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Abstract: Recently, there have been many proven results of the Ostrowski–Grüss-type inequality
regarding the error bounds for the Chebyshev functional when the functions or their derivatives
belong to Lp spaces. In the existing literature, the main assumption in the weight-type results is that
the derivative of the function is bounded by two constant functions. The aim of our paper is to extend
those results in a way that the derivative of the function is bounded by two functions in Lp spaces.
Furthermore, we give some new error estimations of the Chebyshev functional and applications to
the one-point weight integral formulas.
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1. Introduction

Throughout this paper, Lp[a, b], 1 ≤ p < ∞ stands for the space of the functions
f : [a, b] → R, which are p-integrable, which means that they are equipped with the
p-norm:

‖ f ‖p =

[∫ b

a
| f (t)|pdt

] 1
p

which is finite. L∞[a, b] stands for the space of the functions f : [a, b] → R, which are
essentially bounded, i.e., the ∞-norm defined by:

‖ f ‖∞ = esssupt∈[a,b]| f (t)|

is finite.
Let f , g : [a, b] → R be the functions such that f , g, f · g ∈ L1[a, b]. The Chebyshev

functional T( f , g) is defined by:

T( f , g) :=
1

b− a

∫ b

a
f (x)g(x)dx− 1

b− a

∫ b

a
f (x)dx · 1

b− a

∫ b

a
g(x)dx.

Let us recall the Grüss inequality ([1]):

Theorem 1. Let f , g : [a, b]→ R be bounded integrable functions and ϕ, Φ, γ, Γ ∈ R constants
such that:

ϕ ≤ f (x) ≤ Φ and γ ≤ g(x) ≤ Γ, ∀x ∈ [a, b].

Then, the following inequality holds:

|T( f , g)| ≤ 1
4
(Φ− ϕ)(Γ− γ), (1)
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where the constant 1
4 is sharp.

The following theorem recalls the well-known Ostrowski inequality, which was estab-
lished in 1938 [2]:

Theorem 2. Let I be an interval in R, Io its interior, and a, b ∈ Io with a < b. If f : I → R is a
differentiable function in Io satisfying | f ′(t)| ≤ M, for all t ∈ [a, b] and some M > 0, then:∣∣∣∣ f (x)− 1

b− a

∫ b

a
f (t)dt

∣∣∣∣ ≤
[

1
4
+

(x− a+b
2 )2

(b− a)2

]
(b− a)M, (2)

for all x ∈ [a, b].

Many researchers have established some new results by using the Grüss and Ostrowski
inequalities and given applications to the numerical quadrature rules [3–8].

Dragomir and Wang [3] proved the Ostrowski–Grüss-type inequality in the following
form: If f : [a, b]→ R is a differentiable function with a bounded derivative and:

α0 ≤ f ′(t) ≤ β0, t ∈ [a, b],

then for x ∈ [a, b], we have:∣∣∣∣ f (x)− 1
b− a

∫ b

a
f (t)dt− f (b)− f (a)

b− a

(
x− a + b

2

)∣∣∣∣ ≤ 1
4
(b− a)(β0 − α0). (3)

Matić, Pečarić, and Ujević [4] proved the following Ostrowski–Grüss-type inequality:
Let f : I → R be n-times differentiable in the interior I0 of I, and let a, b ∈ I0 with a < b. If
f (n) is integrable on [a, b] and:

γ ≤ f (n)(t) ≤ Γ, t ∈ [a, b],

then for all x ∈ [a, b],

|Rn(x)| ≤ Γ− γ

2(n!)

