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Abstract: Skin cancer is common nowadays. Early diagnosis of skin cancer is essential to increase
patients’ survival rate. In addition to traditional methods, computer-aided diagnosis is used in
diagnosis of skin cancer. One of the benefits of this method is that it eliminates human error in cancer
diagnosis. Skin images may contain noise such as like hair, ink spots, rulers, etc., in addition to the
lesion. For this reason, noise removal is required. The noise reduction in lesion images can be referred
to as noise removal. This phase is very important for the correct segmentation of the lesions. One of
the most critical problems in using such automated methods is the inaccuracy in cancer diagnosis
because noise removal and segmentation cannot be performed effectively. We have created a noise
dataset (hair, rulers, ink spots, etc.) that includes 2500 images and masks. There is no such noise
dataset in the literature. We used this dataset for noise removal in skin cancer images. Two datasets
from the International Skin Imaging Collaboration (ISIC) and the PH2 were used in this study. In this
study, a new approach called LinkNet-B7 for noise removal and segmentation of skin cancer images
is presented. LinkNet-B7 is a LinkNet-based approach that uses EfficientNetB7 as the encoder. We
used images with 16 slices. This way, we lose fewer pixel values. LinkNet-B7 has a 6% higher success
rate than LinkNet with the same dataset and parameters. Training accuracy for noise removal and
lesion segmentation was calculated to be 95.72% and 97.80%, respectively.

Keywords: deep learning; LinkNet; EfficientNet; noise removal; skin cancer

1. Introduction

Cancer can be defined as a disease that results from the uncontrolled proliferation of
cells in various organs [1]. An estimated 10 million people died from cancer in 2020 [2].
In recent years, the number of skin cancer cases has increased rapidly under the influence
of environmental conditions. Melanoma is the most deadly skin cancer. According to the
American Cancer Society, the number of new melanoma cases in the United States in 2019
is 115,320 and the number of deaths is 11,540, and ~63% of skin cancer-related deaths are
caused by melanoma [3].

Early diagnosis is crucial for the treatment of skin cancer. When diagnosis is made
early and treatment is initiated, the five-year survival rate is 92% [4]. The increasing
mortality rate of skin cancer causes additional costs for treatment services [5]. Dermoscopy
images are assessed by dermatologists, which is usually a very time-consuming and error-
prone process [6]. The visual examination requires many serious steps such as dermoscopy
and biopsy. The success rate, especially for visual inspection, may decrease significantly
depending on the dermatologist’s qualifications. Visual examination of skin cancer shows
that the success rate is ~80% even for the best dermatologists [7].

Nowadays, image processing and deep learning algorithms are widely used to diag-
nose skin cancer [8]. When detecting skin cancer with deep learning and image processing,
it is crucial to remove hair-like noise from the lesion. If the hair removal is not done
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correctly, the success rate in classifying the lesion decreases [9]. In one study, an image
processing algorithm was developed to segment images of skin cancer and other pigmented
cancer lesions. The results were consistent with those obtained by experts [10].

As deep learning and image processing algorithms eliminate the human factor, they
can provide more reliable results than conventional methods. One of the main advantages
of these methods is that they do not require surgical intervention, and these advantages
help to significantly reduce the diagnosis time. Surgical techniques are time-consuming and
disturb patients. These algorithms ensure that human errors are eliminated and the expert
obtains successful results. In addition, these methods reduce the costs in the diagnostic
phase to almost zero and reduce the error rates. The use of machine learning in diagnosing
the disease has recently increased significantly [11]. Medical imaging is a tool for clinicians
to make diagnoses and plan surgeries. Uncertainty influences decision-making processes.
Visualization can help understand and communicate these uncertainties [12].

As stated earlier, the human factor leads to errors in the diagnosis process. In our
study, the noise in the skin cancer images is removed and the lesion is segmented. Thanks
to this visualization, physicians can more easily examine the lesion without noise and make
more successful diagnostic decisions. One of the most critical problems with using such
automated methods is the inaccuracy of cancer diagnosis, as noise removal and segmenta-
tion cannot be performed effectively. In addition, the lack of hair removal datasets hinders
the development of deep learning techniques for hair removal. If you look at the literature,
there is no such dataset. What we have done is different from the existing literature.

