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1. Introduction and Preliminaries

The following inequality regarding square integrable functions is known as the
Wirtinger inequality:

27

Theorem 1 ([1,2]). Let @ be a real-valued function with period 27t and / @(p)dp = 0. If
0

@' € L2[0,27], then:

[ oGP < [, W

with equality holding iff @ (u) = Aj cos p + Ay sin i, where Ay, Ay € R. For recently published
papers of this type, see [3-5].

Beesack in [6,7] generalized (1) as follows:

Theorem 2. Let @ be absolutely continuous on [0, §) with @(0) = 0, then for all p > 1, we have:

ol v o

with equality holding iff @(u) = c{ () and () satisfies the following equation:

—psin(TI)/éldé 0<¢<1
SRV 7 e

27 p 1
@ < =
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The next functional is known as the Chebyshev functional (see [8]):

T(@,0) = — /lzw(é)ﬁ(é)dé— L /lzw(a)da. 1 /1219(5)(15. 3)

lp =11 Jy lp—1n lp =11 Jy

Several bounds for 7 (@, 9) have been found by many authors, and many impor-
tant applications have been given. For example, Alomari in [9] obtained a bound for the
Chebyshev functional. Masirevi¢ et al. in [10] established new bounds on the Chebyshev
functional for the C,[0, 1] function class. Rahman et al. in [11] derived certain new pro-
portional and Hadamard proportional fractional integral inequalities. Khan et al. in [12]
investigated the Hirota equation using the modified double Laplace decomposition method.
Rahman et al. in [13] obtained the weighted fractional integral inequalities for Chebyshev
functionals. Khan et al. in [14] established applications of the fixed-point theory to in-
vestigate a system of factional-order differential equations. Ayub et al. in [15] used new
a Mittag—Leffler function and derived its applications. Igbal et al. in [16] found new
generalized Pélya-Szego- and Chebyshev-type inequalities with a general kernel and mea-
sure. Gul et al. in [17] investigated a class of boundary-value problems under the ABC
fractional derivative. Nisar et al. in [18] derived the weighted fractional Pélya-Szego- and
Chebyshev-type integral inequalities concerning another function. Khan et al. in [19] inves-
tigated the impulsive boundary-value problem with the Riemann-Liouville fractional-order
derivative. Rahman et al. in [20] established generalized fractional integral inequalities
for the monotone weighted Chebyshev functionals. Srivastava et al. in [21] obtained new
Chebyshev-type inequalities via a general family of fractional integral operators with a
modified Mittag—Leffler kernel. Set et al. in [22] found Chebyshev-type inequalities by us-
ing generalized proportional Hadamard fractional integrals via the Polya-Szego inequality
with applications. Ozdemir et al. in [23] obtained some new Chebyshev-type inequalities
for functions whose derivatives belong to L, spaces. Akdemir et al. in [24] found new gen-
eral variants of Chebyshev-type inequalities via generalized fractional integral operators.
Butt et al. in [25] used Caputo fractional derivatives via exponential s-convex functions.

The following important results were obtained by Alomari in [9].

Lemma 1. Let 1y < 1pand iy,1p € I° (the interior set of I). Assume that o is an absolutely continuous
function on 1, where @ and @' are positive and @(11) = 0. If p > 1 and flllz (@' (p)]Pdu < oo, then:

2 Psin? (2 ”
[ Pdn < ’;W_(i))oz—w [ 1@ Gy @

Jl

Psin? (&

The constant p?[p(Tlp)(lZ — 11)P is the best possible for every p > 1.

Lemma 2. Let 11 < 1p and 11,1 € I°. Suppose that @ is an absolutely continuous function on I,
leegeli and @" are positive and @ (1) = 0. If p > 1 and fl’lz [@ ()]Pdu < oo, then the inequality
olds.

Let us denote UP(11,12) where p > 1 the space of all positive n-th differentiable
functions @ whose n-th derivatives @(") are positive locally absolutely continuous on

(11, 12) with the condition that flllz {a)(”) ( ‘u)} Pd p < oo. Then, the above Lemmas 1 and 2 are
generalized as follows:
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./Q\w(ﬂ)—aﬂﬁﬂpmlﬁ <ppgnp(g)> ’Y2;Ll+

Lemma3. Let —co < 11 < 1p < 00.If@ € UP (11, 12) with(D(j)(Ll) =0,forallj=0,1,...,n—1,
and fflz {(D(”)(y)} pdy < 09, then for all p > 1, we have:

51 nP(p - 1) I

i pP sin? ( 7 ! i p
| @(odp < ((”)) (=) [ [0 0] d (5)
Lemma4. Let —c0 < 1y < 1y < 0. If@ € WP (11, 1p) with@\) (1p) = 0, forall j = 0,1,...,n—1,
and fflz {a)(”)(ﬂ)} pdy < oo, then for all p > 1, the inequality (5) holds.

Furthermore, we define £7 (11, 12) with p > 1 as the space of all positive differentiable
functions @ whose first derivatives @’ are positive locally absolutely continuous on (i1, 1)
and [*[@'()]"dy < co.

Theorem 3. Let & € (11,12), then for all @ € £P (1, 1), we have:

P
@@y ©

i

2 Psinf (= 3
/|MW—@@VWSpsmE»[Q2”+F_”;Q

Theorem 4. Let & € (11, 12), then for all @ € AP (11, 1), we obtain:

np
_hth
2

g

[t ”)

B}

' (p—1)

The theory of convexity has played very important role in the development of the the-
ory of inequalities. A wide class of inequalities can easily be obtained using the convexity
property of the functions.

