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Abstract: In this paper, we propose a six-dimensional nonlinear system of differential equations for
the human immunodeficiency virus (HIV) including the B-cell functions with a general nonlinear
incidence rate. The compartment of infected cells was subdivided into three classes representing the
latently infected cells, the short-lived productively infected cells, and the long-lived productively
infected cells. The basic reproduction number was established, and the local and global stability of
the equilibria of the model were studied. A sensitivity analysis with respect to the model parameters
was undertaken. Based on this study, an optimal strategy is proposed to decrease the number of
infected cells. Finally, some numerical simulations are presented to illustrate the theoretical findings.

Keywords: HIV; general incidence rate; local and global stability; Lyapunov theory; LaSalle’s invari-
ance principle; sensitivity analysis; optimal strategy

MSC: 34K20; 34D23; 37B25; 49K40; 92D25

1. Introduction

The human immunodeficiency virus (HIV) is a retrovirus that infects humans and is
responsible for acquired immunodeficiency syndrome (AIDS), which is a kind of weakness
of the immune system that makes it vulnerable to different opportunistic infections. Trans-
mitted by several bodily fluids, AIDS is today considered as a pandemic, having caused
the death of approximately 32 million people between 1981 when AIDS cases were first
identified and 2018. Worldwide, it is estimated that around 1% of people aged 15 to 49 are
HIV positive, mainly in sub-Saharan Africa. Although there are antiretroviral treatments
that fight HIV and delay the onset of AIDS, thereby reducing mortality, there is currently
no definitive treatment nor vaccine. The most effective control method therefore remains
prevention, which involves, in particular, protected sex and knowledge of one’s serological
status to avoid infecting others [1].

Historically, mathematics (in this context, we refer in particular to mathematical
modeling and analysis) has been used to better understand the dynamics of the transmission
of infectious diseases and to learn how to control them. This application of mathematics
dates back to the work of Daniel Bernoulli, who used mathematical and statistical methods
to study the potential impact of the smallpox vaccine in 1760 [2]. In the 1920s, Sir Ronald
Ross, a physician by training, used mathematical modeling to propose effective methods of
malaria control. In particular, he showed that the disease can be eradicated if the mosquito
population is kept below a certain threshold, a discovery that won him the Nobel Prize in
medicine. More recently, mathematics has helped shape effective public health policies
against the spread of emerging and re-emerging diseases that pose a significant threat to
public health, such as HIV/AIDS, influenza (e.g., the recent pandemics of bird flu and
swine flu), malaria, severe acute respiratory syndrome (SARS) and tuberculosis.

Mathematical modeling enables public health workers to compare, plan, execute,
evaluate, and optimize different programs for detection, prevention, therapy, and control.
It also helps identify trends and make general forecasts. For example, we try to predict
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the number of cases of infection, the death rate, the number of people who will need to
be hospitalized, the speed of spread, the peak of infection, when the disease will end,
the percentage of the population that needs to be vaccinated, and how to prioritize the
use of limited resources, such as the limited stocks of Tamiflu at the start of the swine flu
pandemic in 2009.

Deterministic dynamic models, whether based on differential or partial differential
equations, are easy to simulate [3]. Their flexibility allows the exploration of a wide
variety of scenarios, while many theoretical and numerical tools allow them to be used for
analytical purposes (finding a formula to express the reproduction number according to the
other parameters present) and statistics (parameter adjustment, sensitivity analysis). More
generally, they constitute a parsimonious means (therefore, calibratable with a minimum
of data) for understanding the non-trivial behavior of epidemic trajectories, which result
from nonlinear interactions between the densities of the different clinico-epidemiological
compartments [4–9]. Despite their structural simplicity, meta-modeling work suggests that
these models, which implicitly average many aspects of the phenomenon (transition rate
between compartments, spatial distribution), generate robust and conservative results from
a public health point of view, confirming their usefulness, if only at the start of an epidemic.
Mathematical modeling can be used for proposing, comparing, and evaluating various
optimal strategies [4].

The aim of this article was to explain the use of mathematics both to model the spread
of a disease and to evaluate strategies to limit its spread. We propose a mathematical model
including the B-cell functions for HIV dynamics with a general nonlinear incidence rate.
The infected compartment was subdivided into three classes, namely the latently infected
class, the short-lived productively infected class, and the long-lived productively infected
class. The proposed mathematical model admits at least one equilibrium point and, at most,
two equilibrium points depending on the basic reproduction number,R0, values. The local
and global stability of both equilibrium points were investigated with respect to the basic
reproduction number,R0. A sensitivity analysis ofR0 with respect to the parameters of
the model was conducted. We concluded that the generation rate of the uninfected cells, $,
plays the most vital role in controlling the stability aspects of the proposed model. Thus, we
formulated an optimal strategy using a time-varying control function, $(t). The theoretical
findings were validated using some numerical results.

2. Mathematical Model for HIV Dynamics

In this paper, we investigated the generalization of the dynamic mechanistic model
given in [10]. In this context, dynamic mechanistic models are models based on a system of
differential equations, which are widely used in pharmacokinetics/pharmacodynamics,
where they are called compartmental models because they describe the diffusion of
molecules through different compartments of the body. They are also used in ecology,
where we refer to prey–predator models, and also for the modeling of epidemics in a
population. In the context of HIV infection, they have been met with great success due to
their use in estimating the half-life of infected cells and of the virion, and they have made
it possible to demonstrate the intense turnover of lymphocyte cells and of the virus [11].
Briefly, it is a question of starting from a biological model supposedly known and of using
the pathophysiological mechanism to specify the mathematical equations. For example,
HIV has been shown to primarily infect CD4+ T lymphocytes. The latter, when infected,
produce virions.

Let the variables U, L, I, O, P, and C describe the uninfected cells, the latently infected
cells, the short-lived productively infected cells, the long-lived productively infected cells,
the free virions, and the B cells, respectively. The change in the number or concentration of
CD4+ T lymphocytes (dU) over a small time interval (dt) is a function of a constant (rate
of de novo cell production $), the rate of cell death (mu) proportional to the number of
cells present (U), and the number of infected cells that leave this “compartment” to join
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the compartment of infected cells (L, I, O). The number of infected cells is distributed into
three compartments depending on the type of infected cell (L, I, O).

The number of infected cells is, therefore, a function of the number of target cells, the
number of circulating virions (P), and the incidence rate of infection ( f (P)U), also called
infectivity. The incidence rate of infection is very important for understanding the dynamics
of the system. The variation in the number of virions (dP) per unit of time depends on
the number of virions produced (mi M1 I + mo M2O), the clearance mp of the virus, and the
neutralized part of the HIV particles, χPC.

U̇ = $− (ω1 + ω2 + ω3) f (P)U −muU,
L̇ = ω1 f (P)U − (ml + ν)L,
İ = ω2 f (P)U + νL−mi I,
Ȯ = ω3 f (P)U −moO,
Ṗ = mi M1 I + mo M2O−mpP− χPC,
Ċ = εP−mcC− υPC.

(1)

The B cell immune response is assumed to be proportional to the free virions’ popula-
tion (εP). The B cell impairment rate is assumed to be proportional to the contact with the
free virions’ population (υPC, where υ is a positive constant).

The model’s parameters are positive and are given hereafter as in Table 1.

Table 1. Model’s parameters.

Parameter Description
ω1 Incidence rate between P and L
ω2 Incidence rate between P and I
ω3 Incidence rate between P and O
$ Generation rate of U

mu, ml , mi, Natural mortality rates
mo, mp, mc

ν Conversion rate from the L compartment to the I compartment
M1 Generated HIV in the lifetime of the short-lived productively

infected cells
M2 Generated HIV in the lifetime of the long-lived productively

infected cells
ε B cell immune rate (proportional to the free virions’ quantity)

χPC Neutralization rate of HIV particles
υPC B cell impairment rate

(ω1 + ω2 + ω3) f (P)U is the incidence rate of infection. Note that the incidence rate,
f , increases if the free viruses increase and there is no infection in the absence of the virus;
thus, the function f satisfies the following assumption.

Assumption 1. f is an increasing concave continuous function satisfying f (0) = 0.

Lemma 1. 1. f ′(P)P ≤ f (P) ≤ f ′(0)P, ∀P ∈ R+;

2.
( f (P)

f (P∗)
− P

P∗
)(

1− f (P∗)
f (P)

)
≤ 0, ∀P, P∗ ∈ R+.