1. We divided the images into 16 layers (256 × 256 × 3). The images in the PH2 dataset
have a resolution of 765 × 533 pixels. In the ISIC 2018, the images have different
resolutions such as 4288 × 2848, 3024 × 2016. If the input data are below these
resolutions, data loss in the image is inevitable. To minimize this, we can divide the
images into 16 slices and use an image with a total size of 1024 × 1024 as input. This
way we can minimize the loss of pixels.

2. We proposed LinkNet-B7. The results show us that LinkNet-B7 has high accuracy.
There is no LinkNet-based algorithm for skin cancer segmentation and noise removal
in the literature.

3. We created a noise dataset that includes hair, water bubbles, ink stains, and ruler
marks. No such dataset exists in the literature (only hair masks).

4. Some images have a black frame and band-aid noises. In the segmentation phase,
these noises were eliminated.

The following sections of our study are planned as follows. The Section 2 contains
related work. The Section 3 will explain the material and method. In the Sections 4 and 5,
the results of the method are presented, discussed, and a conclusion is drawn. The overall
representative structure of the study is shown in Figure 1.

Figure 1. The overall representative structure of the study.
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2. Related Works

One of the first studies to offer a solution to the hair removal problem is the DullRazor
algorithm developed by Lee et al. [13]. This algorithm removes hairs in the lesion using
thresholds and morphological operations. Ali et al. [14] proposed a study on hair removal
and lesion segmentation on skin cancer images. They said that hair removal is important
because the CNN model will detect correlations between the noise and the target (skin
cancer class). If we do not remove this noise from the image, the CNN must learn to ignore
the noise using gradient descent and a large image dataset.

Nowadays, image datasets are used for skin cancer diagnosis with deep learning. Two
of the most commonly used datasets are the ISIC and the PH2 [15]. Wei et al. [16] proposed
a UNet-based method for hair removal. They prepared a hair dataset. They achieved ~96%
dice coefficient with UNet in hair removal phase and 86.5% in segmentation. In the study
of Zafar et al. [17], their method allows replacing the parts containing hairs in the lesion
with the colors in the areas closest to them. They proposed a UNet-based deep learning
algorithm for lesion segmentation. They used ResNet50 as the encoder. In the segmentation
phase, the study achieved a Dice coefficient rate of 85.8% with the the ISIC 2017 dataset
and 92.4% with the PH2 dataset. In this study, the accuracy increased by approximately 1%
when they used a dataset with cleaned hair.

Zhang et al. [18] presented a DSM algorithm for segmentation. They used the the ISIC
2017 and PH2 datasets. In this study, segmentation was performed after the hair removal
phase using DSM. The study obtained a dice coefficient of 92% with the PH2 dataset.
In one study [19], the UNet and FCN algorithms are applied together. A success rate of
approximately 87% was obtained with the ISIC 2017 dataset. It was found that the desired
segmentation results were not achieved. Hair noise, brightness, and color variations on
the lesion were shown to be the cause. In another study [20], the UNet algorithm was
used, and the training accuracy was 88.580% in the hair removal phase and 92.600% in the
segmentation phase. In the hair removal phase, 1534 images and masks with hair were
used, and in the segmentation phase, 13,000 images and masks were used (the ISIC 2018).
Only images with hair noise (without other noises) were used in this study.

Nowadays, some models are commonly used as pre-trained coders in deep learning
algorithms. This allows them to achieve higher accuracy in the training stages. One of the
latest coding algorithms is EfficentNetB7. EfficentB7 from Google has 66M parameters,
fast training time, and high accuracy [21]. In another study [22], a UNet-based algorithm
was used for lesion segmentation. In this study, denseness was used as an encoder. They
achieved a dice accuracy of 94% in the PH2 dataset. Baheti et al. [23] proposed the Eff-Unet
model. This model is based on UNet and uses efficientNetB7 as the encoder. This study
shows that UNet with efficientNetB7 as encoder has higher accuracy than others (ResNet
18, 34, 50, 101). In another study [24], a deep learning algorithm called EAR-UNet was
proposed. This algorithm includes EfficientNet and ResNet.