Let us recall the following definitions that are used in the sequel.
Definition 1 ([26]). A function @ : I — R is said to be convex, if:
@011+ (1 =0)p) < (1) + (1 —=06)@(n), Yu,1p€l,56€]0,1]
Definition 2 ([9]). A function @ : I — R is said to be P-convex, if:
@0+ (1-90)n) <w(n)+a(r), Yiu,nel del01]
Definition 3 ([26]). A function @ : I — R is said to be quasi-convex, if:
@011+ (1 =96)1n) <max{w(n),@(1n)}, Yu,npel del01]
Definition 4 ([27]). A function @ : I — R is said to be s-convex for some fixed s € (0,1], if:
@011+ (1 =90)n) <fw(n)+ (1-90)P°w(n), Yu,npel del01].

Definition 5 ([28,29]). A function @ : [0,1] — R is said to be m-convex for some fixed
m e (0,1, if:

@ (01 +m(1—=08)1p) < 6@(11) +m(1—68)@(1p), V1,10 €[0,4,6 € [0,1].
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Definition 6 ([28,29]). A function @ : [0,1] — R is said to be (x, m)-convex for some fixed
(a,m) € (0,11, i

@61y +m(1—98)1p) < 8*@(11) + m(1 —8%)@(1n), V1,10 €[0,4], 6 €[0,1].

Motivated by the above results, the aim of this paper was to derive some new inequal-
ities of the Beesack-Wirtinger type for different kinds of differentiable convex functions.
Furthermore, we generalized our results for functions that are n-times differentiable convex.
Finally, many interesting Ostrowski- and Chebyshev-type inequalities are given. Some con-
clusions and future research are provided as well. We hope that the ideas and techniques
of this paper will inspire interested readers working in this fascinating field.

2. Main Results

In this main section, by applying Lemmas 1-4, Theorems 3 and 4, and the fact that
every convex function is absolutely continuous, we derive the following inequalities of the
Beesack-Wirtinger type.

Theorem 5. Let 11 < 1y and 11,1y € I°. Assume that @ is a differentiable function on 1, where
@ and @' are positive and @(11) = 0. If (@' (u)]P is a P-convex function on (11, 12), then for all
p > 1, we have:

[ @Gl < ()i ) + @ (@)}, ®
where:
Psin? (=
C(p;n,ip) := pﬂ:(p (i)) (13 —11)P L,

Proof. From the P-convexity of [@'(i)]” on (11, 12), we have:

S [P (w)Pdp = [y @' (60 + (1= 0))]Pds < [y ([0 (1)) + [@' (12)]7)do
= [@'(n)]P + [@'(12)]P.

Multiplying by C(p; 11, 12) and using Lemma 1, we obtain the desired inequality (8). [

Theorem 6. Let 11 < 1p and 11,1 € I°. Suppose that @ is a differentiable function on I, where @
and @' are positive and @ (1) = 0. If [@' ()] is a quasi-convex function on (11, 1), then for all
p > 1, we have:

[ @@)rdn < C(prn, ) max {[@ ()], [@' ()P}, ©

1

where C(p; 11, 1) is defined as in Theorem 5.

Proof. From the quasi-convexity of [@'(u)]” on (i1, 12), we have:

S 210 (0l dp = 3@ (00 + (1 - O))]Pdd < [} max {[@' ()P, [@/ (1)} }do
= max { [ ()", [@'(2)}P}.

Multiplying by C(p; 11, 12) and using Lemma 1, we obtain the desired inequality (9). [

Theorem 7. Let 1y < 1p and 11,1 € I°. Assume that @ is a differentiable function on I, where @
and @' are positive and @ (1) = 0. If (@' ()]P is a convex function on (11, 13), then forall p > 1,

we have:
@t < c(p lm){ el } 10

h
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where C(p; 11, 12) is defined as in Theorem 5.

Proof. From the convexity of [@'(u)]” on (i1, 12), we have:

o SR ()P = [y @' (du + (1= 8))]Pdd <[5 (3@’ (1)]P + (1 = 6)[@' (12)]7)dd
_ ) He' )l

Multiplying by C(p; 11, 12) and using Lemma 1, we obtain the desired inequality (10). [
Theorem 8. Let 1y < ip and 11,1 € I°. Suppose that @ is a differentiable function on 1, where

@ and @' are positive and @(11) = 0. If [@' (u)]? is an s-convex function on (i1, 1), then for all
p > 1, we have:

[ @torran < 11,12){ it el } )

where C(p; 11, 12) is defined as in Theorem 5.

Proof. From the s-convexity of [@'(y)]P on (i1,12), we have:

L 2 ()P = [y @ (60 + (1= 8))]Pdé < [5(8°]@ (n)]F + (1= 6)°[@’ (12)]F)dd

hp—11
—_ [@ )] +[@" ()]
s+1 :
Multiplying by C(p; 11, 2) and using Lemma 1, we obtain the desired inequality (11). O
Remark 1. Taking s = 1 in Theorem 8, we obtain Theorem 7.
Theorem 9. Let 1y < 1p and 11,1 € 1°. Assume that @ is a differentiable function on I, where @

and @' are positive, and @ (1) = 0. If [@'(u)]P is an m-convex function on (11,13), then for all
p > 1land m € (0,1], we have:

[2@(u)Pdp < C(p; 1, 10) 202)
X{%l(mf_l] @ )+ | m(F5 1) —?((’ffl;??)z—lﬂ[w'uz)]P}' "

where C(p; 11, 12) is defined as in Theorem 5.