Proof. 1. For P ∈ R+, let h1(P) = f (P) − P f ′(P). Since f is a concave increasing
function, then f ′(P) ≥ 0 and f ′′(P) ≤ 0. Therefore, h′1(P) = −P f ′′(P) ≥ 0 and
h1(P) ≥ h1(0) = 0 or also f (P) ≥ P f ′(P). Similarly, let h2(P) = f (P) − P f ′(0),
then h′2(P) = f ′(P)− f ′(0) ≤ 0 since f is concave. Then, h2(P) ≤ h2(0) = 0 and
f (P) ≤ P f ′(0).
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2. For P, P∗ ∈ R+, let h3(P) =
f (P)

P
, h′3(P) =

f ′(P)P− f (P)
P2 ≤ 0; thus, the

function h3 is decreasing. If the function, f , is increasing, then the quantity(
h3(P)− h3(P∗)

)
( f (P)− f (P∗)) is negative. Thus,

(
h3(P)− h3(P∗)

)
( f (P)− f (P∗)) =

( f (P)
P
− f (P∗)

P∗
)
( f (P)− f (P∗))

=
f (P∗) f (P)

P

( f (P)
f (P∗)

− P
P∗
)(

1− f (P∗)
f (P)

)
≤ 0.

This completes the proof.

2.1. Basic Results

Let ω = ω1 + ω2 + ω3, m1 = min(mu, ml , mi, mo) and m2 = min(
mp

2
, mc).

Lemma 2. The set:

Γ =

{
(U, L, I, O, P, C) ∈ R6

+ ; U + L + I + O ≤ $

m1
, P +

mp

2ε
C ≤ $(mi M1 + mo M2)

m1m2

}
is a positively invariant attractor of all solutions of Model (1).

Proof. To prove that the set R6
+ is positively invariant by the model (1), we have:

U̇ |U=0 = $ > 0,

L̇ |L=0 = ω1 f (P)U ≥ 0,

İ |I=0 = ω2 f (P)U + νL ≥ 0,

Ȯ |O=0 = ω3 f (P)U ≥ 0,

Ṗ |P=0 = M1mi I + M2moO ≥ 0,

Ċ |C=0 = εP ≥ 0.

It remains to prove that the solutions are bounded. Let T1(t) = U(t) + L(t) + I(t) +O(t)−
$

m1
and T2(t) = P(t) +

mp

2ε
C(t). From Equation (1), we obtain:

Ṫ1(t) = $− (muU(t) + ml L(t) + mi I(t) + moO(t)) ≤= −m1T1(t).

Hence, T1(t) ≤ T1(0)e−m1t, then U(t) + L(t) + I(t) + O(t) ≤ $

m1
+
(

U(0) + L(0) +

I(0) + O(0)− $

m1

)
e−m1t.

Similarly,

Ṫ2(t) = mi M1 I + mo M2O +
mp

2ε
εP−mpP−

mp

2ε
mcC− χPC−

mp

2ε
υPC

= mi M1 I + mo M2O−
mp

2
P−

mp

2ε
mcC− χPC−

mp

2ε
υPC

≤ mi M1 I + mo M2O−
mp

2
P−

mp

2ε
mcC

≤ mi M1 I + mo M2O−
mp

2
P−

mp

2ε
mcC

≤ mi M1 I + mo M2O−m2T2(t)
≤ $

m1
(mi M1 + mo M2)−m2T2(t).

(2)

Hence, T2(t) ≤ e−m2t
(

T2(0)−
$

m1m2
(mi M1 +mo M2)

)
+

$

m1m2
(mi M1 +mo M2), then:
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P(t) +
mp

2ε
C(t) ≤ e−m2t

(
P(0) +

mp

2ε
C(0)− $

m1m2
(mi M1 + mo M2)

)
+

$

m1m2
(mi M1 + mo M2).

Now if:
U(0) + L(0) + I(0) + O(0) ≤ $

m1

then
U(t) + L(t) + I(t) + O(t) ≤ $

m1

and if:
P(0) +

mp

2ε
C(0) ≤ $

m1m2
(mi M1 + mo M2)

then:
P(t) +

mp

2ε
C(t) ≤ $

m1m2
(mi M1 + mo M2),

then Γ is positively invariant for System (1).

2.2. Existence and Uniqueness of Equilibrium Points

R0, or the basic reproduction number, indicates the average number of new cases
of a disease that a single infected and contagious person will generate on average in a
population without any immunity (people without immunity are called susceptible people).
IfR0 remains less than one, the pathogen will infect fewer than one person, on average, per
case and eventually become extinct. On the other hand, ifR0 is greater than one, it means
that the pathogen will succeed in infecting more hosts, causing an epidemic. R0, therefore,
depends on our knowledge of the pathogen, but also on the choice of the modelers. This
explains the variety of values for the same disease or even for the same epidemic. The rate
of reproduction also depends on the times and societies in which the epidemic occurs. Thus,
the R0 of one of the most contagious diseases and the best known to man, measles, has
long been estimated between 12 and 18 on the basis of data acquired during the American
epidemic between 1912 and 1928 and the British epidemic between 1944 and 1979.

By using the next-generation matrix method [3,12], we calculated the basic reproduc-
tion number,R0 (see Appendix A for details):

R0 = (M1ω2 + M2ω3)
$ f ′(0)
mump

+
νM1ω1

(ml + ν)

$ f ′(0)
mump

=
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

(ml + ν)mp

$ f ′(0)
mu

.

Lemma 3. • Once R0 ≤ 1, then the model (1) admits a unique equilibrium point given by

E0 = (
$

mu
, 0, 0, 0, 0, 0).

• OnceR0 > 1, then the model (1) admits two equilibrium points E0
and E∗ = (U∗, L∗, I∗, O∗, P∗, C∗).

Proof. Let E = (U, L, I, O, P, C) be any equilibrium point of the model (1) satisfying:

0 = $−ω f (P)U −muU,
0 = ω1 f (P)U − (ml + ν)L,
0 = ω2 f (P)U + νL−mi I,
0 = ω3 f (P)U −moO,
0 = M1mi I + M2moO−mpP− χPC,
0 = εP−mcC− υPC.

(3)

By solving Equation (3), we obtain a steady state given by the HIV-free steady state

E0 = (
$

mu
, 0, 0, 0, 0, 0). Moreover, we have:
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

U =
$

mu
− ω

mu
f (P)U

=
$

mu
−

ω(ml + ν)
(

mpP +
$εP2

mc + υP

)
mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) ,

O =
ω3(ml + ν)

(
mpP +

$εP2

mc + υP

)
mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) ,

I =
ω2(ml + ν) + ω1ν

ω3(ml + ν)
O =

(
ω2(ml + ν) + ω1ν

)(
mpP +

$εP2

mc + υP

)
mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) ,

L =
moω1

ω3(ml + ν)
O =

ω1

(
mpP +

$εP2

mc + υP

)
(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) ,

C =
εP

mc + υP
.

(4)

Now, based on the fourth equation of System (3), we have:

0 = ω3 f (P)U −moO

= ω3 f (P)

(
$

mu
−

ω(ml + ν)
(

mpP +
$εP2

mc + υP

)
mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

))

−
ω3(ml + ν)

(
mpP +

$εP2

mc + υP

)
(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

)
(5)

Then, P = 0 is a solution that gives U =
$

mu
and L = I = O = P = C = 0, and this is

the HIV-free steady state E0 = (
$

mu
, 0, 0, 0, 0, 0).

Now, suppose that P 6= 0, and divide the Equation (5) by P; we obtain:

ω3
f (P)

P

(
$

mu
−

ω(ml + ν)
(

mpP +
$εP2

mc + υP

)
mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

))

−
ω3(ml + ν)

(
mp +

$εP
mc + υP

)
(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) = 0.

(6)

By defining the function:

g(P) = ω3
f (P)

P

(
$

mu
−

ω(ml + ν)
(

mpP +
$εP2

mc + υP

)
mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

))

−
ω3(ml + ν)

(
mp +

$εP
mc + υP

)
(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) ,

(7)
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then we obtain:

lim
P→0+

g(P) = ω3 f ′(0)
$

mu
−

ω3(ml + ν)mp

(M1ω2 + M2ω3)(ml + ν) + νM1ω1

=
ω3(ml + ν)mp

(M1ω2 + M2ω3)(ml + ν) + νM1ω1
(R0 − 1) > 0 ifR0 > 1.