In the study by Talavera-Martinez et al. [25], they created a hair dataset. Their dataset
contains only simulated hair sounds. They used the CNN-based model with an input size of
512× 512. It is easy to find sounds in these images. However, in reality, the images may con-
tain more different hair sounds (different colors, contrast, etc.). Therefore, we do not know
how their model works for real hair sounds. Chaurasia et al. [26] proposed a deep learning
model called LinkNet. LinkNet provides short epoch time, high performance with 11.5 M
parameters. According to this study, LinkNet has higher accuracy than old models (SegNet,
Enet, Dilation10, Deep-Lab CRF (Vgg16), Deep-Lab CRF (ResNet101)). UNet is widely
used in medical segmentation. However, UNet also has a significant drawback. The UNet
model has the problem of creating a unified mask for many kernels. In addition, these
either overlap or seem to be very close to each other. In the study by Kallam et al. [27],
LinkNet has higher accuracy than UNet (UNet = 94.8 and LinkNet = 97.2). They used the
architecture of LinkNet34. LinkNet uses ResNet18 as the encoder. However, LinkNet34
uses ResNet34 as the encoder.
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Dong et al. [28] proposed a deep learning model called FAC-Net. In this study, 91.19%
dice coefficient was obtained with using the ISIC 2018 dataset. The model is based on
upsampling, not downsampling like the UNet architecture. There are modified LinkNet
architectures in the literature; one of them is D-LinkNet. D-LinkNet uses ResNet34 as the
encoder and a middle block containing dilated convolutional layers. They achieved a 2%
higher accuracy rate than LinkNet34 [29]. Xiong et al. [30] proposed Dp-LinkNet. It is
similar to D-LinkNet. They used a different center block than D-LinkNet. They achieved
0.9% higher accuracy rate than D-LinkNet. However, it also increases the training time.
Şahin et al. [31] proposed a signet-based model for lesion segmentation. They used the
Dullrazor algorithm to remove the hair noise. The study shows that Dullrazor is not
sufficient for thin hairs. They achieved a dice accuracy of 88.43%. This study shows that
hair removal increases the accuracy. In another study [32] on skin lesion segmentation,
SegNet was used. They achieved 85.16% dice accuracy on the PH2 dataset. In another
study, Bagheri et al. [33] proposed a Mask R-CNN based model. They reached 89.83 % dice
accuracy on the PH2 dataset.

Looking at the literature, using deep learning and image processing together is a more
suitable solution to increase the success rate of noise removal and lesion segmentation.
Image processing is insufficient because the contrast is different and the noise has similar
pixel features as the lesion. In addition, the use of data enhancement techniques is beneficial
to increase the success rate.

3. Materials and Methods

Our study consists of the noise removal and lesion segmentation phases. The data are
divided into 70% training, 20% validation, and 10% test sets in both phases. These rates are
acceptable values used in deep learning studies.

3.1. Datasets

Two ISIC datasets were used, taken from the 2018 ISIC Challenge. The first dataset
consists of 10,015 RGB images with lesions in jpeg format. There are no segmentation
masks in the dataset of 10,015 images from the ISIC 2018 [34]. Therefore, we can only use
this dataset for noise removal phase. From this dataset, we created 2500 images containing
noise, ink and ruler traces, and water bubble noise. We created 2500 noise masks from
the cleaned dataset and increased them to 10,000 in the noise removal phase by data
expansion. This dataset is now called the cleanup dataset. The process of creating this
dataset is shown in Figure 2. We could have created a mask by using fireworks without
other processes; however, it was easier for us to use a different process. We used OpenCV
functions. Functions and parameters used in the processes:

1. Adaptive thresholding: If the pixel value is less than the threshold, it is set to 0.
Otherwise, it is set to a maximum value. The algorithm determines the threshold value
for a pixel based on a small area around the pixel. Thus, we get different thresholds for
other regions of the same image, leading to better results for images those suffer with
uneven lighting.

We used cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 11, 8).

First parameter: Original image. Second parameter: Maximum value.
Third parameter: This is using the arithmetic mean of the local pixel neighborhood to

compute our threshold value.
Fourth parameter: THRESH_BINARY indicates that any pixel value that passes the

threshold test will an output value of 0. Otherwise, it will have a value of 255.
Fifth parameter: The mean grayscale pixel intensity value of each 11 × 11 sub-region

will be computed in the image to compute threshold value.
Sixth parameter: A constant which is subtracted from the mean or weighted

mean calculated.
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2. Median filter: The function computes the median of all the pixels under the kernel
window and the central pixel is replaced with this median value. This way we can remove
small noises from the image. We used cv2.medianBlur(image, 5) (5 is kernel size).