Proof. From the m-convexity of [@'(u)]? on (11, 12), we have:

ip(1— m)
o e pdﬂ(—),Z "Zl‘z [, (@' (611 + m(1 — 8)1p)]Pds
121 m
< ) 5 (5! (1)]P + m(1 - 6)[@' (12)]P)do
— (ll mip)
lrp—11

x{; [(710;33)2 - 1] (@ ()] + |m(2 1) — 2 ((‘z“;ﬁ?)z - 1)] [w'uznp}-

Multiplying by C(p; 11, 12) and using Lemma 1, we obtain the desired inequality (12). [

Remark 2. Taking m = 1 in Theorem 9, we obtain Theorem 7.
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Theorem 10. Let 1y < 1p and 11,1y € I°. Suppose that @ is a differentiable function on I, where @
and @' are positive and @ (11) = 0. If [@' ()] is an («, m)-convex function on (i1, 1), then for all
p > land (a,m) € (0,1]2, we have:
S l@(uPdp < Clprn, ) U2
1— a+1
x { o [( ) - 1] @ ()? )

(32 1) - ()™ 1) e

where C(p; 11, 12) is defined as in Theorem 5.

+

Proof. From the («, m)-convexity of [@'(p)]P on (i1,12), we have:

1p(1—m) m)
12 i1 ft Pd‘u = 12 771!2 flll i 511 + m(l - 5)12)]Pd5
121 )
< T{” KT (0! P+m<1—5a>[ '(12)]?)ds

(1—
_ o) {[ () 1]

m(Bm 1) - <(‘?f1 mlﬁ)"‘“ - 1)] [@/(lz)]p}-

Multiplying by C(p; 11, 12) and using Lemma 1, we obtain the desired inequality (13). [

+

Remark 3. Taking « = 1 in Theorem 10, we obtain Theorem 9.
Remark 4. Our above results still hold if we apply Lemma 2, so we omit their proofs.

Theorem 11. Let —oco < 11 < 1 < o0 and @ be an n-times differentiable function on (11, 1) such
s . i . P
that @, @, ..., @™ are positive with (D(])(ll) =0,forallj=0,1,...,n—1.1If [aﬂ”)(y)} isa

P-convex function on (11, 1), then for all p > 1, we have:

/j [@(u)]Pdu < D(n,p; 11,12){ [w(")(tl)}p + {w(”)(lz)]p}, (14)
where: .
Psin?P (&
D(n,p;u,12) := (W) (1 — 1)

Proof. From the P-convexity of [(D(")(y)} P on (11,12), we have:
p P
i [ e (] ap = [y [0 (60 + (1= 6)n)] "6 < [ ([ ()] + [0 ()] ") a6
= [@(”)([1)}]3 + {(D (lz)} P.
Multiplying by D(n, p; 11, 1) and using Lemma 3, we obtain the desired inequality (14). [

Theorem 12. Let —oo < 11 < 1y < oo and @ be an n-times differentiable function on (1, 1) such
that @, @', ..., @™ are positive with (D(j)(ll) =0,forallj=0,1,...,n—1.1If [a)(”)(y)} 8 isa
quasi-convex function on (11, 1), then for all p > 1, we have:
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[ @l < D pis ) max { [0 )], [0 )], (15)

Bl

where D(n, p; 11, 12) is defined as in Theorem 11.

Proof. From the quasi-convexity of {(D(”) ( y)] ’ on (11,12), we have:

p p p p
i S| @ ()| = [ [0 (60 + (1= 0)2)|"dd < [ max { [0 (1)]", [0 (12)] }d(s
P P
= max { {a)(”)(ll)} , {a)(”)(lz)} }
Multiplying by D(n, p; 11, 1) and using Lemma 3, we obtain the desired inequality (15). O

Theorem 13. Let —oo < 11 < ip < o0 and @ be an n-times differentiable function on (11, 1) such
Ly . i . P
that @, @, ..., @™ are positive with (D(])(ll) =0,forallj=0,1,...,n—1.1If [c@m)(y)} isa

convex function on (11,13), then for all p > 1, we have:

D 1P T
/‘lz[cowwusmn,p;w{w)(”)} o) } 16)

Jl 2

where D(n, p; 11, 12) is defined as in Theorem 11.

Proof. From the convexity of [a)(”) (;4)] ¥ on (11,12), we have:

i 12 @ o] dp = fi @) 0 + (1= 0)iz)|"de
< Jy (6[@®w)]" + (1= )| ()] ") do

_ [ )] +[e" (m)])"
= : ,

Multiplying by D(n, p; 11, 12) and using Lemma 3, we obtain the desired inequality (16). [J

Theorem 14. Let —oc0 < 17 < 1p < o0 and @ be an n-times differentiable function on (i1, 1) such
that ®, @, ..., @) are positive with Ci)(j)(ll) =0,forallj=0,1,...,n —1.1If {(D(”)(y)} : is
an s-convex function on (11, 12), then for all p > 1, we have:

b ()" ™ ()7
/[1 [@(#)]"dﬂéD(n,p;thtz){[w (l)]sil{w (2)] } (17)

where D(n, p; 11, 12) is defined as in Theorem 11.

