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Abstract: Noticing that ordinary metrics do not present an adequate tool for the study of analytic
problems of word combinatorics, as well as in the research of some problems related to theoretical
computer science, we propose to use fuzzy metrics in this type of problems. Specifically, the so-called
strong fuzzy metric seems to be more appropriate here. In the first part of the paper, we study some
special classes of strong fuzzy metrics, topological and lattice properties of certain families of strong
fuzzy metrics, and, more generally, strong k-fuzzy metrics. Noticing that one of the standard axioms
of a strong fuzzy metric can be easily violated when applied in real situations, in the second part of
the paper we introduce more general, approximating fuzzy metrics and illustrate their applicability
with some numerical examples.
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1. Introduction

In 1951, K. Menger [1] introduced the notion of a statistical metric. This concept was
thoroughly studied and renamed as a probabilistic metric in [2]. Later, based on the definition
of a probabilistic metric, I. Kramosil and J. Michálek [3] introduced the notion of a fuzzy metric.
This concept, after a certain editorial modification carried out by M. Grabiec [4], is usually
called now fuzzy metric, in the sense of Kramosil and Michálek, or KM-fuzzy metric for short
(Definition 2). On the basis of KM-fuzzy metric, George and Veeramani [5,6] introduced an
alternative concept of a fuzzy metric, known now as a fuzzy metric in the sense of George
and Veeramani, or GV-fuzzy metric for short (Definition 4). Among the advantages of
George–Veeramani’s definition of a fuzzy metric are its better topological properties as well
as a large number of special possible realizations of such fuzzy metrics. On the other hand,
some constructions which are feasible within KM-fuzzy metrics are not realizable in the
framework of GV-fuzzy metrics, in particular some constructions presented in this work,
see Section 6. Although there are also other, essentially different, approaches to the concept
of a fuzzy metric (see e.g., [7–10], etc.), at present, most research work in the field of fuzzy
metrics is conducted in the context of KM- and GV-fuzzy metrics. In addition, in this paper,
we take KM-fuzzy metrics approach as a basis.

Recently, some researchers, in particular people working in the field of automatic
sequences, in stringology, in word combinatorics, and other related areas of mathematics
and theoretical computer science, started to use analytical methods in order to investigate
the structure of the universe of infinite words and languages. To realize these methods,
different metrics on the universe of infinite words were introduced, the topologies and the
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convergence structure induced by these metrics were studied, and limits of sequences of
words were studied. However, as far as our experience shows, ordinary metrics cannot be
an appropriate tool for the study of problems of combinatorics on words; see comments
in Section 1.1. Fuzzy metric—either in MK- or GV-version—seems more appropriate for
this merit since the parameter t allows to reflect information about the string (infinite
word) at the moment t of observation, or, differently stated, up to the length t of this
string. However, instead of general fuzzy metrics, we use their special kind, namely, strong
fuzzy metric (Definitions 3 and 5), introduced by A. Sapena and S. Morillas [11] and later
studied and used by different authors. The principal difference between general fuzzy
metrics and strong fuzzy metrics is in axiom (4KM) in Definition 2, replaced by axiom
(4sKM) in Definition 3. When studying strings (infinite words) and obtaining information
at some level (or number of letters or length, or time) t, we do not see it reasonable (or even
possible) to coordinate transition from a level t to another level s (it addition to obvious
monotonicity) by a special formula, as it is requested by axiom (4KM). Therefore, we think
that it is sensible to coordinate information at the same level as it is asked by axiom (4sKM)
and stick here to the use of strong fuzzy metrics.

The first goal of this paper is to contribute to the study of strong fuzzy metric spaces.
We realize this goal in Sections 2–5. In Section 2 (Preliminaries), we present general
information about fuzzy metrics, in particular strong fuzzy metrics. In Section 3, some
classes of strong fuzzy metrics are studied; these classes are constructed from ordinary
metrics on the basis of some known families of t-norms. Section 4 is devoted to the study
of global properties, namely, lattice structure and topological location, of certain families of
strong fuzzy metrics. In Sections 5 and 6 in this series, we conduct some observation about
strong fuzzy k-metrics—the strong version of the so called k-fuzzy metrics; see [12,13].

Our first attempts to adjust fuzzy metrics for the use in word combinatorics were
undertaken in [14,15]. Already in these papers we realized that for a more adequate
description of the distance between words, along with “classical” strong fuzzy metrics, it is
reasonable to rely also on their modifications constructed from certain fragments of fuzzy
metrics. The difference of such “fragmentary” fuzzy metrics from ordinary strong fuzzy
metrics is that in “fragmentary” fuzzy metrics, we receive the complete information about
the string only at the “infinity” level t = ∞ of the string, which is when the information
about a string on all levels t is available. Developing this idea in the present paper,
we introduce the concept of a strong approximating fuzzy metric. The study of strong
fuzzy approximating metrics, illustrating them with examples and discussion of their
appropriateness for the description of the structure of infinite words, is the second principal
goal of this paper; it is realized in Sections 6 and 7. In the last section, Conclusion, we
discuss some perspectives for continuation of this work—both from theoretical point and
in view of possible applications.

1.1. Discrepancy of Ordinary Metrics for the Problems of Word Combinatorics

One can find several different metrics on the universe of infinite words. The first one,
considered, e.g., in [16–18], can be defined as follows: Given x = (x0, x1, x2, . . . xn, . . .) and
y = (y0, y1, y2, . . . yn, . . .), where xn, yn ∈ {0, 1} for all n ∈ N∪ {0}, let

d(x, y) =
{

0 if x = y
2−n where n = min{i : xi 6= yi}

In our opinion, this metric does not give any meaningful information about actual “distance”
between the words. For example, let x = (1, 1, 1, 1, 1, 1, 1, . . . ), y = (0, 1, 1, 1, 1, 1, 1, . . . ), and
z = (0, 0, 0, 0, 0, 0, 0, . . . ) be infinite words. Then, obviously, d(x, y) = d(x, z) = 1. However,
this means that in both cases, the distance between these infinite words is 1, i.e., the greatest
possible value that this metric can achieve. In actuality, this means everything concerning
distance is dictated by the first digits of the strings. However, comparing these words informally,
one may feel that x is closer to y than z.
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Another metric on the universe of infinite words X can be found in, e.g., [19]. For
every i ∈ N ∪ {0}, we define a function χi : X × X → {0, 1} by setting for given
x = (x0, x1, x2, . . . xn, . . .) and y = (y0, y1, y2, . . . yn, . . .)

χi(x, y) =
{

0 if xi = yi where i is the i-th coordinate of the word
1 if xi 6= yi where i is the i-th coordinate of the word

Now let

σ(x, y) =
∞

∑
i=0

1
2i χi(x, y).

One can easily see that the function σ : X × X → [0, 1] thus defined is a metric
(actually an ultrametric) on the universe of all infinite words. As different from the metric d
described in the previous paragraph, it takes into account information about a word on the
whole, and not only information about their prefixes. However, this metric also gives only
accumulated information about the distance on the universe X and neglects all specific
details of this information. For example, let x, y and z be the same words as in the previous
paragraph. Then, σ(y, z) = 1, and σ(x, z) = 1 and, hence, also σ neglects the essential
local difference between these words but just accumulates all information in one number.
A similar approach to ours can be seen in [20,21], where authors use a modification of
Levenshtein distance called heuristic distance. In this case, the distance is expressed as a
percentage and is equivalent to our output values from an interval [0; 1].