3. Morphological operations.
(a) The opening process is obtained by the erosion of an image followed by a dilation.

Erosion erodes away the boundaries of foreground object. Furthermore, dilation increases
the white region in the image or size of foreground object increases. It is useful for removing
small objects. A kernel tells us how to change the value of any given pixel by combining it
with different amounts of the neighboring pixels. kernel = np.ones((3,3),np.uint8).

We used cv.morphologyEx(image, cv.MORPH_OPEN, kernel).
(b) The closing process is the reverse of opening, dilation followed by erosion. It is

useful for closing small holes in foreground objects or small black dots on the object [35].
We used cv.morphologyEx(img, cv.MORPH_CLOSE, kernel).

Figure 2. The cleanup dataset creation process.

In this study, three different datasets were used to increase the total number of images
because the first ISIC 2018 dataset did not contain segmentation masks. Figure 3 shows
examples of our cleaned dataset.

Figure 3. Examples of the cleanup dataset.

The second ISIC dataset (13,000 images in jpeg format and masks in png format) [36]
and the PH2 dataset (200 images and masks in .bmp format) [37] were used for lesion
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segmentation. The dataset was increased to 52,800 by data expansion. This dataset is now
called the segmentation dataset. Figure 4 shows some examples of the segmentation dataset.

Figure 4. Examples of the segmentation data set.

3.2. Data Augmentation and Dataset Slices

During the noise removal and lesion segmentation phases, the data were augmented
to increase learning and prevent overfitting. Parameters:

• rescale = 1./255 • color_mode = ‘rgb’ • horizontal_flip = True • vertical_flip = True.
• width_shift_range = 0.1 • height_shift_range = 0.1.
We have divided all the images in the datasets into 16 slices (256 × 256 × 3). This

allows us to use a total of 1024 × 1024 × 3 images as inputs. The cleanup dataset consists
of 160,000 images, and the segmentation dataset consists of 844,800 images. Figure 5 shows
examples of sliced images.

Figure 5. Examples of sliced images.
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3.3. EfficientNet and ResNet

The basic building block of the EfficientNet architecture is Mobile Inverted Bottleneck
Convolution (MBConv) [38] with a squeeze and excitation optimization. The concept of
MBConv is shown in Figure 4. The family of EfficientNet networks has different numbers
of these MBConv blocks. From EfficientNetB0 to EfficientNetB7, depth, width, resolution,
and model size continue to increase, and the accuracy also improves. The best performing
model, EfficientNetB7, outperforms previous state-of-the-art CNNs in terms of ImageNet
accuracy and is also 8.4-fold smaller and 6.1-fold faster than the best existing CNN [21].
The network architecture of EfficientNetB7 is shown in Figure 6. It can be divided into
seven blocks based on the filter size, striding, and a number of channels [23].

In semantic segmentation, each pixel of an image is labeled, and therefore the preser-
vation of spatial information is of paramount importance [26]. EfficientNet is widely used
in image classification and segmentation. For example, Chetoui et al. [39] used EfficientNet
to achieve the best performance in work on diabetic retinopathy (DR). Kamble et al. [40]
used EfficientNet as an encoder combined with UNet++ and achieved high accuracy in
optic disk segmentation (OD). Messaoudi et al. [41] used EfficientNet to convert a 2D
classification network into a 3D semantic segmentation of brain tumors, which also resulted
in satisfactory performance [24]. The figure shows the architecture of EfficientNetB7.

Figure 6. EfficientNetB7 architecture.

The formulation of F(x) + x can be realized by neural feedforward networks with
“shortcut connections”. The ResNet architecture the network is shown in Figure 7. Shortcut
connections are connections that skip one or more layers [42].

Figure 7. ResNet architecture.
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3.4. Proposed Model: LinkNet-B7

The optimizer was determined to be Adam. Sigmoid was used as the output function.
The activation function for the output is usually chosen as a sigmoid function when there
are two potential output classes [43]. The parameters are given in Table 1.

Table 1. Parameters used in training phases.