Proof. From the s-convexity of [a)(”) (y)} P on (11,12), we have:

e e[ ) dp = f3 [ (60 + (1 - 8))) "o
2 ([ )]+ (1= 6y [0 (12)] ") do

_ [ )] +[e" )]
- s+1 :

Multiplying by D(n, p; 11, t2) and using Lemma 3, we obtain the desired inequality (17). [

Remark 5. Taking s = 1 in Theorem 14, we obtain Theorem 13.
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Theorem 15. Let —o0 < 17 < 1p < oo and @ be an n-times differentiable function on (i1,13) such
. . i . p
that @, @', ..., @™ are positive with @) (1) = 0, forall j = 0,1,...,n — 1. If {(D(")(y)} is

an m-convex function on (11,13), then for all p > 1 and m € (0, 1], we have:

[ (‘u pdﬂ < 'D n plllllz)(n*mtz)

—h

X{ lmmfﬁ 1] o)’ (18)
e - a((e bt}

where D(n, p; 11, 1) is defined as in Theorem 11.

+

Proof. From the m-convexity of [co(”) (‘u)} ’ on (11,12), we have:

1p(1—m)
- [w<n>(y)}”dy = () (57 (o) (61 4+ m(1 - 8)n) | do

=i Jn 2=l
1 )

< (el f# " (o]0 ()]’ +m(1ﬂs)[ (1)) )as

p
- ez (305" o)

() -2 (3 ) fea

Multiplying by D(n, p; 11, 12) and using Lemma 3, we obtain the desired inequality (18). [J

+

Remark 6. Taking m = 1 in Theorem 15, we obtain Theorem 13.

Theorem 16. Let —oco0 < 17 < 1 < oo and @ be an n-times differentiable function on (i1, 1) such
that ®, @, ..., @) are positive with Ci)(j)(ll) =0,forallj=0,1,...,n—1.1If {a)(”)(y)} : is

an (a, m)-convex function on (i1, 13), then for all p > 1 and (a,m) € (0,1]2, we have:

(11 —mip)
—h

BN st
m(% 1) aﬁl((lzu’w)ﬁl )Mw }}

where D(n, p; 11, 12) is defined as in Theorem 11.

@(u))Pdu < D(n,p;11,12)

+

Proof. From the (a, m)-convexity of [a)(”) (y)} P on (11,12), we have:

1p(1=m)

it 2| <u>] Tap = L) (5 o) (61, + m(1 - 8)12)]"do
p(1-m)
< i (¢ [0 ()] +m(1 -5 [ ()] ") do

-tz o) o foora
(5 1) =t (35) )| o]

+
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Multiplying by D(n, p; 11, ) and using Lemma 3, we obtain the desired inequality (19). [
Remark 7. Taking m = 1 in Theorem 16, we obtain Theorem 15.

Remark 8. Our above results still holds if we apply Lemma 4, so we omit their proofs.

3. Inequalities of Ostrowski Type

The Ostrowski inequality [30] is remarkable and has the following representation:

Theorem 17. Let @ : I — R be a differentiable function on I°, with 11,1y € I° and 11 < 1. If
|@' ()] < M forall y € [1,12], then:

11+
I =7
@(p) — 5 i m /ll @(8)ds| < M(1p — 17) 1+ (2)], Vi € (11, 12). (20)

4 (1 —1n)?

For other recent results of this type, please see [9,30,31] and the references therein.

Theorem 18. Let & € (i1,12) and @ be a differentiable function on (11,12), where @ and @' are
positive with @(11) = @(1p) = 0. If [@' ()] is a P-convex function on (11, 1), then forall p > 1,
we have:

[ @) - 0@ du < €@, ) {0 ()P + [/ (2))7}, @
where:
pp sin? (& .
E(Epn,n) = np(p_(;’)) llzzll n C‘% (12 — ).

Proof. From the P-convexity of [@'(u)]” on (i1, 12), we have:

e 2@ ()]Pdp = [y [@' (01 + (1= 8)1)]Pde < [ ([@'(1)]P + [@'(12)]7)d6
= [@' ()] + [@ (12)]7.

Multiplying by E(¢; p, 11, 1) and using Theorem 3, we obtain the desired inequality (21). O
Theorem 19. Let & € (11,12) and @ be a differentiable function on (11,12), where @ and @' are

positive with @(11) = @ (1) = 0. If [@' (u)]? is a quasi-convex function on (1, 13), then for all
p > 1, we have:

[ |0t - @@ Pdu < @ pn ) max {[@ @) @@}, @)

i

where E(E; p, 11, 12) is defined as in Theorem 18.

Proof. From the quasi-convexity of [@'(u)]? on (i1, 12), we have:

e L2 (Pdp = [3[@ (0n + (1= 6)2)]Pdd < [y max {[@'(n)]?, [@'(12)]F }do
= max{[‘o/(‘l)]pr [@I(‘Z)]p}'

Multiplying by £(&; p, 11, 12) and using Theorem 3, we obtain the desired inequality (22). [

Theorem 20. Let ¢ € (11,12) and @ be a differentiable function on (11,12), where @ and @' are
positive with @(11) = @(1p) = 0. If [@'(n)]? is a convex function on (11,13), then forall p > 1,

we have:
/: o) o) i < (0 tl,tz){ (@' (17)]P er (@' (12)]? }’ (23)
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where E(&; p, 11, 12) is defined as in Theorem 18.
Proof. From the convexity of [@'(u)]” on (i1, 12), we have:

L 2@ ()]Pdp = [y 1@ (00 + (1= 8)i)]Pdé < [ (8] ()] + (1= 8)[@ (12)]7)do

=1 J
_ @' )P+ (1))
> .