Let P0 be the solution of the equation:

$

mu
−

ω(ml + ν)
(

mpP +
$εP2

mc + υP

)
mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) = 0,

which is equivalent to:

$
(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

)
(mc + υP) = ω(ml + ν)

(
mp(mc + υP)P + $εP2

)
.

We then obtain:

aP2 + bP + c = 0 (8)

where:

a = ω(ml + ν)
(

mpυ + $ε
)
≥ ω(ml + ν)mpυ,

b = ω(ml + ν)mpmc − $
(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

)
υ,

c = −$
(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

)
mc.

Then:

∆ = b2 − 4ac

≤
[
ω(ml + ν)mpmc − $

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

)
υ
]2

+4ω(m + ν)mpυ$
(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

)
mc

=
[
ω(ml + ν)mpmc + $

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

)
υ
]2

Equation (8) admits a unique positive solution given by P0 =
−b +

√
∆

2a
. Now, we

have:

g(P0) = −
ω3(ml + ν)

(
mp +

$εP0

mc + υP0

)
(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) < 0.

The derivative of the function g is given by:

g′(P) = ω3
P f ′(P)− f (P)

P2

(
$

mu
−

ω(ml + ν)
(

mpP +
$εP2

mc + υP

)
mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

))

−ω3
f (P)

P

( ω(ml + ν)
(

mp +
$ε(2mcP + υP2)

(mc + υP)2

mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

))
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−

$εmc

(mc + υP)2(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) .

By Lemma 1 and since U =
$

mu
−

ω(ml + ν)
(

mpP +
$εP2

mc + υP

)
mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) > 0, then

g′(P) < 0, and thus, g is a decreasing function. Then, the existence and uniqueness of
P∗ ∈ (0, P0) such that g(P∗) = 0, therefore,

U∗ =
$

mu
−

ω(ml + ν)
(

mpP∗ +
$ε(P∗)2

mc + υP∗
)

mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) ,

O∗ =
ω3(ml + ν)

(
mpP∗ +

$ε(P∗)2

mc + υP∗
)

mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) ,

I∗ =

(
ω2(ml + ν) + ω1ν

)(
mpP∗ +

$ε(P∗)2

mc + υP∗
)

mu

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) ,

L∗ =
ω1

(
mpP∗ +

$ε(P∗)2

mc + υP∗
)

(
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

) ,

C∗ =
εP∗

mc + υP∗
.

(9)

Then, the persistence equilibrium point E∗ = (U∗, L∗, I∗, O∗, P∗, C∗) exists onceR0 >
1.

2.3. Local Stability

The linearization method is a valid method only locally around an operating point
(usually a regular point), and therefore, this method cannot be used to define global
behavior. In addition, during linearization, the nonlinear effects are then considered as
disturbing and, therefore, neglected. However, the dynamics brought by these nonlinear
effects are richer than the linear systems. For example, unlike linear systems that have
only one point of equilibrium, nonlinear systems can have multiple points of equilibrium.
Moreover, such systems can be the seat of oscillations (limit cycles) characterized by their
amplitude and their frequency whatever the initial conditions and without the contribution
of external excitation, whereas a linear system, to oscillate, must present a pair of poles on
the imaginary axis, a very fragile condition with regard to disturbances and modeling errors.
One can also note other phenomena in the nonlinear systems (bifurcations), phenomena that
represent a variation of the evolution of the system in terms of the number of equilibrium
points, of the stability when one or more parameters of the model vary.

In this section, we shall study the local behavior of our system (1) using the lineariza-
tion method through the Jacobian matrix. Note that the value with respect to the unit of
R0 is very significant in concluding if the endemic persists or not. Hereafter, we give the
results concerning the local stability of the equilibrium points E0 and E∗. The proofs are
given in Appendix B.

Theorem 1. IfR0 < 1, then the trivial equilibrium point E0 is locally asymptotically stable.

Proof. See Appendix B.
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Theorem 2. The infected steady state E∗ is locally asymptotically stable onceR0 > 1.

Proof. See Appendix B.

3. Global Stability

Define G to be the function G(z) = z− 1− ln z and the constant:

Λ =
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

(ml + ν)(ω1 + ω2 + ω3)
.

Note that

Λ

1−

$

mu
U

($−muU
)

= Λ

U − $

mu
U

mu

( $

mu
−U

)
= −mu

U
Λ
(

U − $

mu

)2
.

Theorem 3. The trivial equilibrium point E0 is globally asymptotically stable onceR0 ≤ 1.

Proof. Suppose thatR0 ≤ 1, and define the Lyapunov function L0(U, L, I, O, P, C):

L0(U, L, I, O, P, C) = Λ
$

mu
G
(
U/

$

mu

)
+

νM1

ml + ν
L + M1 I + M2O + P +

mp

ε
(1−R0)C.

Clearly, L0(U, L, I, O, P, C) > 0 for all U, L, I, O, P, C > 0 and L0(
$

mu
, 0, 0, 0, 0, 0) = 0.

The derivative of L0 along Model (1) is:

dL0

dt
= Λ

(
1− $

muU

)(
$−ω f (P)U −muU

)
+

νM1

ml + ν

(
ω1 f (P)U − (ml + ν)L

)
+M1

(
ω2 f (P)U + νL−mi I

)
+ M2

(
ω3 f (P)U −moO

)
+M1mi I + M2moO−mpP− χPC +

mp

ε
(1−R0)(εP−mcC− υPC)

= Λ
(

1− $

muU

)(
$−muU

)
−Λω

(
1− $

muU

)
f (P)U

+
(νM1ω1

ml + ν
+ M1ω2 + M2ω3

)
f (P)U −

(
χ +

mpυ

ε
(1−R0)

)
PC

−mpR0P−
mpmc

ε
(1−R0)C

= Λ
(

1− $

muU

)(
$−muU

)
+

(M1ω2 + M2ω3)(ml + ν) + νM1ω1

(ml + ν)
f (P)

$

mu

−
(

χ +
mpυ

ε
(1−R0)

)
PC−mpR0P−

mpmc

ε
(1−R0)C

= −mu

U
Λ
(

U − $

mu

)2
+

νM1ω1 + (M1ω2 + M2ω3)(ml + ν)

(ml + ν)

$

mu
f (P)

−mpR0P−
(

χ +
mpυ

ε
(1−R0)

)
PC−

mpmc

ε
(1−R0)C

= −mu

U
Λ
(

U − $

mu

)2

+mpR0

[
νM1ω1 + (M1ω2 + M2ω3)(ml + ν)

(ml + ν)mp

$

muR0

f (P)
P
− 1

]
P

−
(

χ +
mpυ

ε
(1−R0)

)
PC−

mpmc

ε
(1−R0)C

≤ −mu

U

(
U − $

mu

)2
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+mpR0

[
νM1ω1 + (M1ω2 + M2ω3)(ml + ν)

(ml + ν)mp

$

muR0
f ′(0)− 1

]
P

−
(

χ +
mpυ

ε
(1−R0)

)
PC−

mpmc

ε
(1−R0)C

= −mu

U
Λ
(

U − $

mu

)2
−
(

χ +
mpυ

ε
(1−R0)

)
PC−

mpmc

ε
(1−R0)C.

If R0 ≤ 1, then
dL0

dt
≤ 0 for all U, L, I, O, P, C > 0. Let W0 = {(U, L, I, O, P, C) :

dL0

dt
= 0}. It can be easily shown that W0 = {E0}. Using LaSalle’s invariance principle [13]

(see [14–19] for some examples), one deduces that E0 is globally asymptotically stable once
R0 ≤ 1.

Theorem 4. By considering System (1), ifR0 > 1, then E∗ is globally asymptotically stable.

Proof. Let a function L∗(U, L, I, O, P, C) be defined as:

L∗(U, L, I, O, P, C) = ΛU∗G
( U

U∗
)
+

νM1

ml + ν
L∗G

( L
L∗
)
+ M1 I∗G

( I
I∗
)
+ M2O∗G

( O
O∗
)

+P∗G
( P

P∗
)
+

χ

2(ε− υC∗)
(C− C∗)2.

