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1. Introduction

Research of the classical inequalities, such as the Jensen, the Holder and similar, has
experienced great expansion. These inequalities first appeared in discrete and integral forms,
and then many generalizations and improvements have been proved (for instance, see [1,2]).
Lately, they are proven to be very useful in information theory (for instance, see [3]).

Let I be an interval in R and f: I — R a convex function. If x = (xy,...,x,) is any
n-tuple in I" and p = (py, ..., pn) @ nonnegative n-tuple such that P, = }_' ; p; > 0, then
the well known Jensen’s inequality

f <; Y. Pm) = épif(x» M

holds (see [4,5] or for example [6] (p. 43)). If f is strictly convex then (1) is strict unless
x; =cforallie {j:p; >0}.

Jensen’s inequality is one of the most famous inequalities in convex analysis, for
which special cases are other well-known inequalities (such as Holder’s inequality, A-G-H
inequality, etc.). Beside mathematics, it has many applications in statistics, information
theory, and engineering.

Strongly related to Jensen’s inequality is the Lah—Ribari¢ inequality (see [7]),

m

X —
£ ), @
which holds when f: I — R is a convex functionon I, [m,M] C I, —co < m < M < 400,
pisasin (1), x = (x1,..., %) is any n-tuple in [m, M]" and X = 1}7 Y pixi. If f is strictly
convex then (4) is strict unless x; € {m, M} foralli € {j: p; > 0}.
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The Lah-Ribari¢ inequality has been largely investigated and the interested reader can
find many related results in the recent literature as well as in monographs such as [6,8,9]. It
is interesting to find further refinements of the above inequality.

Our main result will be refinement of the inequality (2).

Using the same technique, we will give a refinement of the inequality (1) (see [10]).

In addition, we deal with the notion of f-divergences which measure the distance be-
tween two probability distributions. One of the most important is the Csiszér f-divergence,
some special cases of which are the Shannon entropy, Jeffrey’s distance, Kullback-Leibler
divergence, the Hellinger distance, and the Bhattacharyya distance. We deduce the relations
for the mentioned f-divergences.

Let us say few words about the organization of the paper. In the following section we
give a new refinement of the Lah—Ribari¢ inequality and state a known refinement of the
Jensen inequality using the same technique. Using obtained results we give a refinement of
the famous Holder inequality and some new refinements for the weighted power means
and quasi-arithmetic means. In addition, we give a historical remark regarding the Jensen—
Boas inequality. In Section 3, we give the results for various f-divergences. These are
further examined for the Zipf-Mandelbrot law.

2. New Refinements
The starting point of this consideration is the following lemma (see [11]).

Lemma 1. Let f be a convex function on an interval I. If a,b,c,d € I suchthata <b < c <d,
then the inequality

u—>= d—u u—a

L) < S fa) + o f (@)

c —

c—u

" fb) +

holds for any u € [b,c].

The main result is a refinement of the Lah—Ribari¢ inequality (2). As we will see, its
proof is based on the idea from the proof of the Jensen-Boas inequality.

Theorem 1. Let f: I — R be a convex function on I, [m,M] C I, —o0o < m < M < 400,
pisasin (1), x = (x1,...,%,) be any n-tuple in [m, M|" and * = Pinzl’-lzl pix;. Let N; C
{1,2,...,n},i=1,...,m where N; N N; = @ for i #j, U N; ={1,2,...,n}, ZjeNi pj >0,
fori=1,...,mand m; = min{x;: j € N;}, M; = max{x;: j € N;}, fori =1,...,m. Then

1 &
P, Zpif(xi) ©)
ni=1
1 ¢ M; — x; X;i —m;
= F” z; (jeZNi pj) {Mi - mzf( l) M; — mif(Ml)
M-—x I—m

holds, where

ZPJ]

ni=1 EJGN Pj JEN;

If f is concave on I, then the inequalities in (3) are reversed.

Proof. We have

| T B ol o | e ol

JEN; N; Pj JEN;
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Using the Lah-Ribari¢ inequality (2) for each of the subsets N;, we obtain

1 m

o p pif (x
P“i;<jezN ]> lzfeN Pi ]Z : ]

) {Ml’ ~ S Dien P

Mi—mi fmi

=5 Z ( Z Pf) [ o f(mi) * Jic:;i_—rf’;if(Mi)}‘

JEN;

Usingm <m; < x; < M; <M, m < M,m; < M; and Lemma 1, we obtain

Loy (,Z p;-) o )+ S (o

1y M —x; Xi—m
=5 ; <],62Ni Pf) {M_mf(m) + 3 mf(M)}
M x

O

Remark 1. If N; = {x;} (|Nj| = 1), the related term in the sum on the right-hand side of the first
inequality in the proof of Theorem 1 remains unaltered (i.e., is equal to f(x;)).