Multiplying by £(&; p, 11, 12) and using Theorem 3, we obtain the desired inequality (23). [

Theorem 21. Let & € (i1,12) and @ be a differentiable function on (11,12), where @ and @' are
positive with @(11) = @(12) = 0. If [@' (u)]P is an s-convex function on (11, 12), then forall p > 1,

we have:
[ ()] + @ (12))" } 1)

/1:2|w(ﬂ)_w(g)|pd}1Sg(‘:}P/llrlz){ S—|—1

where E(E; p, 11, 12) is defined as in Theorem 18.
Proof. From the s-convexity of [@'(y)]P on (i1,12), we have:

L[R2 ()]Pdp = [y[@' (0n + (1= 0)p)]Pdé < [1(5%[@ (1)) + (1 - 6)*[@’ (12)]7)dd

p—11
— @' ()P +[@' ()]
s+1 :

Multiplying by £ (&; p, 11, 12) and using Theorem 3, we obtain the desired inequality (24). [J
Remark 9. Taking s = 1 in Theorem 21, we obtain Theorem 20.
Theorem 22. Let & € (11,12) and @ be a differentiable function on (11,12), where @ and @' are

positive with @(11) = @ (1) = 0. If [@'(u)]P is an m-convex function on (11,13), then for all
p > 1land m € (0,1], we have:

lelz @(u) — |pdV < E(Gpni) (lzz nfllz)
2 —m 2 +
x{%[(W) _11 (@' ()l

e () P

where E(E; p, 11, 12) is defined as in Theorem 18.

Proof. From the m-convexity of [@'(u)]? on (11, 12), we have:

(- m)
12 1 ft pd‘u tlz ”lliz flll " 511 + m(l - 5)12)]17[15
(- m)
<l "Z? S 0@ (1)]P + m(1 = 8)[@ (12)]F)dd

— (11 nip)

ST N A

Multiplying by £(&; p, 11, 12) and using Theorem 3, we obtain the desired inequality (25). [

Remark 10. Taking m = 1 in Theorem 22, we obtain Theorem 20.
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Theorem 23. Let ¢ € (11,12) and @ be a differentiable function on (11,12), where @ and @’ are
positive with @(11) = (D(zz) = 0.If [@' ()P is an (x, m)-convex function on (11, 1), then for all
p > land (a,m) € (0,1]2, we have:

Ji l@(u) = @(2) \pdﬂ < E(&p,n )l

2=

{11 (2™ 1] @' (1n)]?

(- 1) - () )l

where E(G; p, 11, 12) is defined as in Theorem 18.

(26)

Proof. From the (a, m)-convexity of [@'(p)]P on (i1,12), we have:

1p(1—m) m)

Ip— 11 ft Pd‘u - 12 771!2 flll i 511 + m(l - 5)12)]Pd5
121 )
< b T{” J (e P+m<1—5a>[ /(12)]P)do
(1- uc+1
() i[ (805mY* 1 ot

+

(s -1) - Hl((lﬂlm;)““—lﬂW“z””}'

Multiplying by £(&; p, 11, 12) and using Theorem 3, we obtain the desired inequality (26). [J
Remark 11. Taking & = 1 in Theorem 23, we obtain Theorem 22.

Theorem 24. Let § € (i1,12) and @ be an n-times differentiable function on (i1,12), where
@, @, ..., @1 are positive with (o(])(zl) = L’D(])(lz) =0, forallj =0,1,...,.n—1.If

[a)(") (y)} Visa P-convex function on (1, 12), then for all p > 1, we have:

AHQW%%M@WW<fEmemﬁ{@Wmnr+Pﬂﬂmﬂ?, 27)

where:

np

(2 —n).

1+

-3

ppsinp(z) "
F(&n,pnu,n):= ( P ) [12 . I n

P (p—1)

Proof. From the P-convexity of [a)(”) (;4)} P on (11,12), we have:

{a)(”)(y } dy = fo [ (611 + (1 —0)e )] as < fo ([ (Ll)r + {(D(”)(tz)}p)dé

= [ (”)(ll)r‘F {w( )(lz)}p‘

Multiplying by F(;n,p,i1,12) and using Theorem 4, we obtain the desired
inequality (27). O
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1 flz
=i Jn

Theorem 25. Let § € (1,12) and @ be an n-times differentiable function on (i1,12), where
@, @, ..., ®" are positive with c’o(])(zl) = (D(])(lz) =0,forallj =01,...,.n—-11If

[a)(”) (y)} Visa quasi-convex function on (1, 1), then for all p > 1, we have:

Ly r P
[ |@(0) = @(@)'du < F(&m,pn,12) max { @ ()], @™ (12)] } 8)
1
where F(&;n, p, 11, 1) is defined as in Theorem 24.

Proof. From the quasi-convexity of [a)(”) (y)] ? on (11,12), we have:

@]t = 3 [0 01+ (1= 0))] "t < max { [0 )], [0 1] o

— max { [0 )", [0 ()] ”}.

Multiplying by F(&;n,p,i1,12) and using Theorem 4, we obtain the desired
inequality (28). [

Theorem 26. Let € (i1,12) and @ be an n-times differentiable function on (i1,12), where
o, @, ..., @" are positive with @V () = @V () = 0, forallj = 0,1,...,n—1.If

[(D(”) (y)} Visa convex function on (11, 12), then for all p > 1, we have:

lz ™ ()] + [@™ ()]
/ \‘D(H)@(é)lpdﬂﬁf(é‘;nfprtlllz){[(D ) z[w il } (29)

where F(G;n, p, 11, 1) is defined as in Theorem 24.