Clearly, L∗(U, L, I, O, P, C) > 0 for all U, L, I, O, P, C > 0 and L∗(U∗, L∗, I∗, O∗, P∗, C∗)

= 0. Calculating
dL∗
dt

along the trajectories of (1) and using the fact that $ = mU∗ + (ω1

+ω2 + ω3) f (P∗)U∗, we obtain:

dL∗
dt

= Λ
(

1− U∗

U

)(
$−muU −ω f (P)U

)
+

νM1

ml + ν

(
1− L∗

L

)(
ω1 f (P)U − (ml + ν)L

)
+M1

(
1− I∗

I

)(
ω2 f (P)U + νL−mi I

)
+ M2

(
1− O∗

O

)(
ω3 f (P)U −moO

)
+

(
1− P∗

P

)(
mi M1 I + mo M2O−mpP− χPC

)
+

χ

(ε− υC∗)
(C− C∗)

(
εP−mcC− υPC

)
= Λ

(
1− U∗

U

)(
muU∗ −muU + ω( f (P∗)U∗ − f (P)U)

)
+

νM1ω1

ml + ν
f (P)U − νM1ω1

ml + ν

L∗

L
f (P)U − νM1L + νM1L∗

+M1ω2 f (P)U + νM1L−mi M1 I −M1ω2 f (P)U
I∗

I
− νM1L

I∗

I
+ mi M1 I∗

+M2ω3 f (P)U −mo M2O−M2ω3 f (P)U
O∗

O
+ mo M2O∗

+mi M1 I + mo M2O−mpP− χPC−mi M1 I
P∗

P
−mo M2O

P∗

P
+ mpP∗

+χP∗C +
χ

(ε− υC∗)
(C− C∗)

(
εP− (mc + υP)C

)
= muΛ

(
1− U∗

U

)
(U∗ −U) + Λω

(
1− U∗

U

)
( f (P∗)U∗ − f (P)U)

+
νM1ω1

ml + ν
f (P)U − νM1ω1

ml + ν

L∗

L
f (P)U + νM1L∗ + M1ω2 f (P)U

−M1ω2 f (P)U
I∗

I
− νM1L

I∗

I
+ mi M1 I∗ + M2ω3 f (P)U −M2ω3 f (P)U

O∗

O



Mathematics 2022, 10, 749 11 of 26

+mo M2O∗ −mpP− χPC−mi M1 I
P∗

P
−mo M2O

P∗

P
+ mpP∗ + χP∗C

+
χ

(ε− υC∗)
(C− C∗)

(
εP− (mc + υP)C

)
= muΛ

(
1− U∗

U

)
(U∗ −U)

+
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

(ml + ν)

(
f (P∗)U∗ − f (P∗)U∗

U∗

U
+ f (P)U∗

)
−νM1ω1

ml + ν

L∗

L
f (P)U + νM1L∗ −M1ω2 f (P)U

I∗

I
− νM1L

I∗

I
+ mi M1 I∗

−M2ω3 f (P)U
O∗

O
+ mo M2O∗ −mpP− χPC−mi M1 I

P∗

P
−mo M2O

P∗

P
+mpP∗ + χP∗C +

χ

(ε− υC∗)
(C− C∗)

(
εP− (mc + υP)C

)
.

Now, since:

νM1ω1

ml + ν
f (P∗)U∗ = νM1L∗,

mi M1 I∗ = M1ω2 f (P∗)U∗ + νM1L∗,

M2ω3 f (P∗)U∗ = mo M2O∗,

mpP∗ + χP∗C∗ = mi M1 I∗ + mo M2O∗,

εP∗ = mcC∗ + υP∗C∗,

then:

dL∗
dt

= muΛ
(

1− U∗

U

)
(U∗ −U) + M1ω2 f (P∗)U∗ + M2ω3 f (P∗)U∗

+
νM1ω1

(ml + ν)
f (P∗)U∗ + M1ω2 f (P)U∗ + M2ω3 f (P)U∗ +

νM1ω1

(ml + ν)
f (P)U∗

−M1ω2 f (P∗)U∗
U∗

U
−M2ω3 f (P∗)U∗

U∗

U
− νM1ω1

(ml + ν)
f (P∗)U∗

U∗

U

−νM1ω1

ml + ν

L∗

L
f (P)U + νM1L∗ −M1ω2 f (P)U

I∗

I
− νM1L

I∗

I
+ mi M1 I∗

−M2ω3 f (P)U
O∗

O
+ mo M2O∗ −mpP− χPC−mi M1 I

P∗

P
−mo M2O

P∗

P
+mi M1 I∗ + mo M2O∗ + χP∗C− χP∗C∗

+
χ

(ε− υC∗)
(C− C∗)

(
εP− (mc + υP)C

)
= muΛ

(
1− U∗

U

)
(U∗ −U) + M1ω2 f (P∗)U∗ + mo M2O∗ + νM1L∗

+M1ω2 f (P)U∗ + mo M2O∗
f (P)
f (P∗)

+ νM1L∗
f (P)
f (P∗)

−M1ω2 f (P∗)U∗
U∗

U

−mo M2O∗
U∗

U
− νM1L∗

U∗

U
− νM1L∗

L∗

L
f (P)U

f (P∗)U∗
+ νM1L∗ −M1ω2 f (P)U

I∗

I

−νM1L
I∗

I
+ M1ω2 f (P∗)U∗ + νM1L∗ −mo M2O∗

f (P)U
f (P∗)U∗

O∗

O
+ mo M2O∗

−νM1L∗
I
I∗

P∗

P
−M1ω2 f (P∗)U∗

I
I∗

P∗

P
−mo M2O

P∗

P
+ (mp + χC)(P∗ − P)

+
χ(mc + υP)
(ε− υC∗)

(C− C∗)(C∗ − C)− χ

mc
(C− C∗)

(
(mc + υP)P∗ − (mc + υP∗)P

)
= −mu

U
Λ(U −U∗)2 + νM1L∗

(
3− U∗

U
− L∗ f (P)U

L f (P∗)U∗
− LI∗

L∗ I
− P∗ I

PI∗
+

f (P)
f (P∗)

)
+M1ω2 f (P∗)U∗

(
2− U∗

U
− I∗ f (P)U

I f (P∗)U∗
− P∗ I

PI∗
+

f (P)
f (P∗)

)



Mathematics 2022, 10, 749 12 of 26

+mo M2O∗
(

2− U∗

U
− O∗ f (P)U

O f (P∗)U∗
− P∗O

PO∗
+

f (P)
f (P∗)

)
+(mp + χC)(P∗ − P)− χ(mc + υP)

(ε− υC∗)
(C− C∗)2

− χ

mc
(C− C∗)

(
(mc + υP)P∗ − (mc + υP∗)P

)
= −mu

U
Λ(U −U∗)2 − χ(mc + υP)

(ε− υC∗)
(C− C∗)2

+νM1L∗
(

5− U∗

U
− L∗ f (P)U

L f (P∗)U∗
− LI∗

L∗ I
− P∗ I

PI∗
− P f (P∗)

P∗ f (P)

)
+M1ω2 f (P∗)U∗

(
4− U∗

U
− I∗ f (P)U

I f (P∗)U∗
− P∗ I

PI∗
− P f (P∗)

P∗ f (P)

)
+mo M2O∗

(
4− U∗

U
− O∗ f (P)U

O f (P∗)U∗
− P∗O

PO∗
− P f (P∗)

P∗ f (P)

)
+
(

νM1L∗ + M1ω2 f (P∗)U∗ + mo M2O∗
)( f (P)

f (P∗)
+

P f (P∗)
P∗ f (P)

− 2
)

+(mp + χC)(P∗ − P)− χ

mc
(C− C∗)

(
(mc + υP)P∗ − (mc + υP∗)P

)
= −mu

U
Λ(U −U∗)2 − χ(mc + υP)

(ε− υC∗)
(C− C∗)2

+νM1L∗
(

5− U∗

U
− L∗ f (P)U

L f (P∗)U∗
− LI∗

L∗ I
− P∗ I

PI∗
− P f (P∗)

P∗ f (P)

)
+M1ω2 f (P∗)U∗

(
4− U∗

U
− I∗ f (P)U

I f (P∗)U∗
− P∗ I

PI∗
− P f (P∗)

P∗ f (P)

)
+mo M2O∗

(
4− U∗

U
− O∗ f (P)U

O f (P∗)U∗
− P∗O

PO∗
− P f (P∗)

P∗ f (P)

)
+(mi M1 I∗ + mo M2O∗)

( f (P)
f (P∗)

− P
P∗
)(

1− f (P∗)
f (P)

)
.