Using the same technique, we obtain the following refinement of the Jensen inequality (1).

Theorem 2. Let I be an interval in R and f: I — R a convex function. Let x = (x1,...,Xy)
is any n-tuple in I and p = (p1, ..., pn) a nonnegative n-tuple such that P, = Y;" ; p; > 0.
Let N; C {1,2,...,n},i=1,...,m where NN N; =@ fori #j, UL N; ={1,2,...,n}and
ZjeNi pi>0,i=1,...,m Then

f<;nipz‘xi> < 1n i(ZN > (W) < PinZPif(xi) 4)
i= =1 \jeN; '

holds.
If f is concave on I, then the inequalities in (4) are reversed.

Proof. We have
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Using Jensen’s inequality (1), we obtain
1y N\ Zien, Pfxf>
f<Pn Z(;ezw p) LjeN: Pj
1 u nv; Z]eN pjx;j
Py Z]EN pj
(Z ) Yien, i Zp]f(XJ]

Pj
! N; Pj JEN;
Z P]f(x])'
eN;

IN

IA
|

0 Ms i M§

F
whichis (4). O

We can find this idea for proving the refinement of our main result (and the refinement
of the Jensen inequality) in one other well-known result (see [6] (pp. 55-60)).

In Jensen's inequality there is a condition “p = (py,..., pn) a nonnegative n-tuple
such that P, = }' ; p; > 0”. In 1919, Steffensen gave the same inequality (1) with slightly
relaxed conditions (see [12]).

Theorem 3 (Jensen—Steffensen). If f: I — R is a convex function, x is a real monotonic n-tuple
suchthatx; € I,i =1,...,n,and p is a real n-tuple such that

0<P<Pyk=1,...,n, P,>0.
Then (1) holds. If f is strictly convex, then inequality (1) is strict unless x; = xp = - -+ = Xy.

One of many generalizations of the Jensen inequality is the Riemann-Stieltjes integral
form of the Jensen inequality.

Theorem 4 (the Riemann-Stieltjes form of Jensen’s inequality). Let ¢: I — R be a continuous
convex function where I is the range of the continuous function f: [a,b] — R. Inequality

ff f¢x) (x)
¢< fdA )“ e ©

holds provided that A is increasing, bounded and A(a) # A(b).

Analogously, integral form of the Jensen-Steffensen’s inequality is given.

Theorem 5 (The Jensen-Steffensen). If f is continuous and monotonic (either increasing or
decreasing) and A is either continuous or of bounded variation satisfying
Ala) < A(x) < A(b) forall x € [a,b], A(a) < A(b),

then (5) holds.

In 1970, Boas gave the integral analogue of Jensen-Steffensen’s inequality with slightly
different conditions.

Theorem 6 (the Jensen-Boas inequality). If f is continuous or of bounded variation satisfying

Aa) < A(x1) € A(y1) < Ax) < - < A1) < Alx) < A(D)
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forall xi € (Yx_1,Yk), and A(b) > A(a), and if f is continuous and monotonic (either increasing
or decreasing) in each of the n — 1 intervals (yx_1, yx), then inequality (5) holds.

In 1982, J. Pecari¢ gave the following proof of the Jensen-Boas inequality.

Proof. If A(a) < A(x1) < Ay1) < Alx2) < -+ < AMyyu—1) < A(xn) < A(b) with the
notation

Yk
y f(x)dA(x)
pk:/k d)\(x),tk:yky#,k:L”,,n
7Yk fyk 1 A

¢<MW>> :¢<Ek X 1f<x>dA<x>> (Bt
Jy dA(x) Yoy f)E dAx) Ti1 Pk

Using Jensen’s inequality (1), we obtain

Yk
ko1 Pkfk> 1 ¢ M
¢( Y1 Px = Y1 szgpkq)( Zk 1Pk [Z (P< S dA(x ‘

Y1

we have

Using Jensen-Steffensen’s inequality (5) on each subinterval [yx 1,y k = 1,...,n,

we obtain
Yk
NNt >dA< )
Yi=1 Pk L_Zl pk¢< [k dA(x

Yk
Zk 1Pk [Z pkfyk d/\ /yikl ‘P(f(x))d)»(x)l
) [ 9(F())dA(x)
Zk]wﬁfldA 5 / e = Jlarx)

If A(yj—1) = A(y;), for some j, then dA(x) = 0 on [y;_1,y,] and we can easily prove
that the Jensen—Boas inequality is valid. [

If we look at the previous proof, we see that the technique is the same as for our main
result and the refinement of the Jensen inequality.

By using Theorem 2, we obtain the following refinement of the discrete Holder in-
equality (see [13,14]).