Summing up the conclusions drawn from the previous examples, we infer that ordi-
nary metrics cannot serve as an appropriate analytic tool for determining nearness-type
relations between infinite words. Therefore, instead of ordinary metrics, we suggest to
use fuzzy (pseudo)metrics. In our opinion, fuzzy (pseudo)metrics are a subtler tool if
compared with ordinary (pseudo)metrics and, if properly defined, will give a more precise
information about the distance related properties in the universe of infinite words.

2. Preliminaries
2.1. t-Norms

The concept of a t-norm was introduced in [1] and further studied by many authors.
The fundamental monograph by E.P. Klement, R. Mesiar, and E. Pap [22] serves as the
standard reference concerning the theory of t-norms.

Definition 1. A t-norm is a binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] on the unit interval [0, 1]
satisfying the following properties:

(1tn) ∗ is monotone: α ≤ β⇒ α ∗ γ ≤ β ∗ γ for all α, β, γ ∈ [0, 1];
(2tn) ∗ is commutative: α ∗ β = β ∗ α for all α, β ∈ [0, 1];
(3tn) ∗ is associative: (α ∗ β) ∗ γ = α ∗ (β ∗ γ) for all α, β, γ ∈ [0, 1];
(4tn) α ∗ 1 = α for all α ∈ [0, 1].

In this paper, we consider a t-norm both as a binary operation ∗ : [0, 1]× [0, 1]→ [0, 1]
defined above and as a two argument function T : [0, 1]× [0, 1] → [0, 1] related to ∗ by
T(α, β) = α ∗ β. We give preference to one of the entries depending on the situation and
the context.

Example 1. The following five important examples of t-norms are well known and can be found,
e.g., in [2,22]):

• The minimum t-norm is defined by α ∗ β := α ∧ β where ∧ denotes the operation of taking
minimum in [0, 1].

• The product t-norm is defined by α ∗ β := α · β where · is the product.
• The Łukasiewicz t-norm L = [0, 1] is defined by α ∗L β := max(α + β− 1, 0).
• The Drastic t-norm is defined by



Mathematics 2022, 10, 738 4 of 20

TD(α, β) =


α, if β = 1,
β, if α = 1,
0, otherwise

• The nilpotent minimum t-norm is defined by

TnM(α, β) =

{
min{α, β}, if α + β > 1,
0, otherwise.

Remark 1. It is known and can be easily seen that α ∧ β ≥ α ∗ β for every t-norm ∗. Hence ∧ is
the largest t-norm.

2.2. Fuzzy (Pseudo)Metrics

The notion of a fuzzy metric was presented in 1975 by I. Kramosil and J. Michálek [3],
taking as a base definition of a statistical metric in K. Menger’s work [1]. Later, M. Gra-
biec [4] revised this definition in some sense “reducing its statistical origin”. Only in this
form are KM-fuzzy metrics now usually understood.

Definition 2 ([3,4]). Let X be a set and ∗ a t-norm. A fuzzy KM-pseudometric on a set X on
the base of t-norm ∗ is a mapping M : X × X ×R+ → [0, 1] where R+ = [0, ∞), satisfying the
following axioms:

(0FKM) M(x, y, 0) = 0 for all x, y ∈ X;
(1FKM) M(x, y, t) = 1 for all t whenever x = y;
(2FKM) M(x, y, t) = M(y, x, t) for all x, y ∈ X, for all t ∈ R+;
(3FKM) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s) for all x, y ∈ X, for all t ∈ R+;
(4FKM) M(x, y,−) : R+ → [0, 1] is left continuous for all x, y ∈ X.

A fuzzy pseudometric M is called a fuzzy metric if it satisfies a stronger form of axiom (1FKM):

(1′FKM) M(x, y, t) = 1 for all t if and only if x = y;

If needed to specify the role of the t-norm ∗ we view a fuzzy (pseudo)metric alternatively as the
pair (M, ∗).

The triple (X, M, ∗) is called a fuzzy KM-(pseudo)metric space.

Definition 3 ([23]). A fuzzy KM-(pseudo)metric M on a set X is called strong if, besides the
axioms (0KM)– (2KM), the following stronger versions of axioms (3KM) and (4KM) are fulfilled

(3sFKM) M(x, z, t) ≥ M(x, y, t) ∗M(y, z, t) for all x, y, z ∈ X and for all t ∈ R+.
(4sFKM) M(x, y,−) : R+ → [0, 1] is left continuous and increasing, (i.e., t < s =⇒

M(x, y, t) ≤ M(x, y, s) for all x, y ∈ X.).

Remark 2. Although the goal of introducing the strong version of a fuzzy metric in [11] was to
replace axiom (3FKM) by axiom (3sFKM), we decided to also modify axiom (4FKM), otherwise the
rest of the axioms in Definition 2 will not guarantee that M : X× X → R+ is a fuzzy metric. The
simplest example showing this fact was found by A. Sapenas and S. Morillas [11]. It is given by

M(x, y, t) =

{
t−1

t−1+|x−y| if t 6= 0

0 if t = 0

for all x, y ∈ R. As shown in [11], M : R×R→ R+ satisfies axioms (0FKM), (1FKM), (2FKM),
(3sFKM) for the product t-norm, but fails to satisfy (3FKM). However, axioms (0FKM), (1FKM),
(2FKM), (3sFKM), and (4FKM) guarantee that M is a fuzzy metric, if additionally M is assumed
to be increasing in the third argument and this is ensured by axiom (4sFKM).

Although the main context of our work will be formed by strong KM-fuzzy (pseudo)
metrics, some notes will be made also in concern of (strong) GV-fuzzy (pseudo)metrics.
Therefore, we reproduce here the corresponding definitions.
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Definition 4 ([5]). Let X be a set and ∗ a continuous t-norm. A GV-fuzzy pseudometric on a set
X is a mapping M : X × X ×R+

0 → (0, 1], where R+
0 = (0,+∞) (or a pair (M, ∗) in order to

specify the t-norm ∗ involved in its definition) such that :

(0FGV) M(x, y, t) > 0 for all x, y ∈ X and all s, t ∈ R+
0 ;

(1FGV) M(x, y, t) = 1 whenever x = y;
(2FGV) M(x, y, t) = M(y, x, t) for all x, y ∈ X and all s, t ∈ R+

0 ;
(3FGV) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s) for all x, y, z ∈ X and for all s, t ∈ R+

0 ;
(4FGV) M(x, y,−) : R+ → [0, 1] is continuous for all x, y ∈ X.

A GV-fuzzy pseudometric M is called a GV-fuzzy metric if it satisfies a stronger form of axiom
(1FGV):

(1′FGV) M(x, y, t) = 1 for all t if and only if x = y;

The triple (X, M, ∗) is called a GV-fuzzy metric space.

Definition 5 ([23]). A GV-fuzzy (pseudo)metric m on X is called strong if it satisfies stronger
versions of axiom (3FGV) and (4FGV):

(3sFGV) M(x, z, t) ≥ M(x, y, t) ∗M(y, z, t) for all x, y, z ∈ X, for all t ∈ R+
0 .

(4sFGV) M(x, y,−) : R+
0 → [0, 1] is continuous and increasing (that is t < s =⇒ M(x, y, t) ≤

M(x, y, s)∀x, y ∈ X.)