Based on the rule:
1
n

n

∑
i=1

ai ≥ n

√
n

∏
i=1

ai, (10)

and the Lemma 1, we obtain
dL∗
dt

(U, L, I, O, P, C) ≤ 0 for all U, L, I, O, P, C > 0 and
dL∗
dt

(U, L, I, O, P, C) = 0 if and only if (U, L, I, O, P, C) = (U∗, L∗, I∗, O∗, P∗, C∗). From
LaSalle’s invariance principle [13], we deduce the global stability of E∗ (see [15,20,21] for
other applications).

4. Sensitivity Analysis ofR0

All diseases progress over time. This evolution is described in the disease’s mathe-
matical modeling by variables and parameters. In this evolution, it turns out that certain
parameters influence its propagation more than others. The sensitivity analysis of Model
(1) was carried out in order to estimate the impact of the variation of certain parameters
on the model predictions [22–24]. If the index describing the impact of a parameter on the
model predictions is positive, then an increase of the value of the parameter induces an
increase ofR0, and if the index is negative, then an increase of the value of the parameter
induces a decrease ofR0 [24].

To find the parameters that most influence the spread of the disease, we calculated the
sensitivity indices as follows.

Definition 1. (see [22,23]) The sensitivity index ofR0, depending differentially on a parameter σ,
is given by:

YR0
σ =

∂R0

∂σ
× σ

|R0|
.
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For instance, YR0
σ = 1 implies a decrease or increase in σ, which then decreases or increases R0

accordingly. Thus, σ is the most sensitive parameter.

Proposition 1. Recall thatR0 is given by:

R0 =
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

(ml + ν)mp

$ f ′(0)
mu

.

R0 depends on several parameters. The sensitivity of R0 to each one of the given parameters is
given by the following sensitivity indices:

Proof. This follows immediately from Definition 1.

From Table 2, it is clear that the parameters $, M1, M2, ω1, ω2, ω3, and ν are positive
and, hence, play a vital role in controlling the stability aspects of the system. Note that the
dependence ofR0 on ml , mp, and mu is negative and, hence, has an adverse influence on
the system.

Table 2. Sensitivity ofR0.

Parameter Sensitivity Index ofR0 Sign

$ YR0
$ =

∂R0

∂$
× $

R0
= 1 +ve

M1 YR0
M1

=
∂R0

∂M1
× M1

R0
=

M1ω2(ml + ν) + νM1ω1

(M1ω2 + M2ω3)(ml + ν) + νM1ω1
< 1 +ve

M2 YR0
M2

=
∂R0

∂M2
× M2

R0
=

M2ω3(ml + ν)

(M1ω2 + M2ω3)(ml + ν) + νM1ω1
< 1 +ve

ω1 YR0
ω1 =

∂R0

∂ω1
× ω1

R0
=

νM1ω1

(M1ω2 + M2ω3)(ml + ν) + νM1ω1
< 1 +ve

ω2 YR0
ω2 =

∂R0

∂ω2
× ω2

R0
=

M1ω2(ml + ν)

(M1ω2 + M2ω3)(ml + ν) + νM1ω1
< 1 +ve

ω3 YR0
ω3 =

∂R0

∂ω3
× ω3

R0
=

M2ω3(ml + ν)

(M1ω2 + M2ω3)(ml + ν) + νM1ω1
< 1 +ve

ν YR0
ν =

∂R0

∂ν
× ν

R0
=

ml M1ω1ν

(M1ω2 + M2ω3)(ml + ν)2 + νM1ω1(ml + ν)
< 1 +ve

ml YR0
ml =

∂R0

∂ml
× ml
R0

= − ml
(ml + ν)

νM1ω1

(M1ω2 + M2ω3)(ml + ν) + νM1ω1
> −1 -ve

mp YR0
mp =

∂R0

∂mp
×

mp

R0
= −1 -ve

mu YR0
mu =

∂R0

∂mu
× mu

R0
= −1 -ve

The sensitivity analysis obtained in Table 2 can be simulated as in Figure 1 in terms of
the behavior ofR0 with respect to the parameters of the model. Note thatR0 increases with
respect to the parameters $, M1, M2, ω1, ω2, ω3, and ν; however, it decreases with respect to
the parameters ml , mp, and mu.
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Figure 1. Behavior ofR0.

5. Optimal Strategy

In this section, we propose an optimal strategy by considering a non-constant, but
variable recruitment rate $(t) of uninfected cells to be the control function. This choice was
motivated by the sensitivity analysis, since the parameter, $, is the parameter playing the
most vital role in controlling the stability aspects of the proposed model.

Assume, moreover, that f is a bounded globally Lipschitz function with f̄ = sup
P>0

f (P)

as the upper bound and L f is the Lipschitz constant. The set of the control variables, Pad, is
given by:

Pad = {$(t) : 0 ≤ $min ≤ $(t) ≤ $max, 0 ≤ t ≤ T, $(t) is Lebesgue measurable}.

The goal is to look for the control variable $(t) and the associated state variables U(t), L(t),
I(t), O(t), P(t), and C(t) minimizing the objective function:

J($) =
∫ T

0

(
α1(L(t) + I(t) + O(t)) +

α2

2
$2(t)

)
dt.

The choice of appropriate positive constants, α1 and α2, permits the infected population
and the cost of the control to be minimized. We used the standard results [25] to prove the
existence and uniqueness of both the optimal control and optimal states.

Existence and Uniqueness

For φ = (U, L, I, O, P, C)t, the form of the model (1) takes a more suitable form:

φ̇ = Aφ + F(φ) = G(φ) (11)
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where A =



−mu 0 0 0 0 0
0 −(ml + ν) 0 0 0 0
0 ν −mi 0 0 0
0 0 0 −mo 0 0
0 0 M1mi M2mo −mp 0
0 0 0 0 ε −mc



and F(φ) =



$−ω f (P)U
ω1 f (P)U
ω2 f (P)U
ω3 f (P)U
−χPC
−υPC

.

Proposition 2. The continuous function, G, is uniformly Lipschitz.

Proof. The continuous function, F, is uniformly Lipschitz once:∥∥F(φ1)− F(φ2)
∥∥

1 = 2ω
∣∣∣ f (P1)U1 − f (P2)U2

∣∣∣+ (χ + υ)
∣∣∣P1C1 − P2C2

∣∣∣
= 2ω

∣∣∣ f (P1)(U1 −U2) + ( f (P1)− f (P2))U2

∣∣∣
+(χ + υ)

∣∣∣P1(C1 − C2) + (P1 − P2)C2

∣∣∣
≤ 2ω

(
f̄ |U1 −U2|+ L f |P1 − P2|U2

)
+(χ + υ)

(
P1|C1 − C2|+ C2|P1 − P2|

)
≤ 2ω

(
f̄ |U1 −U2|+ L f

$

m1
|P1 − P2|

)
+(χ + υ)

$(mi M1 + mo M2)

m1m2
|C1 − C2|

+(χ + υ)
2ε

mp

$(mi M1 + mo M2)

m1m2
|P1 − P2|

≤ 2 f̄ ω|U1 −U2|+ (χ + υ)
$(mi M1 + mo M2)

m1m2
|C1 − C2|

+
[
2L f

$

m1
ω + (χ + υ)

2ε

mp

$(mi M1 + mo M2)

m1m2

]
|P1 − P2|

≤ MF
∥∥φ1 − φ2

∥∥
1

where:

MF = max
(

2 f̄ ω, (χ + υ)
$(mi M1 + mo M2)

m1m2
,
[
2L f

$

m1
ω(χ + υ)

2ε

mp

$(mi M1 + mo M2)

m1m2

])
.

Since, ∥∥Aφ1 − Aφ2
∥∥

1 ≤
∥∥A
∥∥

1

∥∥φ1 − φ2
∥∥

1 (12)

where
∥∥A
∥∥

1 := supX 6=0

∥∥AX
∥∥

1∥∥X
∥∥

1

is the matrix norm of A where
∥∥ · ∥∥1 is the vector norm.

Therefore, ∥∥G(φ1)− G(φ2)
∥∥

1 ≤ MG
∥∥φ1 − φ2

∥∥
1 (13)

here MG = max(MF,
∥∥A
∥∥). It is easy, now, to deduce that the continuous function, G, is

uniformly Lipschitz.