Parameter Noise Removal Phase Segmentation Phase

Batch size 8 8
Learning rate 0.001 0.001

Epoch number 5000 5000
Input size 256 × 256 256 × 256
Optimizer Adam Adam

There are four encoder blocks and four decoder blocks [29]. LinkNet was chosen
because of its high accuracy and low epoch time in medical image segmentation [30]. We
used EfficientNetB7 as the encoder. This is because it has higher accuracy and parameter
count than other types [30]. We proposed a LinkNet-based deep learning algorithm called
LinkNet-B7 with input size 256 × 256 × 3 and EfficentNetB7 as the encoder. Table 2 shows
the structure of the encoder.

We added a single ResNet block to our model before the last layer, because other
ResNet models have more layers which increases the epoch time and slows down the
model. Moreover, we used a middle block before the decoder blocks. This way we could
obtain more features before the decoder blocks and thus improve the accuracy.

Table 2. The structure of the encoder.

Phase Operator Resolution Channels Layers

1 conv 7 × 7, /2 128 × 128 64 1
2 conv 3 × 3 128 × 128 64 1
3 Block 1—MBconv1 3 × 3 128 × 128 32 3
4 Block 2—MBconv6 3 × 3 64 × 64 48 7
5 Block 3—MBconv6 5 × 5 64 × 64 80 7
6 Block 4—MBconv6 3 × 3 32 × 32 80 10
7 Block 5—MBconv6 5 × 5 32 × 32 224 10
8 Block 6—MBconv6 5 × 5 16 × 16 384 13
9 Block 7—MBconv6 3 × 3 16 × 16 640 4

Finally, we used a modified hybrid model called LinkNet-B7. The first block of the
model performs a convolution of the input image using a kernel of size 7 × 7 with a stride
of 2. A max-pooling layer follows this with a stride of 2. The model is shown in Figure 8.

3.5. Parameters

• Dice coefficient: This metric is computed by comparing the pixel-wise correspon-
dence between the ground truth Y and the corresponding predicted segmentation X [44].
The format of an equation should be as follows:

Dice coe f f icient = (2 ∗ |X ∩Y|)/(|X|+ |Y|) (1)

• Loss function: In this study, MSE (mean squared error) is a loss function for both
phases. MSE is the sum of the squared distances between our target variable and the
predicted values [45].

• Optimizer: We choose the Adam optimizer in the Keras library. The Adam optimizer
is a stochastic gradient descent method [46].
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• mIoU (Intersection Over Union): This measure gives the similarity between the
predicted region and the actual region for an object present in the image [47]. We have used
mean IoU in the Keras library. TP: True Positive, FP: False Positive, FN: False Negative.

The format of an equation should be as follows:

mIoU = TP/(FP + TP + FN) (2)

Figure 8. LinkNet-B7 Architecture.

3.6. Noise Removal Phase

• Step 1: The cleanup dataset is divided into 112,000 training, 32,000 validation, and
16,000 test datasets.

• Step 2: The model has been trained for 5000 epochs.
• Step 3: Make predictions with the model.
• Step 4: Postprocess: Remove noise from the results using median filter and morpho-

logical operations (opening, closing). During postprocessing, the noise was removed from
the image using the mask estimated by the INPAINT function.
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3.7. Lesion Segmentation Phase

The noise in the dataset was removed using the model created in the previous step.
The training accuracy of nearly 2% increases with the dataset that has been cleared of noise.

• Step 1: The segmentation dataset is divided into 591,360 training, 168,960 validation,
and 84,480 datasets.

• Step 2: The model has been trained for 5000 epochs.
• Step 3: Make predictions with the model.
• Step 4: Postprocess: Remove noise from the results using median filter and morpho-

logical operations (opening, closing).

4. Results

In the noise removal and the lesion segmentation phases, we tested the proposed
model with the dataset described in Section 3.1 and obtained a dice coefficient of 0.9572
and 0.9670, respectively. Four models were run with the same parameters and data set.
The results obtained at this phase are shown in Tables 3 and 4.

Table 3. The results were obtained with different models in the noise cleanup phase.

Parameter UNet [48] LinkNet [26] Dp-Link [30] LinkNet-B7

Training accuracy (%) 87.25 90.18 94.86 95.72
Training loss (%) 11.88 7.28 6.36 6.22

Validation accuracy (%) 81.10 90.32 94.02 94.42
Validation loss (%) 6.82 4.68 4.22 3.60

mIoU % 86.10 89.20 93.50 94.15

Table 4. The results obtained with different models in the lesion segmentation phase.