Proof. From the convexity of [(D(”) (y)} P on (11,12), we have:

Jy (6]@ )]+ (1 =8) [0 ()] ") do

_ [ )] +[e" )]
= 2 :

,2111 flllz [(D(”)(y)] pdy = fol [@(")(5[1 +(1- 5)[2)}pd(5
<

Multiplying by F(&;n,p,i1,12) and using Theorem 4, we obtain the desired
inequality (29). O

Theorem 27. Let § € (1,12) and @ be an n-times differentiable function on (i1,12), where
@, @, ..., @ are positive with @) (1) = @) (1) = 0, forall j = 0,1,...,n — 1. If

[a)(") (y)} P is an s-convex function on (11, 12), then for all p > 1, we have:

sl sl

[ @0~ @) "an < F&np ){ S

where F(&;n, p, 11, 1) is defined as in Theorem 24.
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Proof. From the s-convexity of [co(”) (y)} ¥ on (11,12), we have:

2 b [0 0] dp = 3 @01+ (1= 0)0)'ae
< 01(55 [aﬂ")([l)} +(1-06) [a)m)([z)} )d5

@ ()] +[e (12)]"
- s+1 .

Multiplying by F(&;n,p,i1,12) and using Theorem 4, we obtain the desired
inequality (30). O

Remark 12. Taking s = 1 in Theorem 27, we obtain Theorem 26.

Theorem 28. Let § € (i1,12) and @ be an n-times differentiable function on (i1,12), where
o, @, ..., @" are positive with @V () = @V () = 0, forallj = 0,1,...,n—1.If

{w(”) (y)} P is an m-convex function on (11, 1), then for all p > 1 and m € (0, 1], we have:

(&) ‘de < ]:(é n, plllrlz)(ll niy)

=1

(l M‘M‘”V a
e (-}

where F(&;n, p, 11, 1) is defined as in Theorem 24.

Proof. From the m-convexity of {w(”) (y)} P on (11,12), we have:

i {w<”><u>}”dy— e I "”2[ (@ +m(1—8)n)]| ds
H(1—m)
< llz ﬂfllz flq iy (5[ )<ll)] +m(1_§) [@(M(tz)}l’)dé
= (i) {é [(’ffl;;"; ) - 1] [0 (1)]"

(35 1) -3 ( (35 - 1)] o )] p}'

Multiplying by F(&;n,p,i1,12) and using Theorem 4, we obtain the desired
inequality (31). O

Remark 13. Taking m = 1 in Theorem 28, we obtain Theorem 26.

Theorem 29. Let §{ € (1,12) and @ be an n-times differentiable function on (11,12), where
@, @, ..., ®" are positive with @(])(11) = @(])(Lz) =0, forallj =01,....n—11If
[c@(”)(y)r is an («, m)-convex function on (11,15, then for all p > 1 and (a,m) € (0,1)?,
we have:

S |@() — @(2) \”dy < FGin,pon,0) e

lp—11

{11( mlz a+1 1] [‘D(n)(‘l)}p o

(s 1) - (o) 1) fo)

where F(&;n, p, 11, 1) is defined as in Theorem 24.

+
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Proof. From the (a, m)-convexity of [CD(”) (y)} ¥ on (11,12), we have:

1 gl n]? (omip) 25 ) P
[ {(D (y)} dy = In [w (511+m(1—5)12)} ds

p—1 1 —h

< s 2 (wovr] om0 o]
= {4 { [(’ffimi'?)w i 1] o]
(35— 1) - g ((3%5m) " - 1)] o) p}'

Multiplying by F(&;n,p,i1,12) and using Theorem 4, we obtain the desired
inequality (32). O

+

Remark 14. Taking a = 1 in Theorem 29, we obtain Theorem 28.

Theorem 30. Let 1,15 € I°, and 1y < 1. Assume that @ is an n-times differentiable function on
(11,12), where @, @', ..., @) are positive with @) (n) = (D(])(Lz) =0,forallj=0,1,...,n—1.

If [(D(”) (y)] Pisa P-convex function on (11, 13), then for all p > 1, we have:

. (33)

ﬂ F(&mn,p, 11,12){ [a)(")(tl)]p + [a)(”)(tz)]p}
<

lp—1h

O () — — /lzw((S)drS

I — 11 I

where F(;n, p, 11, 1) is defined as in Theorem 24.

Proof. It is obvious that:

o) - 2 [Feww = L [l - e@).

Taking the modulus, applying the triangle inequality, and then, using the Holder
inequality, we obtain:

@(p) — 72 Ji? @(8)dé

o S lo(p) — @(6)]ds

(34)

< - [P o(p) — @(6)|ds < Wﬁ(ﬁiﬂw(y)—c@(&ﬂ?d&)ﬁ

From the P-convexity of [(D(”) ( ‘u)} ¥ on (11,12) and applying Theorem 24, we obtain
the desired inequality (33). O

Theorem 31. Let 11,1 € 1°, and 11 < 1. Suppos¢ that @ is an n-times differentiable function on
(11,12), where @, @', ..., @) are positive with @) (n) = 6’0(])([2) =0,forallj=0,1,...,n—1.

If [(D(") (y)] Pisa quasi-convex function on (11, 1), then for all p > 1, we have:

o) — — /lza)(é)dé

, (B35
lh — 11 I ( )

lp—1h

d F(@n,pyin,0) max{ [0 ()], [0 ()]}
<

where F(&;n, p, 11, 1) is defined as in Theorem 24.
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Proof. From Inequality (34), the quasi-convexity of [(D(”) ( ]/t)} ? on (11,12), and applying
Theorem 25, we obtain the desired inequality (35). O

Theorem 32. Let 11,1 € I°, and 11 < 1p. Assume that @ is an n-times differentiable function on
(11,12), where @, @', ..., @) are positive with @) (n) = a)(])(tz) =0,forallj=0,1,...,n—1.