Corollary 1. Let p,q > 1 such that % +% =1 Leta = (ar,az,...,a,), b = (b1,by,...,by)

such that a;, b; > 0,i =1,...,n. Then:
1
g 1=p rlr
(Z@) (Z@@ (6)
i=1 \jeN; jeN;

Mx
S
=
A
A/
\-M:
-
~—
1=
1
NgE

_1 4
Proof. We use Theorem 2 with p; = bq > 0,x; = a;b; " > 0. Then p;x; = b?aibi P=

q(1-3)

a; bq_ﬁ = a;b, = albq” = 4;b; and from (4), we obtain
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IN

1 1 & LjeN, ;b
(gpfon) = oo f(mw)(E
:-le?i; o ?zlb?i; i)\ Sien b

1

< 1 bqib?f<aibl ) @)

i=1% i=1

==

For the function f(t) = t? from (7), we obtain

(hato) < gk (zo) (5o
1 — i
i1 b? i=1 im1 b? i=1 \jeN; ! ZjENi b?

(R To A 1 op
S b7 1bi(“ibi ) IWZ%

i=1"; i=

N

i=1 1 i=1

Multiplying with ( " b?) p, and raising to the power of %, we obtain

o = () [B5) " (5)]

(5

Corollary 2. Using the same conditions as in previous corollary for p € R, p < 1, p # 0,
we obtain

N

IN
==
=

-

which is (6). O

) (8) <25 () £
i= i= i=1 \JEN; JEN; i=1

Proof. First for 0 < p < 1. We use Theorem 2 with p; = b? > 0,x; = afb;q > 0. Then
pix; = blalb. " = al’ and from (4), we obtain

1 & y - Yjen, @
fyb! z; 1 b z; jeZI\:Ii J YjeN; b?
1 n _
S W lb?f(ﬂfbl q).

i=1% i=

1
For the function f(t) = t7, we obtain

1

.

1 i(z b?) (21'@&“]' ) '
?:1 b? i=1 \JEN; ! ZjENi qu

1 n N
< Wbe(afbi "

i=1"%; i=1

/N
s
Lo
<
- g
NNgs
A
3
~—
<=
IN

<=

1
Multiplying with ( ) b?) ?, and then with ( L b?)

()

, we obtain

(£) <E(5) (5] <Eon

1= JEN; JEN;

<=
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which is (8).
If p <0, then 0 < g < 1, and the same result follows from symmetry (see comments
in Corollary 1). O

It is interesting to show how the previously obtained results impact the study of the
weighted discrete power means and the weighted discrete quasi-arithmetic means.

Letn € Nyn>2,x= (x,...,%1), p = (P1,---,Pn), Xi,pi € RT. The weighted
discrete power means of order r € R are defined as

(hrtow) . o

1
( -1 zp') , r=0.

Using Theorem 2, we obtain the following inequalities for the weighted discrete power
means. Let us notice that left-hand side and right-hand side of both inequalities are the
same; only mixed means in the middle, which are a refinement, change.

M (x,p) =

Corollary 3. Letn e Nyn > 2,x = (xq,...,%3), p = (p1,---,Pn), Xi, pi € RT. Lets,t € R
such that s < t. Then

~—

o ]
Mi(x,p) < |52 ( )3 m) M{(xn,, py,) ©)
L ni=1 jGNi |
< M(x,p),
_ -1
1 & °
Ms(x,p) < |5 Y. ( Y Pj) Mi(xn;, PN;) (10)
L™ i=1 \jeN; i
< M(x, p),

where x;, = (le,...,xék_), PN, = (p}l,--wp;'k;), ki = [Nj|, N; = {ji,...,jf{i},fori =1,...,m

1

Proof. We use Theorem 2 with f(x) = x¢ for x > 0,s,t e R, t>0,5s#0,s <t From (4),
we obtain

t t

1 n s 1 m Z Nip.x. s 1 n t
<p ZPixz) S5 Z(Z Pj) <]€ =)< B Y pix; .
n n ]‘GN,, . n

Substituting x; with x7, and then raising to the power %, we obtain

t 1
1 & ‘ YjeN, PiX; \ °
[(P” izpl ) ] - ”;<jgip]> [( LjeN; Pj >

which is (9).
Similarly, we use Theorem 2 with f(x) = xt for x > 0,s,t € R,s,t >0,s <t

We obtain
R Ljen; Pj%j R
X; —_— =l _ r
(m?”l ) P<Z )(zjewipj P

Substituting x; with x, and then raising to the power , inequality (10) easily follows.
Other cases follow s1m11arly O

@0 =

el
.
INA
| -
-
=
~—~
NH(,)
N~—
@~
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Let I be aninterval inR. Letn € N,n > 2, x = (x1,..., %), p = (p1,---,Pn), Xi € 1,
pi € RT. Then, for a strictly monotone continuous function #: I — R, the discrete weighted
quasi-arithmetic mean is defined as

My,(x,p) =h~ (Pngpl x,)

Using Theorem 2, we obtain the following inequalities for quasi-arithmetic means.

