation method can improve accuracy as shown when comparing the proposed
method to the left endpoint imputation in Table 6.

6. An Application

In this section, we apply the methodology proposed in the previous sections to a set of
children’s mortality data arising from the 2003 Nigeria Demographic and Health Survey
(Kneib, 2006) [36]. The data set consists of 5730 children with their survival information
and six covariates. They are AGE (the age of the children’s mother when giving birth), BMI
(the mother’s body mass index at birth), HOSP (1 if the baby was delivered in a hospital
and 0 otherwise), GENDER (1 for boys and 0 otherwise), EDU (1 if the mother received
higher education and 0 otherwise), and URBAN (1 if the family lived in an urban area and 0
otherwise). Among others, one of the objectives of the study was to identify the covariates
that had a significant effect on children’s mortality in Nigeria.

In the study, for each subject, if death occurred within the first two months after birth,
the failure time could be observed exactly, and otherwise, only interval-censored observa-
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tions were obtained based on the interview times of their mothers. Among the 5730 chil-
dren, 233 gave exact failure times, 430 interval-censored observations, and the others
provided right-censored observations. To apply the proposed approach, as in the simula-
tion study, we set H(T) = log(T + 1) and used the same four penalty functions. For the
three functions φ1(·, ·), φ2(·, ·) and φ3(·, ·), we considered three choices and they are (I)
φ1(Ui, Vi) = 0, φ2(Ui, Vi) = 0, φ3(Ui, Vi) = H′(Vi)/ĝv(Vi); (II) φ1(Ui, Vi) = 0, φ2(Ui, Vi) =
H′(Ui)/ĝu(Ui), φ3(Ui, Vi) = H′(Ui)/ĝu(Ui); (III) φ1(Ui, Vi) = 0, φ2(Ui, Vi) = H′(Ui)/
2ĝu(Ui), φ3(Ui, Vi) = H′(Ui)/2ĝu(Ui) + H′(Vi)/2ĝu(Vi), which will be referred to as
choices (I), (II), and (III) below, respectively. Note that for exact failure times, we used H(T)
as the response and made no unbiased transformation.

The results on the covariate selection and the estimated covariate effects are presented
in Tables 7–9 with the use of choices (I)–(III), respectively. In addition, the estimated stan-
dard errors were obtained by using the nonparametric bootstrap method with 100 bootstrap
samples and are included in the tables. One can see from these tables that the results seem
to be robust with respect to the three choices, and all methods selected the factor AGE, sug-
gesting that the age of the mother giving birth has a significant effect on the mortality risk
of the children. The factor EDU was also selected by the LASSO, SCAD, and MCP penalty
functions, and the results indicate that the level of the mother’s education seem to have a
significant effect on the mortality risk. Xu et al. (2020) [37] have analyzed this application.
They also found that EDU had a significant effect on the mortality risk of the children by
the LASSO, ALASSO, and SCAD penalty functions. In contrast, the results suggest that the
mother’s body mass index, the child’s gender, the baby’s birth location, and the family’s
location did not appear to have significant effects on the children’s mortality or death rate.

Table 7. Analysis results of children’s mortality data based on choice (I).

Factor LASSO SCAD MCP BAR

Age 0.234(0.110) 0.248(0.110) 0.248(0.132) 0.162(0.134)
BMI 0.000(0.132) 0.000(0.111) 0.000(0.154) 0.000(0.110)
HOPS 0.000(0.123) 0.000(0.130) 0.000(0.118) 0.000(0.094)
GENDER 0.000(0.109) 0.000(0.108) 0.000(0.102) 0.000(0.088)
EDU 0.092(0.119) 0.115(0.143) 0.098(0.146) 0.000(0.115)
URBAN 0.000(0.126) 0.000(0.122) 0.000(0.101) 0.000(0.120)

Table 8. Analysis results of children’s mortality data based on choice (II).

Factor LASSO SCAD MCP BAR

Age 0.238(0.109) 0.252(0.115) 0.252(0.105) 0.167(0.090)
BMI 0.000(0.108) 0.000(0.123) 0.000(0.118) 0.000(0.100)
HOPS 0.000(0.131) 0.000(0.107) 0.000(0.144) 0.000(0.109)
GENDER 0.000(0.121) 0.000(0.119) 0.000(0.122) 0.000(0.119)
EDU 0.110(0.102) 0.133(0.161) 0.133(0.118) 0.000(0.105)
URBAN 0.000(0.127) 0.000(0.114) 0.000(0.104) 0.000(0.091)

Table 9. Analysis results of children’s mortality data based on choice (III).