Remark 3. To compare KM and GV-fuzzy metrics axioms we restrict domain of a fuzzy metric to
R+

0 as it is in case of GV-metrics. Then axioms (0FGV) and (2GV) coincide with axioms (0FKM)
and (2FKM), respectively. However, axioms (4FGV) and (4FKM) and axioms (1FKM) and (1FGV)
are different. In both cases, the George and Veeramani version is stronger than the Kramosil and
Michálek one. The same remarks can be made for the strong versions of these definitions. Thus, if
we restrict to the situation when t > 0, each GV-fuzzy metric is a KM-fuzzy metric, but not the
converse. See also Remark 3.8 in [24] in this concern.

In the sequel we use the term fuzzy pseudometric when it is not important which one
of the versions, KM-fuzzy pseudometric or GV-fuzzy pseudometric, is under consideration.

3. Strongness of Standard Fuzzy Pseudometrics

In [5] the authors proposed a method allowing to construct from an arbitrary (pseudo)
metric d : X× X → R+ a GV-fuzzy (pseudo)metric Md : X× X → (0, ∞) for the product t-
norm. Later, this construction was developed for the case of an arbitrary continuous t-norm
and the resulting fuzzy (pseudo)metric md called the standard (pseudo)metric induced by a
metric d. Standard fuzzy (pseudo)metrics play an important role both as a broad source for
constructing examples of fuzzy pseudometrics maintaining different prescribed properties
and as an important link between the theories of metrics and fuzzy metrics.

In this section, we first are interested whether the standard fuzzy (pseudo)metric is
strong depending on the t-norm used in its definition. First, we recall the definition of the
standard fuzzy metric (slightly modified in order to be appropriate also for KM-version of
fuzzy (pseudo)metrics).

Definition 6. Given an (ordinary) pseudometric d : X× X → [0,+∞) and a t-norm ∗ : [0, 1]×
[0, 1] → [0, 1], the standard fuzzy pseudometric Md : X × X × R+ → (0, 1] induced by d is
defined by

Md(x, y, t) =

{
t

t+d(x,y) if t 6= 0,

0, otherwise

It is known and easy to see that md is indeed a fuzzy pseudometric for the minimum
t-norm, and hence (by Remark 1) also for every t-norm.

Since the standard fuzzy pseudometric is obviously increasing and continuous on the
parameter t, the only problem we have to consider is whether the axiom (3sKM) is satisfied
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for md. In order to follow a certain consistency here we start with considering some known
families of t-norms.

Recall that the family of Hamacher t-norms is defined by

Tλ
H(x, y) =

{
0, if λ = x = y = 0,

xy
λ+(1−λ)(x+y−xy) , otherwise

where λ ∈ [0,+∞) is a parameter.

Theorem 1. For every pseudometric d : X×X → [0,+∞), standard fuzzy pseudometric is strong
for every Hamacher t-norm Tλ

H .

Proof. We have to prove that

md(x, z, t) ≥ Tλ
H(md(x, y, t), md(y, z, t))

for any x, y, z ∈ X and t ∈ [0,+∞).
In order to simplify the entry in the proof, here and in the sequel we denote d(x, y) = a,

d(y, z) = b, d(x, z) = c and rely on the inequality c ≤ a + b justified by the triangle axiom
of the pseudometric d. Thus, we have to prove

t
t+c ≥

t
t+a ·

t
t+b

λ+(1−λ)
(

t
t+a +

t
t+b−

t2
(t+a)(t+b)

)
By a simplification, this inequality is equivalent to the following one

t
t + c

≥ t2

λta + tb + ta + t2 =
t

λa + a + b + t
⇐⇒

⇐⇒ λbt + ta + tb + t2 ≥ t2 + ct ⇐⇒ λb + b + a ≥ c

The last one is obvious by the properties of the metric d.

Since the product t-norm is a specific case of the Hamacher t-norm in case the parame-
ter λ = 1, from this theorem we obtain the following (actually well-known, see, e.g., [11,25])
corollary.

Corollary 1. The standard pseudometric for a product t-norm is strong.

Another important family of t-norms are Weber t-norms defined for a parameter
λ ∈ (−1;+∞) by

Tλ
W(x, y) = max{ x+y−1+λxy

1+λ , 0}, if λ ∈ (−1;+∞).

Theorem 2. For every metric d : X × X → [0,+∞) the standard fuzzy pseudometric is strong
for every Weber t-norm Tλ

W .

Proof. We have to prove that

Md(x, z, t) ≥ TW(Md(x, y, t), Md(y, z, t)),

that is the inequality

t
c + t

≥
t

a+t +
t

b+t − 1 + λt2

(a+t)(b+t)

1 + λ
.

By obvious simplifications we reduce it

t
c + t

≥ ta + t2 + bt + t2 − ab− at− bt− t2 + λt2

(a + t)(b + t)(1 + λ)
⇐⇒

⇐⇒ t2(a + b− c) + λt2(a + b− c) + abt + λabt + abc + abt ≥ 0
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The last inequality is obvious since λ > −1.

In case λ = 0 we have Łukasiewicz t-norm TLuk(x, y) = max{x + y− 1, 0}, and from
Theorem 2 we obtain the following known, see, e.g., [25] fact:

Corollary 2. Standard fuzzy metric Md(x, y, t) is strong in case of the Łukasiewicz t-norm
TLuk(x, y) = max{x + y− 1, 0}.

Theorem 3. Standard fuzzy pseudometric for the drastic t-norm TD is strong.

Proof. To prove that

md(x, z, t) ≥ TD(md(x, y, t), md(y, z, t)) that is t
t+c ≥ TD

(
t

t+a , t
t+b

)
we consider several cases:

• If a 6= 0 and b 6= 0, then left side of inequality is equal to 0
• If a = 0 and b 6= 0, then c ≤ b and t

t+c ≥
t

t+b . We similarly reason if b = 0 and a 6= 0
• If a = b = 0, then c = 0 and 1 ≥ 1.

Notice that standard fuzzy pseudometrics in case of some important t-norms are
not strong.

Example 2. Standard fuzzy pseudometric for the minimum t-norm generally is not strong. Indeed,
if d(x, z) > max(d(x, y), d(y, z)) then Md(x, z, t) < Md(x, y, t) ∧Md(y, z, t) for every t ∈ R+.

Example 3. Standard fuzzy pseudometric for the nilpotent minimum t-norm generally is not strong.

Proof. Assume the opposite

t
t + d(x, z)

≥ TnM

(
t

t + d(x, y)
,

t
t + d(y, z)

)
and suppose d(x, z) = 1

2 , d(x, y) = 1
3 , d(y, z) = 1

3 and choose t = 2. Then

t
t+b +

t
t+c = 12

7 > 1 and min
{

t
t+b , t

t+c

}
= t

t+b = 6
7 .

Thus, in this case we obtain

t
t+a ≥ TnM

(
t

t+b , t
t+c

)
= min

{ t
t+b , t

t+c
}

, i.e., 4
5 ≥

6
7 .

The obtained contradiction completes the proof.

Strongness of Standard Fuzzy k-Pseudometrics

Let k ≥ 1 be a constant and X be a set. Generalizing the concept of a (pseudo)metric,
Bakhtin and Czervik (independently) introduced the notion which is now known by metric-
type structure, a b-(pseudo)metric or a k-(pseudo)metric. We stick here to the last term:

Definition 7 ([26–28]). Let k ∈ [1, ∞). A k-(pseudo)metric on a set X is a mapping d : X× X →
R+ such that

(1Mk) d(x, y) = 0⇐⇒ x = y;
(2Mk) d(x, y) = d(y, x) ∀x, y ∈ X;
(3Mk) d(x, z) ≤ k · (d(x, y) + d(y, z)) ∀x, y, z ∈ X.