Corollary 4. Let I be an interval in R. Letn € Nyn > 2, x = (x1,..., %), p = (p1,---,Pn),
xj € I, p; € RT. Let h: I — R be a strictly monotone continuous function such that f o
h=1 convex. Let N; C {1,2,...,n},i = 1,...,m where N;iNN; = @ fori # j, UL N; =
{1,2,...,n}and ZjeN,v pj >0,i=1,...,m. Then

f(Mp(x,p)) < ii(i P1>f(Mh(xN’pN> Pii

where xy, = (x!

h,...,x;kl_), PN, = (p}l,...,p§ki),ki = |Ni|, N; = {jﬁ,...,j,ii},fori =1,...,m

Proof. Theorem 2 with f — foh~!and x; — h(x;) gives

af v 1 Yjen, pih(x;)
f(h (n;pzmxl))) < 53 (z p]) ( <zjeNipj ))

A\

IN
o
I
=
™
Re

O

3. Applications in Information Theory

In this section we give basic results concerning the discrete Csiszar f-divergence. In
addition, bounds for the divergence of the Zipf-Mandelbrot law are obtained.

Let us denote the set of all probability densities by P, i.e,, p = (p1,...,pn) € Pif
pi€l0,1)fori=1,...,nand )} ;p; =1.

In [15], Csiszar introduced the f-divergence functional as

q) = un’(’j’f), 11)
i=1 qi

where f: [0, +00) is a convex function, and it represents a “distance function” on the set of
probability distributions P.

In order to use nonnegative probability distributions in the f-divergence functional,
we assume, as usual,

£(0) == lim f(t), o-f<8) = 0,0~f(g) lim tf( )

t—0+ t—0+

and the following definition of a generalized f-divergence functional is given.

Definition 1 (the Csiszdr f-divergence functional). Let ] C R be an interval, and let f: ] — R
be a function. Let p = (p1,..., Pn) be an n-tuple of real numbers and q = (q1,...,qn) be an
n-tuple of nonnegative real numbers such that p;/q; € ] for every i = 1,...,n. The Csiszdr
f-divergence functional is defined as
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) = Z% qf(’;) (12)

Theorem 7. Let I be an interval in R and f: I — R a convex function. Let p = (p1,..., Pn) be
an n-tuple of real numbers and q = (q1, . .., qn) be an n-tuple of nonnegative real numbers such
that p;/q; € Iforeveryi=1,...,n. Let N; C{1,2,...,n},i =1,...,mwhere N; N N; = @ for

i#J, UL N ={1,2,...,n}, Yjen,q; > 0,i=1,...,mand g’eN p/ e€li=1,...,m. Then

JENz

Py u Z]GNP] 1
f(Q) ¥<]ZN > (z]em]) o, Drtra) 13

holds.

Proof. Using Theorem 2 with p; — g; and x; — %, we obtain

1 2 1 LjeN, qjﬁ

JEN; 1] g Pi
(ato) < mE (5o (B0 ) < ()
whichis (13). O

Corollary 5. If in the previous theorem we take p and q to be probability distributions, and we
directly obtain the following result:

o E

Theorem 8. Let f: I — R be a convex function on I, [m, M| C I, —oo < m < M < +oo. Let
p = (p1,-.., pn) be an n-tuple of real numbers and q = (q1, ..., qn) be an n-tuple of nonnegative
real numbers such that m < Z" < M,i=1,...,n. Le¢t Ny C {1,2,...,n},i =1,...,m
where N; NN; = = Qfori # j, UL N; = {1,2,...,n}, ZJGNiq] > O,fori =1,...,mand
mi = mm{p]/q] j € Ni}, M; = max{p;/q;: j € N},fori =1,...,m. Then

M, _ Zieni P LieNi P
Brpa) < 3 T ar) | T iy Dol M
=g = My = m; 1 M= |
M- B G- —m
< n =~n_
< M fm) (M) (19

holds.

Proof. Using Theorem 1 with p; — g; and x; — %, we obtain
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5,11. zf(”’)

i=1 \JEN;

1y P
Tl Ny T
Mi —m; !

M— Y1 g B
Z?:lqi i=1"tg; —

<
= M—m (m) M—m F(M),

which is (15). O

Corollary 6. If, in the previous theorem, we take p and q to be probability distributions, we directly
obtain the following result:

Ljen; Pj Ljen; Pj
b ( ) _ i Z ' M; — ZjeNi qj f(m) n ZjeNiq]' _mif(M.)
)= = jeNiq] M; —m; l M; —m; l
M-1 1-m
<
< D)+ o (M) (16)

If p and g are probability distributions, the Kullback-Leibler divergence, also called
relative entropy or KL divergence, is defined as

n
Dki(p.q Z leog< )

The next corollary provides us bounds for the Kullback-Leibler divergence of two
probability distributions.