Factor LASSO SCAD MCP BAR

Age 0.243(0.093) 0.257(0.111) 0.257(0.105) 0.162(0.134)
BMI 0.000(0.119) 0.000(0.127) 0.000(0.154) 0.000(0.110)
HOPS 0.000(0.145) 0.000(0.148) 0.000(0.118) 0.000(0.094)
GENDER 0.000(0.123) 0.000(0.101) 0.000(0.102) 0.000(0.088)
EDU 0.128(0.097) 0.149(0.109) 0.149(0.119) 0.000(0.115)
URBAN 0.000(0.117) 0.000(0.118) 0.000(0.105) 0.000(0.120)
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7. Discussion and Concluding Remarks

This paper discussed the variable selection for generalized linear models when only
interval-censored failure time data are available, and for that problem, a new unbiased-
transformation-based approach was proposed. One advantage for the use of the unbiased
transformation is that it allows one to employ the simple penalized least squares approach
for estimation. The proposed approach can accommodate any penalty function such as
LASSO, SCAD, MCP, and BAR, and a coordinate descent algorithm was developed for the
implementation of the proposed procedure. In addition, the asymptotic properties of the
resulting estimators were established, and the simulation study indicated that the proposed
methodology works well for practical situations.

There exist several directions for future research. One is that in the proposed method,
it was assumed that H(T) < ∞ and it is clear that this may not hold in practice. One
such example is the accelerated failure time (AFT) model, in which case the proposed
method would not be valid. In other words, one needs to modify the proposed unbiased
transformation or develop some new methods that can be applied to the AFT model.
Another direction is that in practical applications, one may encounter multivariate failure
time data; in that scenario, Cai et al. (2005) [14] proposed a penalized marginal likelihood
method for right-censored data with a mass of covariates. It would be helpful to develop
some flexible and reliable methods to handle other types of multivariate failure time data
including interval-censored data. A third direction is that it has been assumed in the
previous sections that the dimension of covariates pn can diverge to infinity but is smaller
than the sample size n. Obviously, there may be case where pn is greater than n such as
in genetic or biomarker studies. In other words, some new methods that allow for pn > n
need to be developed.

As one anonymous reviewer pointed out, neutrosophic statistics (Smarandache,
1998 [38]; Smarandache, 2013 [39]) is the extension of classical statistics and is applied when
the data is coming from a complex process or from an uncertain environment. The current
study can be extended using neutrosophic statistics as future research.
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Appendix A

In this appendix, we sketch the proof of Theorem 1. For completeness, we introduce a
few lemmas and notations, which are useful for the proof of Theorem 1. Let Cn = X>X/n.
When we consider BAR penalty, i.e.,

arg min
β

n−1
n

∑
i=1

(ĥ∗i − n−1
n

∑
q=1

ĥ∗q − X>i β)2 + λ
n

∑
j=1

β2
j /β̃2

j . (A1)

In Section 2 we can get

βk = g(βk−1) =
{

X>X + λnD(βk−1)
}−1

X>Ŷ∗ =
(

α∗(βk−1)>, γ∗(βk−1)>
)>

. (A2)

For simplicity, we write α∗(β) and γ∗(β) as α∗ and γ∗. C−1
n can be partitioned as

C−1
n =

(
A11 A12
A>12 A22

)
,

where the A11 is a q× q matrix. Multiplying
(
X>X

)−1(
X>X + λnD(β)

)
to Equation (A2)

gives(
α∗ − β01

γ∗

)
+ λn/n

(
A11D1(α)α

∗ + A12D2(γ)γ
∗

A>12D1(α)α
∗ + A22D2(γ)γ

∗

)
=
(

X>X
)−1

X>ε̂∗ = β̂least − β0,

where ε̂∗i = ε∗i + (ĥ∗i − n−1 ∑n
q=1 ĥ∗q − h∗i + n−1 ∑n

q=1 h∗q), β̂least =
(
X>X

)−1
X>Ŷ∗, D1(α) =

diag
(

α−2
1 , . . . , α−2

qn

)
, D2(γ) = diag

(
γ−2

1 , . . . , γ−2
pn−qn

)
, and ε∗i = h∗i − n−1 ∑n

q=1 h∗q − XT
i β.