Obviously, we return to the definition of a metric if k = 1, while in case k < 1, the
definition makes no sense.
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Example 4. In the paper [13], the following scheme for constructing k-pseudometrics for a given
k ≥ 1 from ordinary pseudometrics was suggested. Let ϕk : R+ → R+ be a strongly increasing
continuous function such that ϕk(0) = 0 and ϕk(a + b) ≤ k · ϕk(a) + k · ϕk(b) for all a, b ∈ R+.
A series of k-(pseudo)metrics can be obtained from an ordinary (pseudo)metric by the following
construction; see, e.g., [13]. Let k ≥ 1 be a fixed constant and let ϕ : R+ → R+ be a continuous
increasing mapping such that ϕ(0) = 0 and ϕk(a + b) ≤ k · ϕk(a) + k · ϕk(b) for all a, b ∈ R+.
Now, for an arbitrary (pseudo)metric d : X× X → R+ on a set X, by setting

dϕ(x, y) = (ϕ ◦ d)(x, y) x, y ∈ X

we obtain a k-(pseudo)metric dϕ on this set.

In [12,13], the GV-fuzzy version of a k-(pseudo)metric was introduced. Below, we
present this definition in the format of KM-fuzzy (pseudo)metrics.

Definition 8 ([12,13]). A fuzzy k-pseudometric on a set X is a pair (M, ∗) where ∗ is a continuous
t-norm and M : X × X ×R+ → [0, 1] is a mapping satisfying the following conditions for all
x, y, z ∈ X, s, t ∈ R+:

(0FKMk) M(x, y, 0) = 0 for all x, y ∈ X;
(1FKMk) M(x, y, t) = 1 for all t whenever x = y;
(2FKMk) M(x, y, t) = M(y, x, t) for all x, y ∈ X, for all t ∈ R+;
(3FKMk) M(x, z, k(t + s)) ≥ M(x, y, t) ∗M(y, z, s) for all x, y ∈ X, for all t ∈ R+;
(4FKMk) M(x, y,−) : R+ → [0, 1] is left continuous for all x, y ∈ X.

The triple (X, m, ∗) is a called a fuzzy k-pseudometric space.
If the axioms (3FKMk) and (4FKMk) are replaced, respectively, by axioms (3sFKMk) and

(4sFKMk),

(3sFKMk) M(x, z, kt) ≥ M(x, y, t) ∗M(y, z, t);
(4sFKMk) M(x, y,−) : R+ → [0, 1] is left continuous and increasing for all x, y ∈ X.

Then M is called a strong fuzzy k-pseudometric.

Patterned after the construction of the standard fuzzy pseudometric induced by a
metric set (see Definition 6), we present here the construction of a fuzzy k-pseudometric
from a k-pseudometric.

Theorem 4. Let d : X× X → R+
0 be a k-pseudometric. Then the mapping Md : X× X×R+ →

(0, 1] defined by

Md(x, y, t) =

{
t

t+d(x,y) if t 6= 0,

0, otherwise

is a fuzzy k-pseudometric for the minimum t-norm and hence (by Remark 1) for any continuous
t-norm.

Proof. The validity of axioms (0FKMk), (1FKMk), (2FKMk) and (4FKMk) for Md(x, y, t)
is obvious. Hence, to prove this statement, we have to verify axiom (3FKMk), that is to
show that

t
t+d(x,y) ∧

s
s+d(y,z) ≤

k(t+s)
k(t+s)+d(x,z) ∀x, y, z ∈ X and ∀s, t > 0.

Since d is a k-pseudometric and hence d(x, z) ≤ k(d(x, y) + d(y, z)), we replace the
inequality to be proved by a stronger inequality

t
t+d(x,y) ∧

s
s+d(x,y) ≤

k(t+s)
k(t+s)+k(d(x,y)+d(y,z)) =

t+s
(t+s)+(d(x,y)+d(y,z)) .

Without loss of generality we assume that t
t+d(x,y) ≤

s
s+d(y,z) , and therefore we have

to show that
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t
t+d(x,y) ≤

t+s
t+s+(d(x,y)+d(y,z))

We prove this inequality straightforwardly just by noticing that, as it follows from the
assumption t

t+d(x,y) ≤
s

s+d(y,z) , we have t · (y, z) ≤ s · d(x, y).

The question whether the standard k-fuzzy metric Md induced by a k-metric is a
strong one is subtler. However, for a certain kind of k-metrics, we have the following
general result.

Theorem 5. Let ∗ : [0, 1]× [0, 1] be a continuous t-norm and d : X×X → R+ be a pseudometric.
If the standard fuzzy pseudometric (Md, ∗) is strong for the pseudometric d : X× X → R+ and
dϕ : X × X → R+ is defined as in Example 4, then the standard fuzzy k-pseudometric (Mdϕ

, ∗)
is strong.

Proof. The validity of axioms (0FKMk), (1FKMk), (2FKMk) and (4FKMk) for Mdϕ
is obvi-

ous. Referring to construction given in Theorem 4 we have to prove only the validity of
(3sFKMk), that is to show that

Mdϕ
(x, z, k · t) = k·t

k·t+dϕ(x,z) ≥
t

t+dϕ(x,z) ∗
t

t+dϕ(x,z) = Mdϕ
(x, y, t) ∗Mdϕ

(y, z, t)

for any x, y, z ∈ X and any t, s ∈ R+. Now, applying the inequality

dϕ(x, z) ≤ k · (dϕ(x, y) + dϕ(y, z)) ∀x, y, z ∈ X

provided by the properties required for the mapping ϕ, we replace the provable inequality
by a stronger one:

t
t + 1

k · dϕ(x, z)
≥ t

t + dϕ(x, y)
∗ t

t + dϕ(y, z)
.

However, this inequality can be proved verbatim repeating the reasoning which was
used when proving axiom (3sFKM) in the definition of the standard fuzzy pseudometric
Md. Recall that we have assumed that for the metric d the corresponding standard fuzzy
metric Md is strong.

Now we present a construction allowing to obtain a new strong fuzzy k-pseudometric
from a given one on the basis of the product t-norm (cf similar construction in case of strong
fuzzy pseudometrics, [11]).

Let M : X× X×R+ → [0, 1] be a strong fuzzy k-pseudometric for the product t-norm.
Then the mapping N : X× X×R+ → [0, 1] defined by

N(x, y, t) =
t + M(x, y, t)

t + 1
∀x, y ∈ X, ∀t > 0

is also a strong fuzzy k-pseudometric. Since the validity of axioms (0FKMk), (1FKMk),
(2FKMk), and (4sFKMk), for N : X× X → [0, 1] are ensured by the corresponding axioms
for M : X × X × R+ → [0, 1], we have to establish only axiom (3sFKMk), that is the
inequality

t + M(x, y, t)
t + 1

· t + M(y, z, t)
t + 1

≤ kt + M(x, z, kt)
kt + 1

.

It will follow from the stronger inequality

t + M(x, y, t)
t + 1

· t + M(y, z, t)
t + 1

≤ t + M(x, y, kt)
t + 1

,

which, in its turn, can be reduced to the inequality

t ·M(x, y, t) + t ·M(y, z, t) + M(x, y, t) ·M(y, z, t) ≤ t + t ·M(x, z, kt) + M(x, z, kt).
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The last inequality can be easily established recalling that M(x, y, t) · M(y, z, t) ≤
M(x, z, kt) by axiom (3sFKMk) and noticing that M(x, y, t) + M(y, z, t) ≤ 1 + M(x, y, t) ·
M(y, z, t).