Corollary 7. Let N; C {1,2,...,n},i =1,...,
{1,2,...,n}and2j€Niqj>O,i:1,...,m.

o Letp=(p1,...,pn)and q = (q1,...,qn) be n-tuples of nonnegative real numbers. Then

m where Ny N;j = @ for i # j, UL N; =

P P, 1 & LieN; Pj
Q’:llogQZ<PZ<Zp]>logZ] <—Zp,log

mi=1 \jeN;

o Letp=(p1,...,pn)and q = (q1,...,qn) € P be probability distributions. Then

m Z
0<), ( )y Pj) log 72161\[’ Z] < Dki(p. 9)-

=1 \jeN; JEN; 4]

Proof. Let p = (p1,...,pn) and g = (41, ..., qn) be an n-tuples of nonnegative real num-
bers. Since the function t — tlogt is convex, first inequality follows from Theorem 7 by
setting f(t) = tlogt.

The second inequality is a special case of the first inequality for probability distribu-
tions pand g. O

Corollary 8. Let N; C {1,2,...,n},i =1,...,
{1,2,...,n}and2j€Niqj>0,fori:1,...,m

m where Ny \N; = @ for i # j, UL N; =
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o Letp = (p1,...,pn)and q = (q1,...,qn) be n-tuples of nonnegative real numbers. Let
m=min{p;/q;:i=1,...,n}, M = max{p;/q;: i =1,...,n}, m; = min{p;/q;: j €
N;} and M; = max{p;/q;: j € Ni}, fori =1,...,m. Then

n .
Y pi log%
i=1 L
LjeN; Pj LjeN; Pj
1 mi(Mi_):. T Mi():. N‘q._mi)
< N 10| m. JENIT] g N
(5w
< log mm(Mf%)MM(%fm) .
~“M-m

o Letp = (p1,...,pn) and q = (q1,...,qn) € P be probability distributions. Let m =
min{p;/q;:i=1,...,n}, M = max{p;/q;: i = 1,...,n}, m; = min{p;/q;: j € N;}
and M; = max{p;/q;: j € N;},fori =1,...,m. Then

Dki(p, q)
LieN; pj LieN; Pj
1 1 mi(Mi— v 7 i )
< l—— 1o m. ]EIJM’ JE€N; 1)
B z; <j€ZI\:]i qj) M —m; g( : l
< m(M—1) p sM(1—m)
< = o8 (m M )

Proof. Let p = (p1,...,pn) and g = (41, ..., qn) be an n-tuples of nonnegative real num-
bers. Since the function t — tlogt is convex, the first inequality follows from Theorem 8 by
setting f(t) = tlogt.

The second inequality is a special case of the first inequality for probability distribu-
tions pand g. O

Now we deduce the relations for some more special cases of the Csiszar f-divergence.

Definition 2 (the Shannon entropy). Fora p € P, the discrete Shannon entropy is defined as

n

SE(p) = = )_pilogp;.
i=1

Corollary 9. Let g € P. Let N; C {1,2,...,n},i = 1,...,m where N;iNN; = @ fori # j,
UM Ni ={1,2,...,ntand Cjcn,q; > 0,i =1,...,m. Then

—logn < i(Z %’) <10g Y 4 _108|Ni|> < —SE(q).

i=1 \JEN; JEN;

Proof. Using Theorem 7 with f(t) = —logt,t € R and g € P, we obtain

—log(Py) < Z(Z ‘7]’) <—log<m>> < Zqi(—log p)
i=1 \jeN; Ljen; 4] i=1 i

For p; =1,i =1,...,n inequality (17) follows. O

Corollary 10. Let [m,M] C RT, —oc0o < m < M < +oo, g € P such that m < %
M,i=1,...,n. Let N; C{1,2,...,n},i=1,...,m where N; N N; = @ for i # J, UL N;
{12,...,n}, Yien, qj > 0, fori=1,...,mandm; = min{1/q;: j € N;}, M; = max{1/q;: j €
N}, fori=1,...,m. Then

I IA
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" ):|Ni\ - M, Tgi*|Ni\
~SE(q) < Z(Z ‘h‘) [% log m; + 37~ log M;
]eN 1 1 1

i=1 !

S

- m—n
<
< M_mlogm—l—M_mlogM (17)

holds.