If [w(”) (y)] Pisa convex function on (11, 12), then for all p > 1, we have:

ﬂ @ a{0) + @)}

o) — — /lzw(a)d(sg . ,

lp =11 Jy

where F(&;n, p, 11, 1) is defined as in Theorem 24.

Proof. From Inequality (34), the convexity of [co(”) (y)} ’ on (11,12), and applying Theorem 26,
we obtain the desired inequality (36). O

Theorem 33. Let 11,1 € I°, and 1y < 1p. Suppose that @ is an n-times differentiable function on
(11, 1), where @, @', ..., @™ are positive with @) (1) = @) (1) = 0, forall j = 0,1,...,n—1.

If {w(”) (y)] P is an s-convex function on (11, 12), then for all p > 1, we have:

(37)

ﬂ F(&mn,p, 11,12){ [(D(")(tl)]p + [a)(”)(tz)]p}

(S+1)(lz—l1) !

o) - —— [* @) <

lp =1

where F(;n, p, 11, 1) is defined as in Theorem 24.

Proof. From Inequality (34), the s-convexity of [a)(”) (y)] ¥ on (11,12), and applying Theorem 27,
we obtain the desired inequality (37). O

Remark 15. Taking s = 1 in Theorem 33, we obtain Theorem 32.

Theorem 34. Let 11,17 € I°, and 11 < 1p. Assume that @ is an n-times differentiable function on
(11,12), where @, @', ..., @) are positive with @) (n) = L’D(]>(lz) =0,forallj=0,1,...,n—1.

If [a)(”) (y)] P is an m-convex function on (11, 1), then for all p > 1 and m € (0, 1], we have:

@(pu) — tzltl i 8)dsé| < F(&n,piiz)

2=

_ p
x [“L’Z’” {% l (aldom)y? ] @ (1 } (38)
1
1p(1—m) m 12 (1—m) !
m( fl—mtz - 1) - 2( m12 1) ’

where F(G;n, p, 11, 1) is defined as in Theorem 24.

+

Proof. From Inequality (34), the m-convexity of [a)(”)(y)}p on (i1,1), and applying
Theorem 28, we obtain the desired inequality (38). O

Remark 16. Taking m = 1 in Theorem 34, we obtain Theorem 32.

Theorem 35. Let 11,1 € I°, and 1y < 1p. Suppose that @ is an n-times differentiable function on
(11,12), where @, @', ..., @™ are positive with @) (1) = @) (1) = 0, forall j = 0,1,...,n—1.
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If [c@(")(y)} P is an (o, m)-convex function on (1,12), then for all p > 1 and (a,m) € (0,1]?,
we have:

@(p) — - )7

(/f(é‘n Pri1.42)
=1
_ 1 (1- a+1
x[<’z_'7;2>{+1[(’f 2" o
1
n(1-m) (a0 a1 '
m( l1—mip - 1) B m (( llfimz 1) 4

where F(&;n, p, 11, 12) is defined as in Theorem 24.

I

@ (39)

+

Proof. From Inequality (34), the («, m)-convexity of [w(”) (y)} ¥ on (11,12), and applying
Theorem 29, we obtain the desired inequality (39). O

Remark 17. Taking a« = 1 in Theorem 35, we obtain Theorem 34.

4. Inequalities of the Chebyshev Type

Theorem 36. Let 11,1y € I°, and 11 < 1p. Assume that @, are n-times diﬂferentiab]e functions on
(11,12), where @, @', ..., @™ and 8, &, ..., 9" are positive with @) (11) = @9 (1) = 0,and

8 (1) = 0U) (1) = 0, forall j = 0,1,...,n — 1. If {(D(”)(]/t)r and [ﬂ(”)(y)r are P-convex

functions on (11, 1), then for all p > 1 such that » + 7 =1, we have:

T (@,9)] < 1 </]-"((',‘;n, pon){ [0 (1)]" + [0 ()]},
<{fF @ng ) { [p06)] + [0 w)},

where F(&;n, p, 11, 12) is defined as in Theorem 24.

(40)

Proof. From the equality:

1 2 1 1% 1 I
" /11 [@(y)—lz_ll /L1 w((s)d(sl lﬁ(y)—lz_ll /[1 ﬂ(é)dé]dy,

taking the absolute value, and then, applying the Cauchy-Schwartz inequality, we obtain:
1 1
T (@,9)| < 4 (fff @(p) — ;2 [i? @(6)ds

2\ 2
dy)
2\ 4 1)
X (f[lf dy) :

From the P-convexity of functions [(D(”) ( ]/t)} P and {19(”) (y)} T on (11,12) and applying
Theorem 30, we obtain the desired inequality (40). O

T(®,9) =

— ot [P 9(8)do

12 I

Theorem 37. Let 11,15 € I°,and 1 < 1. Suppose that @, ¢ are n-times differentiable functions on
(11,12), where @, @', ..., @™ and 8, &, ..., 9" are positive with @) (11) = @Y (1) = 0,and

38U (1) = 0V (1) = 0, forall j = 0,1,...,n—1.If [a)(”)(y)} P and [19(”)(;4)}11 are quasi-convex

1 1
functions on (11, 12), then for all p > 1 such that » + 7 =1, we have:
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T (@,8)| < 1= (/f(é; n,p, 11, 12) Max { (@ (17)]", [@(”)(12)]p},
4G, 0,m) max { [0 ()], [0 2)) "},

where F(&;n, p, 11, 1) is defined as in Theorem 24.