4. Topological and Lattice Structure of Some Families of Strong Fuzzy Metric Spaces

Different from the objectives of research in the previous section, here we focus on
the study of global properties of some families of t-norms and fuzzy metrics in relation
with the strongness property. Specifically, in the first subsection, we describe the location
properties of the family S of all t-norms which ensure the strongness of the standard fuzzy
metric in the family T of all continuous t-norms. In turn, in the second subsection we study
the global properties of the family MT of all fuzzy metrics which are strong for a given
t-norm T.

4.1. Some Remarks on t-Norms That Ensure Strongness of Standard Fuzzy Metrics

Let T = {T : {T : [0, 1]× [0, 1] → [0, 1]} be the set of all t-norms T : [0, 1]× [0, 1] →
[0, 1]. We define a partial order on the set T by setting T1 ≤ T2 for T1, T2 ∈ T if and
only if T1(α, β) ≤ T2(α, β) for any α, β ∈ [0, 1]. It is easy to see that (T,≤) is a partially
ordered set with the minimum t-norm T(α, β) = α ∧ β as the top element of (T,≤) and
the drastic t-norm as its bottom element. Further, let C ⊆ T be the set of all continuous
t-norms T : [0, 1]× [0, 1] → [0, 1] and let S denote the family of all continuous t-norms
which ensures that for each metric d : X × X → R+ the induced standard fuzzy metric
M(x, y, t) = t

t+d(x,y) is strong. We consider (C,≤) and (S,≤) with the order induced
from (T,≤).

Theorem 6. The set S is a lowerset in (C,≤): that is, if a t-norm T1 ∈ S, a t-norm T2 ∈ C and
T2 ≤ T1 then T2 ∈ S.

Proof. The construction Md(x, y, t) =

{
t

t+d(x,y) if t 6= 0,

0, otherwise
defines a fuzzy pseudometric

(Md, ∗) for every pseudometric d and for any continuous t-norm ∗ (see Definition 6).
Therefore, we have to verify only the strongness property in respect of the t-norm T2. We
do this as follows. Since T1 ∈ S, for each pseudometric d : X× X → R+, all x, y, z ∈ X and
t ∈ [0,+∞) we have

t
t+d(x,y) ≥ T1

(
t

t+d(x,z) , t
t+d(z,y)

)
≥ T2

(
t

t+d(x,z) , t
t+d(z,y)

)
2

The opposite statement is obviously false: the standard fuzzy pseudometric induced
by the minimum t-norm is not strong.

Concerning the topological issues, we consider T and its subset C endowed with
topology of uniform convergence Tu.

Theorem 7. The set S is a closed in the space C induced by the topology of uniform convergence Tu.

Proof. Recall first that the topology of uniform convergence in this situation is the topology
defined by the family of all open balls:

B(T0, ε) = {T ∈ C | |(T(a, b)− T0(a, b)| ∀a, b ∈ [0, 1] for all T0 ∈ C, and all ε > 0}

and a set is closed in (C, Tu) if and only if it contains the limits of all its convergent sequences
which lay in C.

Therefore, let {Ti | i ∈ N} ⊆ S and limi→∞ Ti = T in (C, Tu). We have to show that
T ∈ S. Since the axioms (0FKM) - (2FKM) obviously hold, we have to prove the last
two axioms.
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Let x, y, z ∈ X be fixed, t ∈ R+ and d(x, y) = a, d(y, z) = b and d(x, z) = c. We
have that

t
t+c ≥ Ti(

t
t+a , t

t+b ) for every i ∈ N.

Since limi→∞ Ti = T, we obtain the requested inequality
t

t+c ≥ T( t
t+a , t

t+b )

by the definition of the pointwise convergence topology, and hence, moreover, in the
topology of uniform convergence; thus, (3sFKM) is justified.

To justify axiom (4sFKM) for T notice that its continuity follows from the continuity
of all Ti and uniform convergence of the sequence {Ti | i ∈ N} while monotonicity of T
obviously follows from monotonicity of all Ti.

Since C is closed in T in the topology of uniform convergence, we obtain the following
corollary from the previous theorem:

Theorem 8. The set S is a closed in the space T endowed with the topology of uniform conver-
gence Tu.

4.2. Some Remarks about the Set of Strong Fuzzy Metrics for a Fixed t-Norm

Let T : [0, 1]× [0, 1] → [0, 1] be a fixed continuous t-norm and MT be the set of all
fuzzy pseudometrics M : X× X → R+, which are strong with respect of this t-norm. We
are interested in topological and lattice properties of the set MT in the set F of all function
f : X× X×R+ → [0, 1] endowed with order relation ≤ defined by

F1 ≤ F2 ⇐⇒ ∀x, y ∈ X, ∀t ∈ R+F1(x, y, t) ≤ F2(x, y, t) ∀F1, F2 ∈MT

and the topology of uniform convergence. Recall that the base for the topology of uniform
convergence in this situation is defined by the family of open balls

B(F0, ε) = {F ∈ F :| F(x, y, t)− F0(x, y, t) |< ε ∀x, y ∈ X, ∀t ∈ R+}

for all F0 ∈ F and ε ∈ (0, 1).
Recall also that the set S ⊆ F is closed in this topology if, and only if, for every

sequence {Fn(x, y, t)}n∈N ⊂ S:

lim
n→∞

Fn(x, y, t) = F0(x, y, t) =⇒ F0(x, y, t) ∈ S.

Theorem 9. The set MT is closed in F; that is, if for every x, y ∈ X, t ∈ R+, the sequence
Mn(x, y, t) ⊂MT converges to F(x, y, t) uniformly with respect to t, then F(x, y, t) ∈MT .

Proof. Let limn→∞ Mn = F0.
Since Mn(x, y, t) ∈ [0, 1] for all x, y ∈ X, t ∈ R+, (by 0FKM) then F0(x, y, t) ∈ [0, 1] for all
x, y ∈ X, t ∈ R+ and hence (0FMK) holds for F0.
Since Mn(x, x, t) = 1 for every x ∈ X, t ∈ R+ by (1FKM), then F0(x, x, t) for every x ∈
X, t ∈ R+ and hence (1FMK) holds for F0.
Since Mn(x, y, t) = Mn(y, x, t) for every x ∈ X, t ∈ R+ by (2FKM), then F0(x, y, t) =
F0(y, x, t) for every x, y ∈ X, t ∈ R+ and hence (2FMK) holds for F0.

To obtain (3sFMK) for the mapping F0, that is to prove that

F0(x, z, t) ≥ T
(

F0(x, y, t), F0(y, z, t)
)
,

we refer to the continuity of the t-norm and the inequality

Mn(x, y, t) ≥ T
(

Mn(x, y, t), Mn(y, z, t)
)

for all n ∈ N
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and the reasoning is as follows:

F0(x, z, t) = lim
n→∞

Mn(x, z, t) ≥ lim
n→∞

(
T(mn(x, y, t), Mn(y, z, t))

)
=

T
(

lim
n→∞

Mn(x, y, t), lim
n→∞

Mn(y, z, t)
)
= T

(
F0(x, y, t), F0(y, z, t)

)
.

To show (4sFKM) for the mapping F0, notice that left semicontinuity of F0(x, y, t) in
respect of t for every x, y ∈ X is ensured by the uniform convergence of the sequence
Mn(x, y, t). Besides F0(x, y, t) is increasing by the third argument since every Mn(x, y, t) is
increasing by the third argument.