Since the function, G, is a uniformly Lipschitz continuous function, then System (11)
admits a unique solution.
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Pontryagin’s maximum principle [25–27] permits the derivation of some necessary
conditions to calculate the optimal control and states. The expression of the Hamiltonian is
given by:

H = α1(L + I + O) +
α2

2
$2 + λ1U̇ + λ2 L̇ + λ3 İ + λ4Ȯ + λ5Ṗ + λ6Ċ

= α1(L + I + O) +
α2

2
$2 + λ1($−ω f (P)U −muU)

+λ2(ω1 f (P)U − (ml + ν)L) + λ3(ω2 f (P)U + νL−mi I)
+λ4(ω3 f (P)U −moO) + λ5(M1mi I + M2moO−mpP− χPC)
+λ6(εP−mcC− υPC).

(14)

For a given optimal control, $∗, we derive the adjoint states λ1, λ2, λ3, λ4, λ5, and λ6
related to the states U, L, I, O, P, and C as the following:

λ̇1 = −∂H
∂U

= λ1(ω f (P) + mu)−ω1λ2 f (P)−ω2λ3 f (P)−ω3λ4 f (P),

λ̇2 = −∂H
∂L

= −α1 + λ2(ml + ν)− λ3ν,

λ̇3 = −∂H
∂I

= −α1 + miλ3 −mi M1λ5,

λ̇4 = −∂H
∂O

= −α1 + moλ4 −mo M2λ5,

λ̇5 = −∂H
∂P

= λ1ω f ′(P)U − λ2ω1 f ′(P)U − λ3ω2 f ′(P)U − λ4ω3 f ′(P)U

+λ5(mp + χC)− λ6(ε− υC),

λ̇6 = −∂H
∂C

= λ6(mc + υP) + χλ5P.

where λi(T) = 0 with i = 1, · · · , 6 are the final conditions.
The slope of the Hamiltonian is given by:

∂H
∂$

= α2$ + λ1. (15)

The root of the equation
∂H
∂$

= 0 for anon-trivial interval of time has to be between its

upper and lower bounds. Thus, the control expression is given by:

$(t) = −λ1

α2
if α2 6= 0 and $min ≤ −

λ1

α2
≤ $max.

Thus, the control characterization is:

If
∂H
∂$

< 0 at t, then $∗(t) = $max;

If
∂H
∂$

> 0 at t, then $∗(t) = $min;

If
∂H
∂$

= 0, then $(t) = −λ1

α2
;

such that α2 6= 0 and $min ≤ −
λ1

α2
≤ $max.

6. Numerical Results and Conclusions

For the numerical simulations, we considered a nonlinear incidence rate of the form

f (P) =
f̄

k + P
named the Monod function (also Holling’s type II). This form of function has

been widely used to describe the transmission rate of diseases. f̄ and k are two constants.
Note that the continuous function f is globally Lipschitz with a Lipschitz constant f̄ /k.
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The parameter values given in Table 3 were used for all numerical investigations presented
in this section.

Table 3. Parameters’ values used for the numerical investigations.

Parameter ω1 ω2 ω3 mu ml mi mo mp mc

Value 0.25 0.45 0.3 1 1 3.4 2.4 0.4 1.4

Parameter ν M1 M2 ε χ υ f̄ k

Value 1.5 0.1 0.2 2.5 0.9 0.2 8 2

6.1. Direct Problem

For $ = 10, thenR0 = 10 > 1, the trajectory of the model (1) converges to E∗ (Figure 2).

Figure 2. Behaviors for $ = 10 and thenR0 = 10 > 1.

Similarly, for $ = 2, then R0 = 2 > 1, the trajectory of the model (1) converges to
E∗ (Figure 3). Thus, the global stability of the equilibrium point E∗ is whenR0 > 1. This
confirms the findings of Theorem 2.

Figure 3. Behaviors for $ = 2 and thenR0 = 2 > 1.

For $ = 0.8, then R0 = 0.8 < 1, the trajectory of the model (1) converges to
E0 = (0.8, 0, 0, 0, 0, 0) (Figure 4). Thus, the global stability of the equilibrium point

E0 = (
$

mu
, 0, 0, 0, 0, 0) is whenR0 ≤ 1. This confirms the findings of Theorem 1.
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Figure 4. Behaviors for $ = 0.8 and thenR0 = 0.8 < 1.

6.2. Control Problem

The control problem was resolved using an improved Gauss–Seidel-like implicit
numerical scheme (for more details, please see Appendix C). We used the same parameter
values as the ones used for Figure 2 (where E∗ is GAS) considering a variable $ such that
$(0) = 25 and with the bounds $min = 0 and $max = 50.

Figures 5–7 show the plotted behaviors of $ (right), U(t), L(t), I(t), O(t), P(t), and
C(t) (left) for different values of α1 and α2.

Figure 5. α1 = 1, α2 = 0.1.

Figure 6. α1 = 2, α2 = 0.1.
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Figure 7. α1 = 5, α2 = 0.1.

7. Conclusions

The human immunodeficiency virus (HIV) is the pathogen responsible for acquired
immunodeficiency syndrome (AIDS). Mathematical modeling enables public health work-
ers to compare, plan, execute, evaluate, and optimize different programs for detection,
prevention, therapy, and control. This also helps identify trends and make general forecasts.
In this paper, we considered a mathematical 6D dynamic model for HIV transmission with
a general incidence rate. The analysis of the local and global stability of the equilibrium
points permitted us to conclude that the infected steady state (E∗) is globally asymptotically
stable onceR0 > 1 and the disease-free steady state (E0) is globally asymptotically stable
once R0 ≤ 1. The sensitivity analysis was carried out for the proposed model. Based
on this analysis, an optimal strategy was formulated where the goal was to minimize the
number of infected cells. The theoretical findings were validated by some numerical results.
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Appendix A. The Basic Reproduction Number

In this section, we shall calculate the value ofR0 that is used for the rest of the paper.
Diekmann et al. [3] were the first to propose a practical method to calculate the basic
reproduction number,R0, named the next-generation matrix method. van den Driessche
and Watmough [12] elaborated on this technique.
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In our case, F =



0 0 0 ω1 f ′(0)
$

mu
0

ν 0 0 ω2 f ′(0)
$

mu
0

0 0 0 ω3 f ′(0)
$

mu
0

0 M1mi M2mo 0 0
0 0 0 ε 0


and

V =


(ml + ν) 0 0 0 0

0 mi 0 0 0
0 0 mo 0 0
0 0 0 mp 0
0 0 0 0 mc

. We obtained det(V) = mimompmc(ml + ν) > 0

and, therefore,

V−1 =



1
(ml + ν)

0 0 0 0

0
1

mi
0 0 0

0 0
1

mo
0 0

0 0 0
1

mp
0

0 0 0 0
1

mc
.


Then, the next-generation matrix:

FV−1 =



0 0 0
$ω1 f ′(0)

mump
0

ν

(ml + ν)
0 0

$ω2 f ′(0)
mump

0

0 0 0
$ω3 f ′(0)

mump
0

0 M1 M2 0 0

0 0 0
ε

mp
0,


and its characteristic polynomial is given by:

P(X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−X 0 0
$ω1 f ′(0)

mump
0

ν

(ml + ν)
−X 0

$ω2 f ′(0)
mump

0

0 0 −X
$ω3 f ′(0)

mump
0

0 M1 M2 −X 0

0 0 0
ε

mp
−X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−X 0 0
$ω1 f ′(0)

mump
ν

(ml + ν)
−X 0

$ω2 f ′(0)
mump

0 0 −X
$ω3 f ′(0)

mump
0 M1 M2 −X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= X2

∣∣∣∣∣∣∣∣∣∣
−X 0

$ω2 f ′(0)
mump

0 −X
$ω3 f ′(0)

mump
M1 M2 −X

∣∣∣∣∣∣∣∣∣∣
+ X

ν

(ml + ν)

∣∣∣∣∣∣∣∣∣∣
0 0

$ω1 f ′(0)
mump

0 −X
$ω3 f ′(0)

mump
M1 M2 −X

∣∣∣∣∣∣∣∣∣∣
= X2

(
−X(X2 −M2

$ω3 f ′(0)
mump

) + M1X
$ω2 f ′(0)

mump

)
+ X

ν

(ml + ν)
M1X

$ω1 f ′(0)
mump

= X2
(
−X3 + (M1ω2 + M2ω3)

$ f ′(0)
mump

X +
νM1ω1

(ml + ν)

$ f ′(0)
mump

)
.