[
(b− x)n+1 + (−1)n(x− a)n+1

(b− a)(2n + 1)
−
(
(x− a)n+1 − (x− b)n+1

(b− a)(n + 1)

)2]
. (4)

The remainder Rn(x) is defined by:

Rn(x) = f (x) +
1

b− a

n−1

∑
k=1

(b− x)k−1 + (−1)k(x− a)k+1

(k + 1)!
f (k)(x)

+
(b− x)n+1 + (−1)n(x− a)n+1

(n + 1)!(b− a)2

[
f (n−1)(b)− f (n−1)(a)

]
− 1

b− a

∫ b

a
f (t)dt

(5)

For the special case n = 1, we have:∣∣∣∣ f (x)− 1
b− a

∫ b

a
f (t)dt− f (b)− f (a)

b− a

(
x− a + b

2

)∣∣∣∣ ≤ 1
4
√

3
(b− a)(Γ− γ) (6)

for all x ∈ R.
Cheng [9] proved the following Ostrowski–Grüss-type inequality: Let f : [a, b]→ R

be a differentiable mapping in (a, b) such that γ1 ≤ f ′(x) ≤ Γ1, then for all x ∈ [a, b], we
have: ∣∣∣∣ f (x)− 1

b− a

∫ b

a
f (t)dt− f (b)− f (a)

b− a

(
x− a + b

2

)∣∣∣∣ ≤ 1
8
(b− a)(Γ1 − γ1). (7)
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Niezgoda [10] established the following result:

Theorem 3. Let f : I ⊂ R → R be a function differentiable in the interior Io of I, and let
[a, b] ⊂ Io. Suppose that f ′, α, β ∈ Lp[a, b] (1 ≤ p ≤ ∞) are functions such that:

(a) α + β is a constant function;
(b) α(t) ≤ f ′(t) ≤ β(t), for all t ∈ [a, b].

Then, for x ∈ [a, b], we have the inequality:∣∣∣∣ f (x)− 1
b− a

∫ b

a
f (t)dt−

(
x− a + b

2

)
f (b)− f (a)

b− a

∣∣∣∣
≤
{

1
4‖β− α‖p

(b−a)1/q

(q+1)1/q , if 1 ≤ q < ∞
1
4‖β− α‖1, if q = ∞,

(8)

where 1
p + 1

p = 1.

Kovač and Pečarić [11] gave the general weight m-point integral formula:

Theorem 4. Let g : [a, b]→ R be such that g(n−1) is a continuous function of bounded variation
on [a, b], for some n ∈ N and w : [a, b] → [0, ∞〉 some integrable weight function. Then, the
following identity holds:

∫ b

a
w(t)g(t)dt =

n

∑
j=1

(−1)j−1
[
wmj(b)g(j−1)(b) (9)

+
m−1

∑
k=1

[
wkj(xk)− wk+1,j(xk)

]
g(j−1)(xk)− w1j(a)g(j−1)(a)

]
+ (−1)n

∫ b

a
Wn,w(t, σ)dg(n−1)(t).

Here, {wkj}j=1,...,n are w-harmonic sequences of functions ((wkj)
′(t) = wk,j−1(t) for

t ∈ [xk−1, xk], k = 1, . . . , m):

Wn,w(t, σ) =



w1n(t) for t ∈ [a, x1],

w2n(t) for t ∈ (x1, x2],
...
wmn(t) for t ∈ (xm−1, b].

(10)

In the same paper, the authors established the weighted one-point integral formula as
a special case:

∫ b

a
w(t) f (t)dt =

n

∑
j=1

Aw,j(x) f (j−1)(x) + (−1)n
∫ b

a
Wn,w(t, x) f (n)(t)dt, (11)

where f : [a, b] → R is such that f (n−1) is an absolutely continuous function, w : [a, b] →
[0, ∞) is a weight function, x ∈ [a, b]:

Aw,j(x) =
(−1)j−1

(j− 1)!

∫ b

a
(x− s)j−1w(s)ds, for j = 1, . . . , n (12)
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and:

Wn,w(t, x) =

{
w1n(t) = 1

(n−1)!

∫ t
a (t− s)n−1w(s)ds for t ∈ [a, x],

w2n(t) = 1
(n−1)!

∫ t
b (t− s)n−1w(s)ds for t ∈ (x, b].

(13)

The aim of our paper was to give the generalization of Niezgoda’s result by using the
general weight m-point integral formula. Further, we shall give some applications to the
one-point integral formula.