Remark 4. Topology of uniform continuity on F is needed only to ensure the left semicontinuity of
the limit function F0. For all other properties of the limit function F0, it is sufficient to consider F in
the topology of pointwise convergence.

Theorem 10. If M1, M2 ∈MT , then M = M1 ∧M2 ∈MT .

Proof. Properties (0FMK)–(2FMK) for the fuzzy pseudometric M are ensured by the cor-
responding properties for fuzzy pseudometrics M1 and M2. To prove (3sFMK) for M let
x, y, z ∈ X and t ∈ R+. Then

M(x, z, t) = M1(x, z, t) ∧M2(x, z, t) ≥(
M1(x, y, t) ∗M1(y, z, t)

)
∧
(

M2(x, y, t) ∗M2(y, z, t)
)
≥(

M1(x, y, t) ∧M2(x, y, t)
)
∗
(

M1(y, z, t) ∧M2(y, z, t)
)
= M(x, y, t) ∗M(y, z, t).

The first one of the above inequalities is ensured by axiom (3sFMK), which holds for
M1 and M2. The second one is ensured by the inequality

(a ∗ b) ∧ (c ∗ d) ≥ (a ∧ c) ∗ (b ∧ d), a, b, c, d ∈ [0, 1]

that is true for every t-norm ∗. It can be proved as follows:

a ≥ a ∧ c, b ≥ b ∧ d =⇒ a ∗ b ≥ (a ∧ c) ∗ (b ∧ d);

c ≥ a ∧ c, d ≥ b ∧ b =⇒ c ∗ d ≥ (a ∧ c) ∗ (b ∧ d);

From the above two inequalities we obtain the required

(a ∗ b) ∧ (c ∗ d) ≥ (a ∧ c) ∗ (b ∧ d), a, b, c, d ∈ [0, 1]

from the last two inequalities.
Lastly, the left semicontinuity for M and its increase, that is property (4sFMK) is

ensured by the corresponding property satisfied by M1 and M2.

Theorem 11. MT is a complete meet semilattice. Its bottom element is M⊥, defined by

M⊥(x, y, t) = M⊥(x, y) =

{
1, if x = y and t > 0,
0, otherwise

Proof. From Theorems 9 and 10 it follows that the meet
∧M of every subset ofM⊆MT

belongs to MT . Therefore, to complete the proof we have to show that M⊥ is a strong fuzzy
pseudometric and that it is the bottom element in MT . That is, M⊥ is less than or equal to
any other strong fuzzy pseudometric.

Since the properties (0FKM), (1FKM), (2FKM), and (4sFKM) for M⊥ are obvious, we
have to prove that (3sFKM) holds, that is, to show that M(x, z) ≥ T(M(x, y), M(y, z)) for
all x, y ∈ X. We obtain it as follows:

• If x = z, then M(x, x) = 1 ≥ T(M(x, y), M(y, z))
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• If x 6= z, then either x 6= y or y 6= z. Therefore either M(x, y) = 0 or M(y, z) = 0. So
M(x, z) = 0 ≥ T(M(x, y), M(y, z)) = 0.

Lastly, we have to prove that if M∗(x, y, t) is a fuzzy pseudometric (specifically, strong),
then M(x, y, t) ≤ M∗(x, y, t) for all x, y ∈ X, t ∈ R+. However, from the definition of a
fuzzy metric we obtain that M∗(x, x, t) = 1, so the inequality holds if x = y. Otherwise, if
x 6= y, we obtain M(x, y, t) = 0 ≤ M∗(x, y, t).

Remark 5. Different to meet, the join of even two strong fuzzy metrics needs not be strong fuzzy
metric. We show this for the case of the product t-norm. Similar counterexamples can be constructed
for drastic t-norm, minimum t-norm, TH0 t-norm, and many other cases.

Proof. Let M1 and M2 be strong pseudometrics with respect to the product t-norm and let
x, y, z ∈ X and t ∈ R+ Further, let M(x, y, t) = M1(x, y, t) ∨M2(x, y, t). We denote

M1(x, y, t) = α1, M1(x, z, t) = α2 M1(z, y, t) = α3
M2(x, y, t) = β1, M2(x, z, t) = β2 M2(z, y, t) = β3.

M1 and M2 are strong fuzzy metrics in case of the product t-norm, and hence

M1(x, y, t) = α1 ≥ M1(x, z, t) ·M1(z, y, t) = α2 · α3; (1)

M2(x, y, t) = β1 ≥ M2(x, z, t) ·M2(z, y, t) = β2 · β3. (2)

If M would be a strong fuzzy metric, then

M(x, y, t) ≥ M(x, z, t) ·M(z, y, t),

i.e.,

α1 ∨ β1 ≥ (α2 ∨ β2) · (α3 ∨ β3).

From (1) and (2) we obtain

α1 ∨ β1 ≥ (α2 · α3) ∨ (β2 · β3).

Suppose that this inequality stands and let

α2 = 1
2 , α3 = 1

6 , β2 = 1
4 and β3 = 1

3 .

Then, we have that α1 ≥ 1
12 and β1 ≥ 1

12 , and suppose that α1 = β1 = 1
12 . We

obtain that

α1 ∨ β1 = 1
12 ≥

(
1
2 ∨

1
4

)
·
(

1
6 ∨

1
3

)
= 1

2 ·
1
3 = 1

6 .

The obtained contradiction completes the proof.

5. Fuzzy Approximating Metrics and Strong Fuzzy Approximating Metrics

Although strong fuzzy metrics fit well when studying global problems of words
combinatorics, for example, considering such questions as topological and lattice-type
properties of arrays of words, they are not always satisfactory in applications for problems
that involve computation of actual distance between two infinite words. The problem is
that in practice of computation, words usually are not available as given at present but
appear in the process of computation. We interpret this computation as the procedure
along parameter t ∈ R+, that is, along the third argument in the definition of a strong
fuzzy pseudometric. Under this interpretation axiom (FKM1) is too strong: given a string
x = (x0, x1, . . . , xn, . . .) at the stage t ∈ R+, we have compared this string only until the
[t]th coordinate and we cannot confirm yet that M(x, x, t) = 1. On the other hand, “at the
infinity”, we have information about all elements of the string and therefore it is natural to
request that limt→∞ M(x, x, t) = 1 for every x ∈ X. Besides, when comparing x and y at
every step t, thus having information up to t on both strings and not knowing yet whether
x = y, we obviously have only relation M(x, x, t) ≥ M(x, y, t). Note also that we cannot
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be sure that the equality M(x, y, t) = 1 for every t < ∞ means that x = y, since the whole
information is obtained only at the “∞′′. We view these observations as justification for the
following definitions.

Definition 9. A (KM-)fuzzy approximating pseudometric on a set X is a mapping M : X× X×
R+ → [0, 1] satisfying the following axioms

(0FAKM) M(x, y, 0) = 0 ∀x, y ∈ X;
(1FAKM) M(x, x, t) ≥ M(x, y, t) ∀x, y ∈ X;
(2FAKM) If x, y ∈ X then limt→∞ M(x, y, t) = 1 whenever x = y;
(3FAKM) M(x, y, t) = M(y, x, t) ∀x, y ∈ X, ∀t ∈ R+

(4FAKM) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s)∀x, y, z ∈ X, ∀t, s ∈ R+

(5FAKM) M(x, y,−) : R+ → [0, 1] is lower semicontinuous for all x, y ∈ X.