Therefore, the spectral radius representing the basic reproduction number is:

R0 = (M1ω2 + M2ω3)
$ f ′(0)
mump

+
νM1ω1

(ml + ν)

$ f ′(0)
mump

=
(M1ω2 + M2ω3)(ml + ν) + νM1ω1

(ml + ν)mp

$ f ′(0)
mu

.

Appendix B

Proof. For Theorem 1, at each point (U, L, I, O, P, C), the Jacobian matrix of the linear
approximation of System (1) is given by:

J =



−ω f (P)−mu 0 0 0 −(ω1 + ω2 + ω3) f ′(P)U 0
ω1 f (P) −(ml + ν) 0 0 ω1 f ′(P)U 0
ω2 f (P) ν −mi 0 ω2 f ′(P)U 0
ω3 f (P) 0 0 −mo ω3 f ′(P)U 0

0 0 M1mi M2mo −mp − χC −χP
0 0 0 0 ε− υC −mc − υP


Therefore, the Jacobian matrix at the trivial steady state E0 is:

J0 =



−mu 0 0 0 −ω
$

mu
f ′(0) 0

0 −(ml + ν) 0 0
ω1$

mu
f ′(0) 0

0 ν −mi 0
ω2$

mu
f ′(0) 0

0 0 0 −mo
ω3$

mu
f ′(0) 0

0 0 M1mi M2mo −mp 0
0 0 0 0 ε −mc


J0 admits six eigenvalues. The first two eigenvalues are given by X1 = −mu < 0 and
X2 = −mc < 0. The other four eigenvalues are the roots of:

P(X) =

∣∣∣∣∣∣∣∣∣∣∣∣

−(ml + ν + X) 0 0
ω1$

mu
f ′(0)

ν −(mi + X) 0
ω2$

mu
f ′(0)

0 0 −(mo + X)
ω3$

mu
f ′(0)

0 M1mi M2mo −(mp + X)

∣∣∣∣∣∣∣∣∣∣∣∣
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= −(ml + ν + X)

∣∣∣∣∣∣∣∣
−(mi + X) 0

ω2$

mu
f ′(0)

0 −(mo + X)
ω3$

mu
f ′(0)

M1mi M2mo −(mp + X)

∣∣∣∣∣∣∣∣
−ν

∣∣∣∣∣∣∣∣
0 0

ω1$

mu
f ′(0)

0 −(mo + X)
ω3$

mu
f ′(0)

M1mi M2mo −(mp + X)

∣∣∣∣∣∣∣∣
= −(ml + ν + X)

∣∣∣∣∣∣∣∣
−(mi + X) 0

ω2$

mu
f ′(0)

0 −(mo + X)
ω3$

mu
f ′(0)

M1mi M2mo −(mp + X)

∣∣∣∣∣∣∣∣
−νM1mi(mo + X)

ω1$

mu
f ′(0)

= −(ml + ν + X)
[
− (mi + X)

(
(mo + X)(mp + X)−M2mo

ω3$

mu
f ′(0)

)
+M1mi

ω2$

mu
(mo + X) f ′(0)

]
− νM1mi(mo + X)

ω1$

mu
f ′(0)

= (ml + ν + X)
[
(mi + X)

(
X2 + (mo + mp)X + momp −M2mo

ω3$

mu
f ′(0)

)
−M1mi

ω2$

mu
f ′(0)X−M1mimo

ω2$

mu
f ′(0)

]
− νM1mimo

ω1$

mu
f ′(0)

−νM1mi
ω1$

mu
f ′(0)X

= (ml + ν + X)

[
X3 + (mi + mo + mp)X2

+mimo

(
mp − (M1ω2 + M2ω3)

$

mu
f ′(0)

)
+
(

mi(mo + mp) + momp − (M1miω2 + M2moω3)
$

mu
f ′(0)

)
X

]
−νM1mimo

ω1$

mu
f ′(0)− νM1mi

ω1$

mu
f ′(0)X

= X4 + a3X3 + a2X2 + a1X + a0

where:

a3 = ml + ν + mi + mo + mp > 0,
a2 = (ml + ν)(mi + mo + mp)

+
(

mi(mo + mp) + momp − (M1miω2 + M2moω3)
$

mu
f ′(0)

)
,

a1 = momp − (M1miω2 + M2moω3 + νM1miω1)
$

mu
f ′(0)

+(ml + ν)
(

mi(mo + mp) + momp − (M1miω2 + M2moω3)
$

mu
f ′(0)

)
,

a0 = −νM1mimo
ω1$

mu
f ′(0) + (ml + ν)mimo

(
mp − (M1ω2 + M2ω3)

$

mu
f ′(0)

)
= (ml + ν)mimomp

(
1− νM1ω1 + (ml + ν)(M1ω2 + M2ω3)

mp(ml + ν)

$

mu
f ′(0)

)
= (ml + ν)mimomp

(
1−R0

)
.
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By a simple, but long calculus, we can prove that forR0 < 1, we have:

a3 > 0, a3a2 − a1 > 0, a3(a2a1 − a3a0)− a2
1 > 0, a0 > 0.

Then, by using the Routh–Hurwitz criteria [28,29], the eigenvalues have negative
real parts. Then, the trivial steady state E0 is locally asymptotically stable once R0 < 1;
however, it is a saddle point onceR0 > 1.

For Theorem 2, the value of the Jacobian matrix at the infected equilibrium point E∗

is:

J∗ =



−ω f (P∗)−mu 0 0 0 −ω f ′(P∗)U∗ 0
ω1 f (P∗) −(ml + ν) 0 0 ω1 f ′(P∗)U∗ 0
ω2 f (P∗) ν −mi 0 ω2 f ′(P∗)U∗ 0
ω3 f (P∗) 0 0 −mo ω3 f ′(P∗)U∗ 0

0 0 M1mi M2mo −mp − χC∗ −χP∗

0 0 0 0 ε− υC∗ −mc − υP∗


The eigenvalues of J∗ are the roots of:

P∗(X) =

∣∣∣∣∣∣∣∣∣∣∣∣

−ω f (P∗)−mu − X 0 0 0 −ω f ′(P∗)U∗ 0
ω1 f (P∗) −(ml + ν + X) 0 0 ω1 f ′(P∗)U∗ 0
ω2 f (P∗) ν −mi − X 0 ω2 f ′(P∗)U∗ 0
ω3 f (P∗) 0 0 −mo − X ω3 f ′(P∗)U∗ 0

0 0 M1mi M2mo −mp − χC∗ − X −χP∗

0 0 0 0 ε− υC∗ −mc − υP∗ − X

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

−(mu + X) −(ml + X) −(mi + X) −(mo + X) 0 0
ω1 f (P∗) −(ml + ν + X) 0 0 ω1 f ′(P∗)U∗ 0
ω2 f (P∗) ν −mi − X 0 ω2 f ′(P∗)U∗ 0
ω3 f (P∗) 0 0 −mo − X ω3 f ′(P∗)U∗ 0

0 0 M1mi M2mo −mp − χC∗ − X −χP∗

0 0 0 0 ε− υC∗ −mc − υP∗ − X

∣∣∣∣∣∣∣∣∣∣∣∣
= −(mu + X)

∣∣∣∣∣∣∣∣∣∣

−(ml + ν + X) 0 0 ω1 f ′(P∗)U∗ 0
ν −mi − X 0 ω2 f ′(P∗)U∗ 0
0 0 −mo − X ω3 f ′(P∗)U∗ 0
0 M1mi M2mo −mp − χC∗ − X −χP∗

0 0 0 ε− υC∗ −mc − υP∗ − X

∣∣∣∣∣∣∣∣∣∣
+(ml + X)

∣∣∣∣∣∣∣∣∣∣

ω1 f (P∗) 0 0 ω1 f ′(P∗)U∗ 0
ω2 f (P∗) −mi − X 0 ω2 f ′(P∗)U∗ 0
ω3 f (P∗) 0 −mo − X ω3 f ′(P∗)U∗ 0

0 M1mi M2mo −mp − χC∗ − X −χP∗

0 0 0 ε− υC∗ −mc − υP∗ − X

∣∣∣∣∣∣∣∣∣∣
−(mi + X)

∣∣∣∣∣∣∣∣∣∣

ω1 f (P∗) −(ml + ν + X) 0 ω1 f ′(P∗)U∗ 0
ω2 f (P∗) ν 0 ω2 f ′(P∗)U∗ 0
ω3 f (P∗) 0 −mo − X ω3 f ′(P∗)U∗ 0