2. Main Result

First, let us denote:

Tg(x0, x1, . . . , xm) :=
1

b− a

[∫ b

a
w(t)g(t)dt−

n

∑
j=1

(−1)j−1
[
wmj(b)g(j−1)(b)

+
m−1

∑
k=1

[
wkj(xk)− wk+1,j(xk)

]
g(j−1)(xk)− w1j(a)g(j−1)(a)

]]

and:

η =
(−1)n

b− a

∫ b

a
Wn,w(t, σ)dt. (14)

Let us consider the Chebyshev functional for functions (−1)nWn,w(·, σ) and g(n):

T((−1)nWn,w(·, σ), g(n)) = Tg(x0, x1, . . . , xm)−
(−1)n

b− a

∫ b

a
Wn,w(t, σ)dt · 1

b− a

∫ b

a
g(n)(t)dt. (15)

This section’s objective is to determine the upper bound for (15). We use the following
lemma (see [10]) to prove our main theorem:

Lemma 1. Let α, β ∈ Lp[a, b] (1 ≤ p ≤ ∞) be a function such that:

α(t) ≤ f (t) ≤ β(t), ∀t ∈ [a, b].

Then, we have the inequality:

‖ f − α + β

2
‖p ≤

1
2
‖β− α‖p

Now, we are ready to introduce our main result:

Theorem 5. Let g : I ⊂ R→ R be a function such that g(n−1) is differentiable in the interior Io

of I, and let [a, b] ⊂ Io. Suppose that g(n), α, β ∈ Lp[a, b] (1 ≤ p ≤ ∞) are functions such that:

(a) α + β is a constant function;
(b) α(t) ≤ g(n)(t) ≤ β(t), for all t ∈ [a, b].

Then, the following inequality holds:∣∣∣∣∣ 1
b− a

∫ b

a
w(t)g(t)dt− 1

b− a

n

∑
j=1

(−1)j−1
[
wmj(b)g(j−1)(b)

+
m−1

∑
k=1

[
wkj(xk)− wk+1,j(xk)

]
g(j−1)(xk)− w1j(a)g(j−1)(a)

]
− g(n−1)(b)− g(n−1)(a)

b− a
· η
∣∣∣∣∣

≤ 1
2(b− a)

‖β− α‖p · ‖(−1)nWn,w(·, σ)− η‖q
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where 1
p + 1

p = 1.

Proof. From the identity (15), we have:

T
(
(−1)nWn,w(·, σ), g(n)

)
=

=
1

b− a

∫ b

a
w(t)g(t)dt− 1

b− a

n

∑
j=1

(−1)j−1
[
wmj(b)g(j−1)(b)

+
m−1

∑
k=1

[
wkj(xk)− wk+1,j(xk)

]
g(j−1)(xk)− w1j(a)g(j−1)(a)

]
− g(n−1)(b)− g(n−1)(a)

b− a
· η.

Let us apply the Sonin identity (see [2], p. 246). For c ∈ R,

T
(
(−1)nWn,w(·, σ), g(n)

)
=

1
b− a

∫ b

a
(g(n)(t)− c) · ((−1)nWn,w(t, σ)(t)− η)dt. (16)

Now, we apply the Hölder inequality to the identity (16) to obtain:∣∣∣T((−1)nWn,w(·, σ), g(n)
)∣∣∣ ≤ 1

b− a
‖g(n) − c‖p · ‖(−1)nWn,w(·, σ)− η‖q. (17)

Since α + β is a constant function, we can substitute c = α+β
2 , and by Lemma 1,

we obtain:∣∣∣T((−1)nWn,w(·, σ), g(n)
)∣∣∣ ≤ 1

b− a
‖g(n) − α + β

2
‖p · ‖Wn,w(·, σ)− η‖q

≤ 1
2(b− a)

‖β− α|‖p · ‖(−1)nWn,w(·, σ)− η‖q

which completes the proof.

Now, we shall consider the special case where α and β are constant functions.