Definition 10. A strong (KM-)fuzzy approximating pseudometric on a set X is a mapping M :
X× X×R+ → [0, 1] satisfying axioms (0FAKM)–(3FAKM) and the following modified versions
of axioms (4FAM) and (5FAM)

(4sFAKM) M(x, z, t) ≥ M(x, y, t) ∗M(y, z, t)∀x, y, z ∈ X, ∀t ∈ R+

(5sFAKM) M(x, y,−) : R+ → [0, 1] is lower semicontinuous and increasing for all x, y ∈ X.

A reader can easily reformulate GV-versions of these definitions.

Remark 6. Comparing Definitions 9 and 10 with definitions of a KM-fuzzy pseudometric and
strong KM-fuzzy pseudometric, respectively, notice first that the principal revision of the definition
of a KM-fuzzy pseudometric is that we generalized axiom (1FKM) by splitting it into two axioms
(1FAKM) and (2FAKM); the intuitive meaning of this splitting is explained above. We do not
have to revise axioms (2FKM) and (3FKM) that appear as axioms (3FAKM) and (4FAKM) in the
Definitions 9 and 10 since they reflect information at finite steps [t]th and hence are operating with
the information already received at this step. We do not have to also revise axioms (4sFKM) and
(4FKM) that appear now as axioms (5FAKM) and (5sFAKM) respectively since they are given
already in the global way, that is, for each specific t ∈ [0, ∞).

Remark 7. In [14], where our first attempt to apply fuzzy metrics for description of distance between
infinite words was undertaken, we introduced the notion of a fragmentary fuzzy (pseudo)metric, and
the name “fragmentary” was justified by their construction from fragments of (pseudo)metrics on the
set of infinite words. Later, in [15], we defined ϕ-fuzzy (pseudo)metrics, generalizing fragmentary
fuzzy (pseudo)metrics. One can easily show that fragmentary and ϕ-fuzzy pseudometrics can be
obtained as special kind of GV-fuzzy approximating metrics.

6. Some Examples of Application of Strong Fuzzy Approximating Metrics in
Words Combinatorics

Theorem 12. Let (X, d) be an pseudometric space and define a mapping m : X×X×R+ → [0; 1] by

m(x, y, t) = t−d(x,y)
t+100 ∨ 0.

Then m(x, y, t) is a strong (KM-)fuzzy approximating pseudometric in case of the Łukasiewicz
t-norm TLuk.

Proof. We have to prove that

m(x, z, t) ≥ TLuk(m(x, y, t), m(y, z, t)),

i.e.,
t− c

t + 100
∨ 0 ≥ max

{( t− a
t + 100

∨ 0
)
+

(
t− b

t + 100
∨ 0
)
− 1; 0

}
.



Mathematics 2022, 10, 738 15 of 20

If t ≤ a (similarly, if t ≤ b), then we have

t− c
t + 100

∨ 0 ≥ max
{ t− b

t + 100
− 1; 0

}
= 0

If t > a and t > b then two options need to be examined:

1. If c ≥ t then we have

0 ≥ t−a−b−100
t+100 ⇐⇒ t ≤ a + b + 100,

which stands as a + b ≥ c ≥ t.
2. If c < t then we have

t−c
t+100 ≥

t−a−b−100
t+100 ⇐⇒ c ≤ a + b + 100,

which stands as a + b ≥ c.

Corollary 3. Let (X, d) be an pseudometric space and define a mapping m : X×X×R+ → [0; 1] by

m(x, y, t) = t−d(x,y)
t+100 ∨ 0.

Then m(x, y, t) is a strong (KM-)fuzzy approximating pseudometric in case of the drastic
t-norm TD.

Notice that some important t-norms generally do not give a strong (KM-)fuzzy ap-
proximating pseudometric, which is defined by the mapping m(x, y, t) = t−d(x,y)

t+100 ∨ 0.

Example 5. Let (X, d) be an pseudometric space and define a mapping m : X× X×R+ → [0; 1] by

m(x, y, t) = t−d(x,y)
t+100 ∨ 0.

Then m(x, y, t) generally is not a strong (KM-)fuzzy approximating pseudometric in case of
the product t-norm Tprod.

Proof. Let us assume the opposite, i.e., m(x, y, t) is a strong (KM-)fuzzy approximating
pseudometric in case of the product t-norm Tprod. We have to prove that

m(x, y, t) ≥ Tprod(m(x, z, t), m(z, y, t)),

i.e.,
t− c
1 + t

∨ 0 ≥
( t− a

1 + t
∨ 0
)
·
( t− b

1 + t
∨ 0
)

which is not true, if c = 1
5 , t = 1

5 , a = 1
10 and b = 1

10 : contradiction.

Let X be the set of infinite words. We define a sequence

{dn | n ∈ N∪ {0}}

of pseudometrics on X as follows. Let x = (x0, x1, x2, . . .), y = (y0, y1, y2, . . .) ∈ X and let
χi(x, y) = 0 if xi = yi and χi(x, y) = 1 if xi 6= yi. We define:
d0(x, y) =

( 5
6 + 2

3
)
χ0(x, y);

d1(x, y) =
( 5

6 + 2
3
)
χ0(x, y) +

( 5
6+1 + 2

3
)
χ1(x, y);

d2(x, y) =
( 5

6 + 2
3
)
χ0(x, y) +

( 5
6+1 + 2

3
)
χ1(x, y) +

( 5
6+2 + 2

3
)
χ2(x, y);

. . .
dn(x, y) = ∑n

i=0

(
5

6+i +
2
3

)
χi(x, y);

. . .

Proposition 1. Every dn is a pseudometric.
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Basing on this sequence of pseudometrics and referring to Theorem 12 we construct
the sequence of strong (KM-)fuzzy approximating pseudometrics in case of the Łukasiewicz
t-norm TLuk on the set X of all right-infinite words:
µ0(x, y, t) = t−d0(x,y)

t+100 ∨ 0;

µ1(x, y, t) = t−d1(x,y)
t+100 ∨ 0;

µ2(x, y, t) = t−d2(x,y)
t+100 ∨ 0;

. . .;
µn(x, y, t) = t−dn(x,y)

t+100 ∨ 0;
. . .

Further, we define the following family of mappings:
m0(x, y, t) = µ0(x, y, t);
m1(x, y, t) = m0(x, y, 1) ∨ µ1(x, y, t);
m2(x, y, t) = m1(x, y, 2) ∨ µ2(x, y, t);
. . .;
mn(x, y, t) = mn−1(x, y, n) ∨ µn(x, y, t);
. . .

Unfortunately, we are not able to prove or disclaim that these mappings are strong
(KM-)fuzzy approximating pseudometrics in case of the Łukasiewicz t-norm TLuk on the
set X of infinite words. Nevertheless, we can state the following obvious statement.

Proposition 2. Mappings mn : X × X × R+ → [0, 1] are strong (KM-)fuzzy approximating
pseudometrics in case of the drastic t-norm TD on the set X of infinite words.

Finally, we construct a mapping m : X× X×R+ → (0, 1] as follows:

m(x, y, t) =



m0(x, y, t) if 0 < t ≤ 1
m1(x, y, t) if 1 < t ≤ 2
m2(x, y, t) if 2 < t ≤ 3

. . .
mn(x, y, t) if n < t ≤ n + 1

. . .

Theorem 13. The mapping m : ×X × R+ → [0, 1] is a strong (KM-)fuzzy approximating
pseudometric in case of the drastic t-norm TD.