Lemma A1. Assume that the conditions C2, C6 hold and φ1(·, ·), φ2(·, ·), and φ3(·, ·) are contin-
uous functions with finite continuous partial derivatives. We have

sup
u,v
|ĥ∗(ĝu(u), ĝv(v))− h∗(gu(u), gv(v))| → 0 a.s. as n→ ∞.

Proof. Under the conditions C2 and C6, we have that supu |ĝu(u) − gu(u)| → 0 a.s.
and supv |ĝv(v)− gv(v)| → 0 a.s. as n → ∞ according to Theorem A in Silverman
(1978) [31]. Using Taylor’s expansion, φ1(·, ·), φ2(·, ·), and φ3(·, ·) are continuous functions
with finite continuous partial derivatives yielding

sup
u,v
|ĥ∗(ĝu(u), ĝv(v))− h∗(gu(u), gv(v))| → 0 a.s. as n→ ∞.

The proof of Lemma A1 is completed.

Lemma A2. Let β̂least denote the least squares estimator defined in (3), β0 is a true value of β and
suppose that the conditions C1 to C8 hold. Then, we have that∥∥∥β̂least − β0

∥∥∥ = Op(
√

pn/n),

Proof. When we consider (A1), according to C4, we get Var(ε) < ∞. According to (3),
we get n−1 ∑n

i=1(h
∗
i − n−1 ∑n

q=1 h∗q − XT
i β + ĥ∗i − n−1 ∑n

q=1 ĥ∗q − h∗i + n−1 ∑n
q=1 h∗q)2. After

some simple algebraic manipulations, we get

(ĥ∗i − n−1
n

∑
q=1

ĥ∗q − h∗i + n−1
n

∑
q=1

h∗q + ε∗)2 ≤ 2(ĥ∗i − n−1
n

∑
q=1

ĥ∗i − h∗i + n−1
n

∑
q=1

h∗q)
2 + 2ε∗2.

Under the conditions C1 to C8, we have that 2(ĥ∗i − n−1 ∑n
q=1 ĥ∗q − h∗i + n−1 ∑n

q=1 h∗q)2 =

op(1). According to Lemma A1, nE(ĥ∗i − n−1 ∑n
q=1 ĥ∗i − h∗i + n−1 ∑n

q=1 h∗q + ε∗i )
2 = nE(ε∗2i ) +
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nop(1). nE‖β̂least − β0‖ = nE(‖(X>X)−1X>(Ŷ∗ − Y∗ + ε∗)‖2) = (E(ε∗>ε∗) + op(1)) ·
trace(Cn) = Op(pn). We get that ‖β̂least − β0‖2 = Op(pn/n).

Lemma A3. Suppose that the conditions C2, C4, and C6 hold. Then, we have that

lim
n→∞

P(|Var(Ŷ∗)−Var(Y∗)| > ε) = 0.

Proof. According to C4, we know Var(Y∗) = E(ε∗>ε∗) < ∞. According to Lemma A1, ĥ∗i
converges to h∗i in probability for i = 1, . . . , n. Then, Var(Ŷ∗) = E{(Ŷ∗ − Y∗ + ε∗)>(Ŷ∗ −
Y∗ + ε∗)} = E((ε∗>ε∗) + ε∗(Ŷ∗ − Y∗) + (Ŷ∗ − Y∗)2) = E(ε∗>ε∗) + op(1). So Lemma A3
is proved.

Proof of Theorem 1 (Oracle Property). For a zero component, according to Lemma 1 in [12]
conclusion (i), let δn be a sequence of positive real numbers satisfying δn → ∞ and δ2

n pn/λn → 0.
DefineHn =

{
β ∈ Rpn : ‖β− β0‖ ≤ δn

√
pn/n

}
,Hn1 =

{
α ∈ Rqn : ‖α− β01‖ ≤ δn

√
pn/n

}
.

Then, with probability tending to 1, we have

‖γ∗‖ < ‖γ‖ ≤ δn
√

pn/n→ 0. (A3)

For a nonzero component, according to Lemma 2 in [12], f (α) is a contraction mapping
from Hn1 to itself, where

f (α) =
{

X>α Xα + λnD1(α)
}−1

X>α Ŷ∗.