Parameter UNet [48] LinkNet [26] Dp-Link [30] LinkNet-B7

Training accuracy (%) 89.25 93.18 96.60 97.80
Training loss (%) 10.88 8.28 6.80 6.22

Validation accuracy (%) 89.10 92.82 95.70 96.60
Validation loss (%) 5.82 4.28 4.20 4.05

mIoU % 87.90 92.01 95.10 96.70

Figures 9 and 10 show the results of the noise removal and the lesion segmentation
phases using different models. LinkNet-B7 was more successful than other models (images
(a, b, c, d, e)). We applied a median filter and opening and closing morphological functions
to each of the predicted images.

The study by Wei et al. [16] is similar to our study. They created hair mask datasets
(306 images and masks using the ISIC 2018). However, they did not mention other noises
like water bubbles or ink blots. They used 306 images and masks in the hair removal phase,
and 2594 images and masks in the segmentation phase. We do not know exactly which
images they used. For this reason, we used only the same number of images belonging
to the ISIC 2018. The results of the methods for compressing the hair removal and lesion
segmentation phases during training can be seen in Table 5.

Table 5. Comparison of two methods in the hair removal phase with the ISIC 2018 dataset.

Reference Method Phase Image Num Dice Coef

Wei et al. [16] UNet-based Hair removal 306 87.42
Proposed method LinkNet-based Hair removal 306 97.80

Wei et al. [16] UNet-based Lesion segmentation 2594 96.88
Proposed method (%) LinkNet-based Lesion segmentation 2594 97.02
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Figure 9. Comparison of models in the noise removal phase.

Figure 10. Comparison of models in the lesion segmentation phase.
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We compared LinkNet-B7 in lesion segmentation with other studies. The results of
the methods for compressing the lesion segmentation phase in training can be seen in
Tables 6 and 7. We achieved the highest dice accuracy among the other models.

Table 6. Comparison of methods in the lesion segmentation phase with the PH2 dataset.

Reference Method Dataset Image Num Dice Accuracy %

Zafar et al. [17] UNet-based PH2 200 92.4
Rajan et al. [32] SegNet-based PH2 150 85.16
Phan et al. [22] UNet-based PH2 200 94.04

Bagheri et al. [33] CNN-based PH2 200 89.83
Proposed method LinkNet-based PH2 200 97.42

Table 7. Comparison of methods in the lesion segmentation phase with the ISIC dataset.

Reference Method Dataset Image Num Dice Accuracy %

Dong et al. [28] UNet-based ISIC2018 2594 91.19
Zafar et al. [17] UNet-based ISIC2017 – 85.8
Zhang et al. [18] UNet-based ISIC2017 2750 94.3
Hasan et al. [19] UNet-based ISIC2017 2750 87.5
Arıcı et al. [20] UNet-based ISIC2018 13,000 92.6
Şahin et al. [31] SegNet-based ISBI2016 900 88.43

Proposed method LinkNet-based ISIC 2018 844,800 96.75

5. Conclusions

In this study, we proposed a new LinkNet-B7 model using the superior features of
the existing LinkNet and EfficientNet models. We tested UNet, LinkNet, Dp-Link, and the
proposed model (LinkNet-B7) on the same dataset in the stages of noise removal and lesion
segmentation. The results showed that the LinkNet-B7 model provided more successful
results in noise removal and lesion segmentation in skin cancer images than other LinkNet
models. We also compared our model with the others.

• In the literature, the highest resolution is usually 512 × 512 × 3, so if the images
have a higher resolution than the input size, the images will lose pixel values. We divided
the images into 16 slices (256 × 256 × 3) to minimize data loss. As a result, we can use a
total image size of 1024 × 1024 × 3 as input. By using slices and data expansion, we were
able to increase the training accuracy by almost 3%.

• In the noise removal phase, our model removed hair and water bubbles, ink spots,
and ruler marks in lesion images. There is no such dataset in the literature (only hair
masks). Thus, we were able to remove these noises from lesion images before training
lesion segmentation.

• Some images have a black frame and patch noises. In the segmentation phase, these
noises were eliminated. Thus, our segmentation results were completely removed from
the noise. Figure 11 (images (a), noise removal (b), cleaned images (c), mask (d), predicted
mask (e), and segmented image (f)) shows the results obtained with our model.
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Figure 11. Results in the segmentation phase with images with black frame and band-aid noise.
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