The proof is straightforward from Proposition 2.

Example 6. Let us go back to that counterexample and let

x = (1, 0, 0, 0, . . . .), y = (0, 1, 1, 1, ..), z = (0, 0, 0, 0, . . . ).

Previously, we obtained σ(x, z) = σ(y, z). We start with a strong (KM-)fuzzy approxi-
mating pseudometric m(x, z, t). In this case,

χ0(x, z) = 1 and χi(x, z) = 0 ∀i = 1, 2, . . .

Let us remind that

dn(x, z) = ∑n
i=0 χi(x, z) ·

(
5

i+6 + 2
3

)
.

Therefore

di(x, z) = 3
2 ∀i = 0, 1, 2, . . .

Finally, from a strong (KM-)fuzzy approximating pseudometric m(x, y, t), we obtain that

m(x, z, t) = t− 3
2

t+100 ∨ 0, ∀ t ∈ R+
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and

limt→∞ m(x, z, t) = limt→∞

(
t− 3

2
t+100 ∨ 0

)
= 1.

Now consider y = (0, 1, 1, 1, ..), z = (0, 0, 0, 0, . . . ). In this case,

χ0(y, z) = 0 and χi(y, z) = 1 ∀i = 1, 2, . . . .

Let us remind that

dn(y, z) = ∑n
i=0 χi(y, z) ·

(
5

i+6 + 2
3

)
;

Therefore,
d0(y, z) = 0
d1(y, z) =

( 5
7 + 2

3
)

d2(y, z) =
( 5

7 + 2
3
)
+
( 5

8 + 2
3
)

d3(y, z) =
( 5

7 + 2
3
)
+
( 5

8 + 2
3
)
+
( 5

9 + 2
3
)

. . .
dn(y, z) = ∑n

i=1

(
5

6+i +
2
3

)
. . .

Now, we calculate

limt→∞ m(y, z, t) = limt→∞

(
t−∑

btc
i=1(

5
6+i +

2
3 )

t+100 ∨ 0
)

= limt→∞

(
t− 2

3 btc−∑
btc
i=1

5
6+i

t+100 ∨ 0
)
= limt→∞

(
1
3 btc+{t}−∑

btc
i=1

5
6+i

1+t ∨ 0
)

,

where b−c : R→ Z is the floor function. Before we go further, we will refer to one result.
For the indication of this result we are grateful to E. M. Mik, elsons.

Theorem 14. If x ≥ 1 we have

∑
n≤x

1
n
= logx + C + o

(
1
n

)
where C is Euler’s constant.

From Theorem 14 we have

∑
btc
i=1

5
6+i = 5

(
∑
btc
i=1

1
i −

(
1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6

))
= 5 ∑

btc
i=1

1
i −

49
4 = 5logbtc+ 5C− 49

4 + o
(

1
btc

)
If we place this expression back into limit we obtain

limt→∞

1
3 btc+{t}−5logbtc−5C+ 49

4 −o
(

1
btc

)
t+100 ∨ 0 = 1

3 .

Corollary 4. If we have

x = (1, 0, 0, 0, . . . .), y = (0, 1, 1, 1, ..), z = (0, 0, 0, 0, . . . ),

then

limt→∞ m(x, z, t) = 1 > 1
3 = limt→∞ m(y, z, t),

which shows that infinite word z is estimated “closer" to x than to y. It is natural as words y and z
coincide only in the first position, but words x and z do not coincide only in the first position.
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Remark 8. The defined strong (KM-)fuzzy approximating pseudometric in Theorem 12 can be
generalized as m(x, y, t) = t−d(x,y)

t+c ∨ 0, where c ∈ R+. The choice of this constant c depends on
the context of specific applications. If we want to find a real "nearness-type" relation between two
infinite words, the choice of the constant c depends on an importance of the prefix of the word. For
example, if we take c = 1, then the outcome of this metric for two words with the same letters in
the first position will be at least one half. If we take c = 100 (as in our case), then the outcome will
just be at least 1

101 . Therefore, the greater the constant c is, the lower the meaning of the prefix and
vice versa.

Remark 9. The defined pseudometrics dn(x, y) in the construction can be generalized as dn(x, y) =

∑n
i=0

(
n2−m2

mn+i + m
n

)
χi(x, y), where m, n ∈ R+ and m < n. If we consider two pairs (m1, n1) and

(m2, n2) with m1
n1

> m2
n2

, then in the case of a pair (m2, n2) we attach more importance for prefixes,
but in the case of a pair (m1, n1), we attach less importance for prefixes.

7. Conclusions

As it was stated in the introduction, the main goal of our study in this paper, as well
as in two previous works [14,15], is the use of fuzzy metrics for description of the structure
of the family of infinite words. In order to realize this goal, in the first part of the paper
(Sections 3 and 4), we study families of strong fuzzy pseudometrics, assuming strong fuzzy
pseudometrics (and their modifications) are better suited to describing structure of word
families than general ones. Noticing that the axiom M(x, x, t) = 1 for every x ∈ X and
every t > 0 assumed in the definition of a (strong) fuzzy (pseudo)metric can be violated for
some (justified by specific examples) choices of this “pseudometric”, we introduce a more
flexible notion of a fuzzy strong approximating metric in Section 5. Examples of the use
of fuzzy strong approximating metrics for the description of the distance between infinite
words are presented in Section 6.

We foresee several directions, both theoretical and practical ones, in which the research
started in this work can be continued. The following are the directions where we are
planning to continue this work.

• To consider strong fuzzy pseudometric spaces and strong fuzzy approximating metrics
as categories, In particular, investigate products, coproducts, and other operations in
these categories. To study interrelations between these categories.

• To study the (fuzzy) topology, induced by (strong) fuzzy approximating metrics.
Specifically, extend (as far as possible) the results about (fuzzy) topology induced
by fuzzy metrics obtained in [5,6,29] et al. for the case of (strong) fuzzy approximat-
ing metrics.

• As an important problem to be investigated in our future work, we consider the
study of interrelations between our fuzzy approximating (in particular strong) metrics
with partial and especially fuzzy partial metrics. An attentive reader probably will
notice some similarity between our approximating metrics on one side and partial
and especially fuzzy partial metric on the other. Partial metrics were introduced in
1994 by Matthews [30] and now are the focus of interest for some mathematicians and
theoretical computer scientists (see, e.g., the survey [31]). Based on the concept of a
partial metric, V. Gregori, J-J. Minana, and D. Miravet [32] introduced the concept
of a fuzzy partial metric. Many researchers working in theoretical computer science
showed serious interest in partial metrics, and recently also in fuzzy partial metrics
in view of their perspectives of the use in domain theory and some other areas of
theoretical computer science. An attentive reader of our paper will probably notice
its certain common features with partial and fuzzy partial metrics, and this is not a
surprise, since the idea of both approaches when applied to evaluation of two infinite
strings is that the result will not be achieved immediately or at some step, but in the
process of comparing these strings. On the other hand, we apply essentially different
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approaches to realize this evaluation. It is one of our principal goals for future work to
investigate the relations, in particular, on the categorical level, between these theories.

• We illustrated the opportunities provided by strong fuzzy approximating metrics by
some examples and comments in Section 6. We view this material only as the first step
in the developing methods for the study of the problems of words combinatorics. This
work will be continued in particular in the next work (in preparation) where fuzzy
approximating metrics based on different t-norms and parameters will be used and
the obtained results will be analyzed for a series of numerical examples.
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