Let α̂◦ is the unique fixed point of f (α) defined by α̂◦ =
{

X>α Xα + λnD1(α̂
◦)
}−1

X>α Ŷ∗.
Hence, to prove the consistency of nonzero parts in Theorem 1, it is sufficient to

show that

Pr
(

lim
k→∞

∥∥∥α̂(k) − α̂◦
∥∥∥ = 0

)
→ 1. (A4)

Define γ∗ = 0 if γ = 0. It is easy to see from (A3) that for any α ∈ Hn1,

lim
γ→0

γ∗(α, γ) = 0. (A5)

Combining (A5) with the fact that(
X>α Xα + λnD1(α) X>α Xγ

X>γ Xα X>γ Xγ + λnD2(γ)

)(
α∗

γ∗

)
=

(
X>α Ŷ∗

X>γ Ŷ∗

)
,

we find that, for any α ∈ Hn,

lim
γ→0

α∗(α, γ) =
{

X>α Xα + λnD1(α)
}−1

XαŶ∗ = f (α). (A6)

According to conclusion b in Lemma 1 of Dai et al. (2018) [12], g in (A2) is a mapping
from Hn to itself. This, together with (A3) and (A6), implies that, as k→ ∞,

ηk ≡ sup
α∈Hn

∥∥∥ f (α)− α∗
(

α, γ̂(k)
)∥∥∥→ 0. (A7)

with probability tending to 1. Note that∥∥∥α̂(k+1) − α̂◦
∥∥∥ =

∥∥∥α∗
(

β̂(k)
)
− α̂◦

∥∥∥ ≤ ∥∥∥α∗
(

β̂(k)
)
− f

(
α̂(k)

)∥∥∥+ ∥∥∥ f
(

α̂(k)
)
− α̂◦

∥∥∥
≤ ηk +

1
E

∥∥∥α̂(k) − α̂◦
∥∥∥,

where the last step is on the basis of
∥∥∥ f
(

α̂(k)
)
− α̂◦

∥∥∥ =
∥∥∥ f
(

α̂(k)
)
− f (α̂◦)

∥∥∥ ≤ ∥∥∥α̂(k) − α̂◦
∥∥∥/E.

Let ak =
∥∥∥α̂(k) − α̂◦

∥∥∥, for every integer k ≥ 0. From (A7), for any ε > 0, there exists a
positive integer N such that for every integer k > N, |ηk| < ε

ak+1 ≤
ak−1

E2 +
ηk−1

E
+ ηk ≤

a1

Ek +
η1

Ek−1 + · · ·+ ηN

Ek−N +
( ηN+1

Ek−N−1 + · · ·+ ηk−1
E

+ ηk

)
≤ (a1 + η1 + · · ·+ ηN)

1
Ek−N +

1− (1/E)k−N

1− 1/E
ε
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with probability 1 as n tends to ∞ and the right-hand term tends to 0 as k→ ∞. This proves

(A4). Therefore, limk→∞ β(k) =
(
α̂◦>, 0

)>
.

Proof of Theorem 1 (Asymptotic Normality). We next prove the asymptotic normality of
the nonzero components in the BAR regression. Finally, based on (A6), we have

√
n(α̂∗ − α) = Π1 + Π2,

where
Π1 =

√
n[(X>α Xα + λnD1(α))

−1XαX>α − Iqn ]α,

Π2 =
√

n[(X>α Xα + λnD1(α))
−1(X>α Ŷ∗ − X>α Xαα)].

According to the first-order resolvent expansion formula, we obtain(
X>α Xα + λnD1(α)

)−1
=
(

X>α Xα

)−1
− λn

(
X>α Xα

)−1
D1(α)

(
X>α Xα

+λnD1(α))
−1.

This yields

Π1 =− λn/
√

n
(

X>α Xα/n
)−1

D1(α̂)
(

X>α Xα + λnD1(α)
)−1

× XαX>α α .

With conditions C7 and C8, we can get

‖Π1‖ = Op

(
λn
√

qn/n
)
→ 0 ,

Π2 =
√

n[(n−1X>α Xα + op(n−1/2)]−1(n−1X>α Ŷ∗ − n−1X>α Xαα)].

Therefore, we can get
√

n(α̂∗ − α) = E(X>α Xα)
−1n−1/2(X>α Ŷ∗ − X>α Xαα) + op(1).

According to Lemma A3, we know that Var(Ŷ∗) converge to Var(Y∗) in probability.
Then, we get √

nΣ
(−1/2)
(1) (α̂∗ − α∗)→ N(0, Iq×q)

in distribution. Denote E(X>α Xα)−1Var(X>α Y∗)E(X>α Xα)−1 as Σ(1). This complete the proof.
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