Proof. Using Theorem 8 with f(t) = —logt,t € RT, g € Pand p; = 1,...,n, we obtain

1 1
Z%’(—log )
i=1

|N;| [Ni]

<i Y g MiiZjENin(_lo m‘)_i_ZjeNl—Qj m(—lo M)
g jeN.q] M; —m; B M; —m; Stk

i=
and (17) easily follows. O

Definition 3 (Jeffrey’s distance). For the p,q € P the discrete Jeffrey distance is defined as

n

Iﬂnq%=ZXm—qObg?

i=1 i

Corollary 11. Let p,q € P. Let N; C {1,2,...,n},i =1,...,m where NiNN; = Q@ fori # j,
U, N;={1,2,...,n} a”deeNi q;>0,i=1,...,m. Then

4L Z]ENI‘ p]
0 < Y Xp—Ya|logs——"<Jipa) (18)
i=1 \jEN; JEN; Ljen; 4j
Proof. Using Corollary 5 with f(t) = (t — 1) logt,t € RT, we obtain
4 LieN; Pj LjeN; Pj 4 pi pi
1-1)logl < A 2T 1) 10 17173 .(11)10 43
(1=1)lg E{ (JEZ]L\,{ qj) (Z]‘GN,- qj > & Ljen, 9 ,; T\ g &
and (18) easily follows. [

Corollary 12. Let [m, M] C Rt, —oco <m < M < +o0, p,q € P such that m < % <M,i=
1,...,n. Let N; C {1,2,...,71},1’ = 1,...,m.whereNiﬁ'N]- = Qfori# j,U" N; = {'1,2,...,71},
Yjen,qj > 0 fori=1,...,mand m; = min{p;/q;: j € N;}, M; = max{p;/q;: j € N;}, for
i=1,...,m. Then

Ja(p. q) (19)
. - Ljen; P Lien; Pi -
17 Tien, ) Tien, ) i
<) ( )3 ”h‘) e (mi =) logm; + = ——(M; — 1) log M;
i=1 \jeN; i i i i
(1—m)(M-1)
M

holds.
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Proof. Using Corollary 6 with f(t) = (t —1)logt, t € RT, we obtain

n
(Pi_, )10 pi
,»_21%(‘7:' gq

1

Ljen; Pj YijeN; Pj N

S i LjeN; 9j Yjen; 4j i

<Y\ L) | 3 (mi—Dlogmi+ == —(M; — 1) log M;
i=1 jENi 1 1 1 1
M—1 1—m

< - —

< M—m(m 1)logm—|—M_m(M 1)log M,

and (19) easily follows. O

Definition 4 (the Hellinger distance). For the p,q € P, the discrete Hellinger distance is
defined as

n

=2 (Vi

i=1

Corollary 13. Let p,q € P. Let N; C {1,2,...,n},i =1,...,m where N;NN; = @ fori # j,
Uiy N; =11,2,.. n}ﬂndeeNiq]'>0,i=1,...,m. Then

2
0 < Z( 2P Z%) < Ha(p,9)- (20)

]'ENI' ]€N
Proof. Using Corollary 5 with f(t) = (vt —1)%,t € R* (20) follows. [

Corollary 14. Let [m,M] C Rt, —co < m < M < o0, p,q € P such that m < ”’ <M,i=
1,...,n Let N; € {1,2,.. n}z—l .,mwhere N;\N; = Qfori # j, UL N; —{12 . n},
ZjeN q] >0, fori=1,...,mand m; = mm{p]/q] j 6 N}, M; = max{p]/q] je N} for
i=1,...,m. Then

M Z]EN pj ZjeN,- i
Hipa) < N 5 ) | (v - 12+ S (/A -1
S A M; —m; l M; —m; l
M-1 > 1-—m >
< M_m(m 1) +M_m(\/ﬁ 1) (21)
holds.

Proof. Using Corollary 6 with f(t) = (vt —1)%,t € R* (21) follows. [

Definition 5 (Bhattacharyya distance). For the p,q € P, the discrete Bhattacharyya distance is
defined as

Ba(p,a) = Y. /Pl

i=1

Corollary 15. Let p,q € P. Let N; C {1,2,...,n},i =1,...,m where NiNN; = Q@ fori # j,
Uiy N; =11,2,.. ”}ﬂ”deeNiq]'>0,i=1,...,m. Then

—1 Z‘/ZP]Z% (p.q) (22)
jEN;  jEN;

Proof. Using Corollary 5 with f(t) = —/t,t € R* (22) follows. [
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Corollary 16. Let [m, M] C RT, —co <m < M < o0, p,qGPsuchthatm< Bi< M,i=
1,...,n. Let N; C {1,2,.. n} i=1,...,mwhere N;\N; = @fori # j, UL —{1 2,...,n},
Z]EN q] >0, fori=1,..., mand m; = min{pj/qj:je N}, M; :max{p]/q] j€ N} for
i=1,...,m. Then

Ml'—m,'

8 (VT + E2 ) (7~ )
~Bi(p,q) < Z(N ) l
JEN;

IN

(23)
holds.

Proof. Using Corollary 6 with f(t) = —/t,t € R* (23) follows. [

Now we are going to derive the results from the Theorems (7) and (8) for the Zipf-
Mandelbrot law.