Corollary 1. Let g : I ⊂ R→ R be a function such that g(n−1) is differentiable in the interior Io

of I, and let [a, b] ⊂ Io. Suppose that α0, β0 ∈ R such that α0 ≤ g(n)(t) ≤ β0 for all t ∈ [a, b].
Then, the following inequality holds:∣∣∣∣∣ 1

b− a

∫ b

a
w(t)g(t)dt− 1

b− a

n

∑
j=1

(−1)j−1
[
wmj(b)g(j−1)(b)

+
m−1

∑
k=1

[
wkj(xk)− wk+1,j(xk)

]
g(j−1)(xk)− w1j(a)g(j−1)(a)

]
− g(n−1)(b)− g(n−1)(a)

b− a
· η
∣∣∣∣∣

≤
{

β0−α0
2(b−a)1/q · ‖(−1)nWn,w(·, σ)− η‖q, for 1 ≤ q < ∞,
β0−α0

2 · ‖(−1)nWn,w(·, σ)− η‖q, for q = ∞

where 1
p + 1

p = 1.

Proof. Let 1 ≤ p, q ≤ ∞ be conjugate exponents, i.e., 1
p + 1

q = 1. It is obvious that
f ′ ∈ L∞[a, b] ⊂ Lp[a, b]. Substituting functions α(t) and β(t) with constant functions α0
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and β0 in Theorem 5, it is easy to check that Conditions (a) and (b) from Theorem 5 are
valid. Consequently, Inequality (16) holds. For 1 ≤ p < ∞, we compute:

‖β− α‖p = (β0 − α0) · (b− a)1/p

and for p = ∞, we have:
‖β− α‖∞ = β0 − α0.

Therefore, for 1 ≤ q < ∞, the right-hand side of (16) equals:

(β0 − α0)

2(b− a)1/q · ‖(−1)nWn,w(·, σ)− η‖q

while for q = ∞, it equals:

β0 − α0

2
· ‖(−1)nWn,w(·, σ)− η‖q.

Remark 1. The hypothesis that the n-th derivative of the function is bounded by two constants α0
and β0 is more general than the hypothesis where the n-th derivative is bounded by the functions
α(t) and β(t). Therefore, if we assume that the conditions from the Theorem 5 and Corollary 1 are
satisfied with:

α0 ≤ β(t) ≤ g(n)(t) ≤ β(t) ≤ β0,

the constant 1
2(b−a)‖β− α‖p is smaller than the constant β0−α0

2(b−a)1/q , for 1 ≤ q < ∞, and β0−α0
2 , for

q = ∞. Namely, for 1 ≤ p < ∞, we have:

1
2(b− a)

‖β− α‖p =
1

b− a

[∫ b

a
(β(t)− α(t))pdt

]1/p

≤ β0 − α0

2(b− a)1/q ,

while for p = ∞, we have:
‖β− α‖∞

2(b− a)
≤ β0 − α0

2(b− a)
.

3. Application to the One-Point Integral Formula

In this section, we shall apply the result from Section 2 to the case m = 2, i.e., when
we have the one-point integral formula. First, we consider the general weight case and
higher-order derivative.

Corollary 2. Let g : I ⊂ R→ R be a function such that g(n−1) is differentiable in the interior Io

of I, and let [a, b] ⊂ Io. Suppose that g(n), α, β ∈ Lp[a, b] (1 ≤ p ≤ ∞) are functions such that:

(a) α + β is a constant function;
(b) α(t) ≤ g(n)(t) ≤ β(t), for all t ∈ [a, b].

Then, the following inequality holds:∣∣∣∣∣ 1
b− a

∫ b

a
g(t)w(t)dt− 1

b− a

n

∑
j=1

Aj(x)g(j−1)(x)− g(n−1)(b)− g(n−1)(a)
b− a

· η1

∣∣∣∣∣
≤ 1

2(b− a)
‖β− α‖p · ‖(−1)nWn,w(·, x)− η1‖q,

(18)

where 1
p + 1

p = 1 and η1 = (−1)n

b−a

∫ b
a Wn,w(t, x)dt.
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Proof. We apply Theorem 5 for m = 2, x0 = a, x1 = x, and x2 = b to obtain the inequal-
ity.