(42)

Proof. From Inequality (41), the quasi-convexity of functions [(D(") ( y)} ¥ and [19(") ( y)} !
on (11, 12), and applying Theorem 31, we obtain the desired inequality (42). O

Theorem 38. Let 1y,1p € I°, and 11 < 1. Assume that @, ¢ are n-times differentiable functions
on (11,12), where @, @', ..., @™ and 9, ¢, ..., 8 are positive with @ (1) = @) (1) = 0,

and 90 (11) = 00U (1) = 0, forall j = 0,1,...,n — 1. If {(D(”)(y)]p and [ﬁ(”)(y)}q are convex

functions on (11, 12), then for all p > 1 such that » + p =1, we have:

T (@,9)] < M(/}"(C;n, pon) ([@ (1)]" + [0 (12)]"),
X (/—7:(5? n,4q,0,0) ( (807 (11)]7 + [19(”)(12)]q>,

where F(&;n, p, 11, 1) is defined as in Theorem 24.

(43)

Proof. From Inequality (41), the convexity of functions [(D(”)(y)} g and [ﬁ(")(y)]q on

(11,12), and applying Theorem 32, we obtain the desired inequality (43). O

Theorem 39. Let 11,1y € I°, and 11 < 1. Suppose that @, ¢ are n-times dzﬁerentiable functions
on (11,1), where @, @', ..., @™ and 9,9, ..., 90 are positive with @ (1) = @V (1) = 0,

and 8V (1) = 8U) (1) = 0, forall j = 0,1,...,n — 1.If {a)(”)(y)} P and {19(”)(;1)}[1 are s-convex

functions on (11,12), then for all p > 1 such that » + 7 =1, we have:

T(@ 0] < ey {/ P @) ([0 )] + [@@2)]7),

(44)
{7 g, (000" + (80 w)]°),

where F(&;n, p, 11, 12) is defined as in Theorem 24.
Proof. From Inequality (41), the s-convexity of functions [a)(”) ( ‘u)} ¥ and [19(”) ( y)} T on
(11,12), and applying Theorem 33, we obtain the desired inequality (44). O

Remark 18. Taking s = 1 in Theorem 39, we obtain Theorem 38.

Theorem 40. Let 11,15 € I°, and 1y < 1. Assume that @, ® are n-times differentiable functions on
(11,12), where @, @', ..., @™ andd, ¢, ..., 80 are positive with w(])(zl) = w(])(tz) =0, and

80 (1) = 8U) (1) = 0, forall j = 0,1,...,n — 1. If {a)(")(y)}p and {ﬂ(”)(y)]q are m-convex

functions on (11, 12), then for all p > 1 and m € (0,1] such that :7 + 111 =1, we have:
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’T w, 19 | Vf(g;n/p/ll/fj)_%l/'r(é;n/q,ll,12)

[ e T
" [m (st 1) 2 ((a5) 1) [ o WH “)
[y o
1
(it 1) - 3 ()" 1) fora ']

where F(;n, p, 11, 1) is defined as in Theorem 24.

N———
1
<

N

+

Proof. From Inequality (41), the m-convexity of functions [a)(”) (y)} ¥ and {19(”) (y)} Ton
(11,12), and applying Theorem 34, we obtain the desired inequality (45). O

Remark 19. Taking m = 1 in Theorem 40, we obtain Theorem 38.

Theorem 41. Let 11,1y € I°, and 11 < 1. Suppose that @, ¢ are n-times dzﬁerentiable functions
n (11,1), where @, @, ..., @™ and 9, ¢, ..., 8 are positive with @ (1) = @V (1) = 0,

and 89) (1) = 90U (1) = 0, forall j = 0,1,...,n — 1. If [c’o(”)(y)} P and {19(”)@1)}‘] are (&, m)-

1 1
convex functions on (11,1), then for all p > 1 and (a, m) € (0,1)? such that » + p =1, we have:

’T(CU, 19)’ < (/}'(r;’;n,p,tl,;;) i/]:(ﬁ;”,ﬂi/lhlz)

Xlw{‘h[(?ﬂmﬁ)“ﬂ M@ ]
+[M((l_mm)1)%<(lmm > 1)] a6 HP (46)
X[W{aill(uumﬁ)m 1] ]

i) af(r ]

where F(&;n, p, 11, 1) is defined as in Theorem 24.

+

Proof. From Inequality (41), the («, m)-convexity of functions [(D(") (y)} P and [19(”) (y)} !
n (11,12), and applying Theorem 35, we obtain the desired inequality (46). O

Remark 20. Taking o = 1 in Theorem 41, we obtain Theorem 40.

5. Conclusions

In this paper, via different kinds of differentiable convex functions, some new inequal-
ities of the Beesack-Wirtinger type were proven. Furthermore, we generalized our results
for functions that are n-times differentiable convex. Finally, many interesting Ostrowski-
and Chebyshev-type inequalities were derived as well. It is worth mentioning that from our
results, several interesting inequalities using special means, modified Bessel functions of
the first and second kind, g-digamma function where g € (0, 1), and some error estimations
for quadrature formulas can be found; see [15,32-37] for details. Since the different kinds
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of convex functions that we used to obtain our results have large applications in many
mathematical areas, then they can be applied to derive several new important results in
convex analysis, quantum mechanics, and related optimization theory and may stimulate
further research in different areas of pure and applied sciences. Studies relating convexity
may have useful applications in interdisciplinary studies, such as maximizing the likeli-
hood from multiple linear regressions involving the Gauss-Laplace distribution. For more
details, see [38-45].
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