The Zipf-Mandelbrot law is a discrete probability distribution and is defined by the
following probability mass function:

1
i, M,s, t) = ,di=1,...,M,
f( ) (l+t)5HMst
where
Mo

Hysp =Y ——
Mt §<z+t>s

is a generalization of the harmonic numberand M € N, s > 0 and t € [0, 00) are parameters.
If we define q as a Zipf-Mandelbrot law M-tuple, we have

1
i + t2)52 HM,Sz,t2 ’

ql‘:( izl,...,M,

where
M 1

Hy = PR
/S2.t2 E{ (i+ ty)%

and the Csiszar functional becomes
. M 1
D¢(p,i,M,s5,t7) = v T E— (i+t)"2H ,
#(p 2/12) l; it tZ)SZHM,sz,t2f<pl( 2) 2 Hpmsy ty )

where f: I — R,I C R, and the parameters M € N,s, > 0,f, > 0 are such that p;(i +
tZ)szHM,sz,tz el,i=1,...,M.

If p and q are both defined as Zipf-Mandelbrot law M-tuples, then the Csiszar func-
tional becomes

M

A g (i+1t2)2Hpp s, 1
D /M’ 7 /t /t . . 2, 2 7
f(l 51,82,11,12 lz + tZ SZHM ot < (l + tl)sl HM,Sl,tl

where f: I — R,I C R, and the parameters M € N,sq,s, > 0,1, > 0 are such that

(i+t2)" 2HMs2 t2

Now, from Theorem 7, we have the following result.

Corollary 17. Let I be an interval in R and f: I — R a convex function. Let p = (p1,...,Pn)
be an n-tuple of real numbers and q = (g1, ..., qn) be an n-tuple of nonnegative real numbers such
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that p;/q; € I foreveryi=1,...,n. Let N; C {1,2,...,n},i =1,...,m where N;NN; = @ for
i #j, U N; ={1,2,...,n}. Suppose sy > 0,tp > 0 are such that p;(i + t2)*2Hy 5,1, € I,i =
L...,n Lien; p]-(jJr t)2Hysot, € Ii=1,...,m. Then

i i Z 1 f LjeN; P
Py i=1 ]+ tZ) 2H, /S2,E2 i 1

= LijeN: (0 2 Fnmyry
< Df(p,i,n,52,t2) (24)

holds.

Proof. If we define q as a Zipf-Mandelbrot law n-tuple with parameters s, 5, then from
Theorem 7 it follows

L m 1 Lien; Pj
f<Pn>fpmz<]§N<]+tz>sansztz>f o (T

Z]EN:‘ (+t2)2Hy s, 1,

n

1
< e —— 1 l+t SZH ’
1221 (] T tZ) ZHn Sz,tzf(Pl( 2) ”/SZrtZ)

whichis (24). O

From Theorem 8 we have the following result.

Corollary 18. Let f: I — R be a convex function on I, [m, M] C I, —oo < m < M < +co. Let
p = (p1,..., pn) be an n-tuple of real numbers. Suppose sy > 0,ty > 0 are such that m < p;(i +
t2)2Hpsyt, < M,i =1,...,n. Let N; C {1,2,...,n},i = 1,...,m where Nj NN; = O for

i#j, UL N ={1,2,...,n}, pi(i + t2)2Hps,1, € Li = 1,. Liey, p’ eli=
ZJEN (j+t2)” Zanz ty

1...,mand m; = min{p;/(j+ t2)Hugs,t,: j € N}, M; = max{p;/(j + t2)?Husyt,: j €
N;}, fori=1,...,m. Then

D¢(p,i,n,s0,t) (25)
Mi ZJEN' lij
<2 SR
i=1 \JEN; ] + tz 2H" /S2,E2 M; —m; !
Z/EN P] m
Ve (i, M—P Py —m
1,57,k M < n n M

holds.

Proof. If we define q as a Zipf-Mandelbrot law n-tuple with parameters sy, 5, then from
Theorem 8 it follows
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n

L G 4+ 2 )
1:1 2,12
LijeN; Pj
M, — EL;
< i Z 1 ]EN ]+f2) ZHHSZ ty f( )
- i=1 jENi (] + tz)szHﬂ,Sz,tz M — m;
LieN; Pj s
1 1
LjeN; (i+t2)"2Hyg) 1) M— % % —m

S f(My) | < )+ (M),

which is (25). O

Now, from Theorem 7, we also have the following result.

Corollary 19. Let I bean interval inRand f: I — Ra convex function. Let N; C {1,2,...,n},i =
1,...,mwhere NN\ N; = @ fori # j, UL N; = {1,2,...,n}. Suppose s1,s3 > 0,t1,tp > 0

1

YieN;, T g
(H‘tZ) Hy s, 1 (]+t2) 2Hyp syt 7€ (]*tl) Hy . t .
aresuchthatsizzellfl nZeN 22 € ], L e [i =
( ) 1Hy ] ]+t1) ]Hns st Z]EN m
1,...,m. Then
1
ﬁ < Z ; >f ZjeNi Gt Hisy g
4 52 . 1
Py i=1 \jEN; ] + tz) Hn,sz,tz Z]GNI' (j+f2)52Hn,sz,t2
< Dg(i,n,51,50, 11, t2) (26)
holds.