Now, we shall consider the case of uniform weight function (w(t) = 1
b−a ). For this

case, we have:

Wn(t, x) =

{
w1n(t) =

(t−a)n

n! for t ∈ [a, x],
w2n(t) =

(t−b)n

n! for t ∈ (x, b],
(19)

Aj(x) =
(−1)j−1

j!(b− a)

[
(x− b)j − (x− a)j

]
(20)

and:

η1 =
(−1)n[(x− a)n+1 − (x− b)n+1]

(b− a) · (n + 1)!
. (21)

Corollary 3. Let g : I ⊂ R→ R be a function such that g(n−1) is differentiable in the interior Io

of I, and let [a, b] ⊂ Io. Suppose that g(n), α, β ∈ Lp[a, b] (1 ≤ p ≤ ∞) are functions such that:

(a) α + β is a constant function;
(b) α(t) ≤ g(n)(t) ≤ β(t), for all t ∈ [a, b].

Then, the following inequality holds:∣∣∣∣∣ 1
b− a

∫ b

a
g(t)dt− 1

b− a

n

∑
j=1

(−1)j

j!

[
(x− b)j − (x− a)j

]
g(j−1)(x)

− g(n−1)(b)− g(n−1)(a)
b− a

· η1

∣∣∣∣∣
≤ 1

2(b− a)
‖β− α‖p · ‖(−1)nWn(·, x)− η1‖q,

(22)

where 1
p + 1

p = 1.

Remark 2. If we put m = 2, x0 = a, x1 = x, x2 = b, and n = 1 in Corollary 3, then we have the
assumptions of Theorem 3. In this case:

η1 =
a + b

2
− x

and Inequality (22) states:∣∣∣∣∣g(x)− 1
b− a

∫ b

a
g(t)dt−

(
x− a + b

2

)
g(b)− g(a)

b− a

∣∣∣∣∣
≤ 1

2(b− a)
‖β− α‖p · ‖W1(·, x) + η1‖q,

(23)

Without loss of generality, we can assume that a ≤ x ≤ a+b
2 . Therefore, for t ∈ [a, x),

we have t − a + a+b
2 − x ≥ 0, for t ∈

[
x, x + b−a

2

)
, we have t − b + a+b

2 − x ≤ 0, and for

t ∈
[

x + b−a
2 , b

]
, we have t− b + a+b

2 − x ≥ 0. Now, for 1 ≤ q < ∞, we have:
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‖W1(·, x) + η1‖q = ‖W1(·, x) +
a + b

2
− x‖q =

=

[∫ x

a

∣∣∣∣t− a +
a + b

2
− x
∣∣∣∣qdt +

∫ b

x

∣∣∣∣t− b +
a + b

2
− x
∣∣∣∣qdt

]1/q

=

=

[∫ x

a

(
t +

b− a
2
− x
)q

dt +
∫ x+ b−a

2

x

(
−t +

b− a
2

+ x
)q

dt

+
∫ b

x+ b−a
2

(
t− b− a

2
− x
)q

dt
]1/q

=

=
(b− a)1+1/q

2 · (q + 1)1/q

(24)

For q = ∞, it is easy to check that:

‖W1(·, x) + η1‖∞ =
b− a

2
.

Therefore, it is shown that our main result is the improvement of Niezgoda’s result mentioned
in the Introduction.

Corollary 4. Let g : [a, b] → R be a differentiable function with a bounded derivative. Suppose
that g′, α, β ∈ L1[a, b] are functions such that:

(a) α + β is a constant function:
(b) α(t) ≤ g′(t) ≤ β(t), for all t ∈ [a, b].

Then, for x ∈ [a, b] we have:∣∣∣∣g(x)− 1
b− a

∫ b

a
g(t)dt−

(
x− b− a

2

)
g(b)− g(a)

b− a

∣∣∣∣ ≤ 1
4
‖β− α‖1. (25)

Proof. The assertion follows if we apply n = 1, q = ∞, and p = 1 in Corollary 3.

Remark 3. If we put constant functions α0 and β0, then we will obtain:

‖β0 − α0‖1 = (β0 − α0) · (b− a).

This is the Ostrowski–Grüss-type inequality obtained by Dragomir and Wang (3). Therefore,
Corollary 4 is the improvement of Dragomir–Wang’s result.