0 0 M2mo −mp − χC∗ − X −χP∗

0 0 0 ε− υC∗ −mc − υP∗ − X

∣∣∣∣∣∣∣∣∣∣
+(mo + X)

∣∣∣∣∣∣∣∣∣∣

ω1 f (P∗) −(ml + ν + X) 0 ω1 f ′(P∗)U∗ 0
ω2 f (P∗) ν −mi − X ω2 f ′(P∗)U∗ 0
ω3 f (P∗) 0 0 ω3 f ′(P∗)U∗ 0

0 0 M1mi −mp − χC∗ − X −χP∗

0 0 0 ε− υC∗ −mc − υP∗ − X

∣∣∣∣∣∣∣∣∣∣
= (mu + X)(ml + ν + X)(mi + X)(mo + X)

(
(mp + χC∗ + X)(mc + υP∗ + X) + χP∗(ε− υC∗)

)
−M2moω3 f ′(P∗)U∗(mu + X)(ml + ν + X)(mi + X)(mc + υP∗ + X)
−M1miω2 f ′(P∗)U∗(mu + X)(ml + ν + X)(mo + X)(mc + υP∗ + X)
+M1miνω1 f ′(P∗)U∗(mu + X)(mo + X)(mc + υP∗ + X)

+ω1 f (P∗)(ml + X)(mi + X)(mo + X)
(
(mp + χC∗ + X)(mc + υP∗ + X) + χP∗(ε− υC∗)

)
+ω2 f (P∗)(mi + X)(ml + ν + X)(mo + X)

(
(mp + χC∗ + X)(mc + υP∗ + X) + χP∗(ε− υC∗)

)
+νω1 f (P∗)(mi + X)(mo + X)

(
(mp + χC∗ + X)(mc + υP∗ + X) + χP∗(ε− υC∗)

)
+ω3 f (P∗)(mo + X)(ml + ν + X)(mi + X)

(
(mp + χC∗ + X)(mc + υP∗ + X) + χP∗(ε− υC∗)

)
+νω3 f (P∗)(mo + X)(mi + X)

(
(mp + χC∗ + X)(mc + υP∗ + X) + χP∗(ε− υC∗)

)
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= − f ′(P∗)U∗(mu + X)(mc + υP∗ + X)(
M2moω3(ml + ν + X)(mi + X) + M1miω2(ml + ν + X)(mo + X) + M1miνω1(mo + X)

)
+
(
(mu + X)(ml + ν + X) + ω1 f (P∗)(ml + X) + (ω2 + ω3) f (P∗)(ml + ν + X) + ν(ω1 + ω3) f (P∗)

)
(mo + X)(mi + X)

(
(mp + χC∗ + X)(mc + υP∗ + X) + χP∗(ε− υC∗)

)
.

By using the Maple software, we write the characteristic polynomial P∗(X) in the
form P∗(X) = X6 + a5X5 + a4X4 + a3X3 + a2X2 + a1X + a0 and prove that the roots of P∗

(eigenvalues) have negative real parts by the Routh–Hurwitz criteria [28,29]. The steady
state, E∗, is then locally asymptotically stable ifR0 > 1. This completes the proof.

Appendix C The Numerical Scheme Used

Let us subdivide the interval of time [0, T] such that [0, T] =
N−1⋃
n=0

[tn, tn+1], tn =

n dt, dt = T/N.
Let Un, Ln, In, On, Pn, Cn, λn

1 , λn
2 , λn

3 , λn
4 , λn

5 , λn
6 , and $n be an approximation of U(t),

L(t), I(t), O(t), P(t), C(t), λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), and the control $(t) at
the time tn. U0, L0, I0, O0, P0, C0, λ0

1, λ0
2, λ0

3, λ0
4, λ0

5, λ0
6, and $0 are the initial values. UN , LN ,

IN , ON , PN , CN , λN
1 , λN

2 , λN
3 , λN

4 , λN
5 , λN

6 , and $N are their values at the final time T.
An improvement of the Gauss–Seidel-like implicit scheme associated with a first-order
backward difference scheme was applied as follows:

Un+1 −Un

dt
= $n − (ω1 + ω2 + ω3) f (Pn)Un+1 −muUn+1,

Ln+1 − Ln

dt
= ω1 f (Pn)Un+1 − (ml + ν)Ln+1,

In+1 − In

dt
= ω2 f (Pn)Un+1 + νLn+1 −mi In+1,

On+1 −On

dt
= ω3 f (Pn)Un+1 −moOn+1,

Pn+1 − Pn

dt
= M1mi In+1 + M2moOn+1 −mpPn+1 − χPn+1Cn,

Cn+1 − Cn

dt
= εPn+1 −mcCn+1 − υPn+1Cn+1,

λN−n
1 − λN−n−1

1
dt

= λN−n−1
1 ((ω1 + ω2 + ω3) f (Pn+1) + mu)

− f (Pn+1)(ω1λN−n
2 + ω2λN−n

3 + ω3λN−n
4 ),

λN−n
2 − λN−n−1

2
dt

= −α1 + λN−n−1
2 (ml + ν)− νλN−n

3 ,

λN−n
3 − λN−n−1

3
dt

= −α1 + miλ
N−n−1
3 −mi M1λN−n

5 ,

λN−n
4 − λN−n−1

4
dt

= −α1 + moλN−n−1
4 −mo M2λN−n

5 ,

λN−n
5 − λN−n−1

5
dt

= λN−n−1
1 (ω1 + ω2 + ω3) f ′(Pn+1)Un+1

− f ′(Pn+1)Un+1(λN−n−1
2 ω1 + λN−n−1

3 ω2 + λN−n−1
4 ω3)

+λN−n−1
5 (mp + χCn+1)− λN−n

6 (ε− υCn+1),
λN−n

6 − λN−n−1
6

dt
= χλN−n−1

5 Pn+1 + λN−n−1
6 (mc + υPn+1).

Hence, we applied the Algorithm A1 given hereafter.
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Algorithm A1: An improvement of the Gauss–Seidel-like implicit scheme asso-
ciated with a first-order backward difference scheme

1: U0 ← U(0), L0 ← L(0), I0 ← I(0), O0 ← O(0), P0 ← P(0), C0 ← C(0), λN
1 ← 0, λN

2 ←
0, λN

3 ← 0, λN
4 ← 0, λN

5 ← 0, λN
6 ← 0, $0 ← $(0),

2: for n = 0 to N − 1 do

Un+1 =
Un + dt$n

1 + dt((ω1 + ω2 + ω3) f (Pn) + mu)
,

Ln+1 =
Ln + dtω1 f (Pn)Un+1

1 + dt(ml + ν)
,

In+1 =
In + dt(ω2 f (Pn)Un+1 + νLn+1)

1 + dtmi
,

On+1 =
On + dtω3 f (Pn)Un+1

1 + dtmo
,

Pn+1 =
Pn + dt(M1mi In+1 + M2m0On+1)

1 + dt(mp + χCn)
,

Cn+1 =
Cn + dtεPn+1

1 + dt(mc + υPn+1)
,

λN−n−1
1 =

λN−n
1 + dt f (Pn+1)(ω1λN−n

2 + ω2λN−n
3 + ω3λN−n

4 )

1 + dt((ω1 + ω2 + ω3) f (Pn+1) + mu)
,

λN−n−1
2 =

λN−n
2 + dt(α1 + νλN−n

3 )

1 + dt(ml + ν)
,

λN−n−1
3 =

λN−n
3 + dt(α1 + mi M1λN−n

5 )

1 + dtmi
,

λN−n−1
4 =

λN−n
4 + dt(α1 + mo M2λN−n

5 )

1 + dtmo
,

λN−n−1
5 =

λN−n
5 + dt f ′(Pn+1)Un+1(−(ω1 + ω2 + ω3)λ

N−n−1
1 + ω1λN−n−1

2 )

1 + dt(ε + m + χCn+1)
λN−n

5 + dt f ′(Pn+1)Un+1(ω2λN−n−1
3 + ω3λN−n−1

4 ) + dtλN−n
6 (ε− υCn+1)

1 + dt(mp + χCn+1)

λN−n−1
6 =

λN−n
6 − dtχλN−n−1

5 Pn+1

1 + dt(mc + υPn+1)
,

$n+1 ← max

(
min

(
−

λN−n−1
1

α2
, $max

)
, $min

)
.

end
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