Proof. If we define p, q as a Zipf-Mandelbrot law n-tuples with parameters s1, t1, s, f2,
then from Theorem 7, we obtain (26). O

From Theorem 8, we have the following result.

Corollary 20. Let f: I — R be a convex functionon I, [m,M] C I, —oo < m < M < +o0.

(i+t2)°2Hy 5y 1,
() Fsrr, < M,i=1,...,n Let N; C

. (i+t2)%2Hy s,
{1,2,...,n},i= 1,...,mwhere NyNN; = @ fori # j, U N; = {1,2,...,71},% €

Suppose s1,s2 > 0,t1,tp > 0 are such that m <

LieN; (e s 1,
. s . +t,)52H, )
Li=1,...,n, #]"MEIJ:L mandml—mm{%']GNi},
Z]GN (j+t) Hysy 4y
/+t2> "“2'52
_ ]‘HZ) Hnszrz

M; = ma {m j€ N}, fori=1,...,m. Then

Df(lr n,s1,82, tl/ tZ) (27)

B —
):JGN (i+0) T Hy s 1y

1 Mi ):JGN’ l+f2> 21Hn 50ty
< = m;
Z Z + tZ)SZHn sp,tp Mi —m f( 1)

]GN
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oy 1
M —m; m
LieN: Griy 2 isyy l M-1 + . m
i n,59,ty
M| < M
M; —m; f(Mi) M mf(m) M S

holds.

Proof. If we define p, q as a Zipf-Mandelbrot law n-tuples with parameters s1, t1, 52, f2,
then from Theorem 8, we obtain (27). O

Since the minimal value for g; is min{g;} = W and its maximal value is
5282
max{q;} = m, from the right-hand side of (24) and the left-hand side of (25), we

obtain the following result.

Corollary 21. Let f: [ — R bea convex functionon I, [m, M] C I, —co < m < M < +o0. Let
p = (p1,-.., pn) be an n-tuple of real numbers. Suppose sy > 0,ty > 0 are such that m < p;(i +
t2)2Hpsyr, < M,i =1,...,n. Let N; € {1,2,...,n},i = 1,...,m where N;iNN; = @ for
i, U N;={1,2,...,n}, pi(i+ t2)2Hys,1, € Li=1,...,1, Lie; P cli=

LjeN; (+12)2 Hy s 1
1,...,mand m; = min{p;/(j+ t2)2Hpspt,: j € Ni}, M; = max{p;/(j + t2)?Huspt,: j €
N;}, fori=1,...,m. Then

1 n Z'ENZ' p]
By (n T L), 2Nl — (28)
w (1 +t2)2Hy s, 1, i=1 ZjeNi (+6)2 oy iy

S Df(pr ir n,sy, tZ)
< 1 M |Ni| = (14 t2)2 Husy 1y Lien; P
o (1 + t2)52H71,S2,t2 i=1 Mi —m

N (n+t2)2Hy s, 1, Yjen, Pj — mi| Ni
Ml' — m;

f(m;)

f(Mi)]

holds.

Proof. Using min{g;} = m and max{g;} = m from the right-hand
side of (24) and the left-hand side of (25), we obtain

1 3 1 f YjeN; Pj
Py 1 \jeN; (n+ tZ)san,Sz,fz

hgE

1
Z]ENf (j+t2)52 Hn,sz,tz

< D¢(p,i,n,52,t2)

YieN; Pj
m 1 Mi - ZjeN . 1‘1]
i (1+t2)52Hns t
< 2 f(m;)
; (]ele (1 + tZ)SZHn,SZ,t2> Mi — m; !
Yien; pj )
Ljen; (Hfz;‘qlen sp.to "
/50, M) |,
Mi _ mi f( l)

and (28) follows. [
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4. Conclusions

In this paper we have obtained a refinement of the Lah-Ribari¢ inequality and a
refinement of the Jensen inequality which follows from using the Lah—Ribari¢ inequality
and the Jensen inequality on disjunctive subsets of {1,2,...,n}.

Using these results, we find a refinement of the discrete Holder inequality and a
refinement of some inequalities for the discrete weighted power means and the discrete
weighted quasi-arithmetic means. In addition, some interesting estimations for the discrete
Csiszar divergence and for its important special cases are obtained.

It would be interesting to see whether using this method one can give refinements of
some other inequalities. In addition, we can try to use this method for refining the Jensen
inequality and the Lah—Ribari¢ inequality for operators.
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