Corollary 5. Let g : I → R be a function differentiable on the interior Io of I, and let a, b ∈ Io

with a < b. Suppose that g′, α, β ∈ L2[a, b] are functions such that:

(a) α + β is a constant function:
(b) α(t) ≤ g′(t) ≤ β(t), for all t ∈ [a, b].

Then, the following inequality holds:∣∣∣∣g(x)− 1
b− a

∫ b

a
g(t)dt−

(
x− b− a

2

)
g(b)− g(a)

b− a

∣∣∣∣ ≤ 1
4
√

3

√
b− a‖β− α‖2. (26)

Proof. The assertion follows if we apply n = 1, q = 2, and p = 2 in Corollary 3.

Remark 4. If we put constant functions α0 and β0, then we will obtain:

‖β0 − α0‖2 = (β0 − α0) ·
√

b− a.
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This is the Ostrowski–Grüss-type inequality obtained by Matić, Pečarić, and Ujević [4], so
Corollary 5 is the improvement of Matić, Pečarić, and Ujević’s result.

Corollary 6. Let g : [a, b]→ R be a differentiable function in (a, b). Suppose that α, β : [a, b]→
R are functions such that g′, α, β ∈ L∞[a, b]:

(a) α + β is a constant function;
(b) α(t) ≤ g′(t) ≤ β(t), for all t ∈ [a, b].

Then, for all x ∈ [a, b], we have:∣∣∣∣g(x)− 1
b− a

∫ b

a
g(t)dt−

(
x− b− a

2

)
g(b)− g(a)

b− a

∣∣∣∣ ≤ b− a
8
‖β− α‖∞. (27)

Proof. The assertion follows if we apply n = 1, q = 1, and p = ∞ in Corollary 3.

Remark 5. If we put constant functions α0 and β0, then we will obtain:

‖β0 − α0‖∞ = (β0 − α0).

This is the Ostrowski–Grüss-type inequality obtained by Cheng [9]. Therefore, Corollary 6 is
the improvement of Cheng’s result.

Especially, for x = a+b
2 , we have:

η1 =

{
0 for n odd
(−1)n(b−a)n

2n(n+1)! for n even
(28)

Now, we give the special case of the upper inequality related to the corrected midpoint
quadrature formula (corrected in the sense that we have derivatives in endpoints):

Corollary 7. Let g : I ⊂ R→ R be a function such that g′ is differentiable in the interior Io of I,
and let [a, b] ⊂ Io. Suppose that g′′, α, β ∈ Lp[a, b] (1 ≤ p ≤ ∞) are functions such that:

(a) α + β is a constant function;
(b) α(t) ≤ g′′(t) ≤ β(t), for all t ∈ [a, b].

Then, the following inequality holds:∣∣∣∣ 1
b− a

∫ b

a
g(t)dt− g(

a + b
2

)− b− a
24

[g′(b)− g′(a)]
∣∣∣∣

≤


(b−a)2

36
√

3
‖β− α‖∞ for q = 1, p = ∞

(b−a)3

1440 ‖β− α‖2 for q = p = 2
b−a
24 ‖β− α‖1 for q = ∞, p = 1

,
(29)

Proof. We apply Corollary 3 for n = 2 and x = a+b
2 . It is easy to calculate A1(

a+b
2 ) = 1 and

A2(
a+b

2 ) = 0. For q = 1, we have after some integration:

‖W2(t,
a + b

2
)− η1‖1 =

(b− a)2

18
√

3
.

For q = 2, we compute:

‖W2(t,
a + b

2
)− η1‖2 =

(b− a)3

720
.



Mathematics 2022, 10, 735 10 of 10

For q = ∞, we have:

‖W2(t,
a + b

2
)− η1‖∞ =

b− a
12

,

and the assertion follows.

Remark 6. For n = 1 and x = a+b
2 , we obtain the error of the famous midpoint quadrature rule

([12]).

4. Conclusions

In this work, we established an improved version of the Ostrowski–Grüss-type in-
equalities obtained in [3,4,9,10]. The main contribution of the work was that the hypothesis
that the derivative is bounded by two constant functions is replaced by the more general
hypothesis where the derivative of the functions is bounded by two non-constant functions.
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