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Abstract: The fractal–fractional derivative with the Mittag–Leffler kernel is employed to design
the fractional-order model of the new circumscribed self-excited spherical attractor, which is not
investigated yet by fractional operators. Moreover, the theorems of Schauder’s fixed point and Banach
fixed existence theory are used to guarantee that there are solutions to the model. Approximate
solutions to the problem are presented by an effective method. To prove the efficiency of the given
technique, different values of fractal and fractional orders as well as initial conditions are selected.
Figures of the approximate solutions are provided for each case in different dimensions.

Keywords: Mittag–Leffler kernel; numerical method; circumscribed self-excited spherical attractor

MSC: 26A33; 34D45

1. Introduction

Classification of specific systems which are able to display chaotic behavior is one of
the most interesting subjects in nonlinear problems [1–5]. Due to the importance of chaotic
performance in dynamical systems, various studies have been conducted on the special
properties of chaotic and nonlinear systems. In fact, different dynamical systems have been
presented. For example, some interesting multistable models can be read in [6–9]. Moreover,
some works on megastable dynamical systems have been done which can be seen in [10–12].
Additionally, on extreme multistable dynamical systems, notable investigation have been
conducted in [13–15]. To read more on the other kind of such systems, see [16–23]. In this
study, we aim to investigate the behaviour of numerical solutions of a new circumscribed
self-excited spherical attractor which have been introduced in [24] with a specific type
of fractional operator. Here, we present the structure of the mentioned system, which is
as follows:

dP
dt

= BP(t)S(t)− AP(t)− 10BS(t) + 10A,

dT
dt

= S2(t)− CT(t)S(t),

dS
dt

= T2(t)− P(t)T(t)− 10T(t),

(1)

In (1), P indicates the radial state, T symbolizes the azimuthal state, S displays the
polar state and A, B and C are parameters of the system.

Noninteger operators are the most practical means to describe the real phenoms
due to having memory effects. For example, modeling and analysis of fractional order
Ebola virus model with Mittag–Leffler kernel was reported in [25]. Furthermore, fractional
modelling and simulations of the SEIR and Blood Coagulation systems can be read in [26].
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Modeling and analysis of fractional order Zika model can be read in [27]. Moreover,
new fractal fractional derivative on chemistry kinetics hires problem was done in [28].
In [29], the numerical solution to malaria fractional model with temporary immunity and
relapse was conducted. A numerical and analytical study of SE (Is)(Ih) AR epidemic
fractional-order COVID-19 model can be seen in [30]. By using noninteger operators,
we have the ability to confer real phenoms that are more beneficial than classical-order
ones [31–36]. Additionally, it is confirmed that the noninteger order models are able to
describe chaotic behaviors precisely; consequently, such noninteger models have appeared
in different categories [37–39]. The fractal–fractional idea considers the memory effect, the
heterogeneity, and elascoviscosity of the medium, as well as the fractal geometry of the
dynamic system. So, motivated by the above statements, it is logical to concentrate more
on designing new models with fractional operators. In this work, we are going to model
the system (1) with a fractal–fractional operator in the Atangana-Baleanu-Caputo (ABC)
sense. In order to make fractional model of the system (1), some definitions are required.
For more details see [40–44].

Definition 1 ([45]). The He’s fractional derivative defined is defined as:

Dα
t (u(t)) =

1
Γ(n− α)

dn

dtn

∫ t

t0

(τ − t)n−α−1[u0(τ)− u(τ)]dτ, 0 < α ≤ 1. (2)

Definition 2 ([46]). Suppose that the function u(t) is continuous on (a, b) and fractal differentiable
on (a, b) of order β. So, the fractal-fractional derivative of u of order α is defined as:

∃FFMDα,β
t (u(t)) =

AB(α)
1− α

d
dtβ

∫ t

a
u(z)Eα

[
−α

1− α
(t− z)α

]
dz, 0 < α, β ≤ 1, (3)

where the Mittag–Leffler functions are defined as:

Eρ(t) =
∞

∑
q=0

tq

Γ(qρ + 1)
, ρ ∈ R+, t ∈ R, (4)

as well as,

Eρ,σ(t) =
∞

∑
q=0

tq

Γ(qρ + σ)
, ρ, σ ∈ R+, t ∈ R (5)

and AB(α) = 1− α + α
Γ(α) is the normalization function satisfying AB(0) = AB(1) = 1.

Definition 3 ([46]). Consider continuous function u(t) on (a, b). So the fractal–fractional integral
of u of order α is

∃FFMIα,β
t (u(t)) =

βα

AB(α)Γ(α)

∫ t

0
zβ−1u(z)(t− z)α−1dz +

β(1− α)tβ−1

AB(α)
u(t), 0 < α, β ≤ 1, (6)

Many researchers have used FFM operators in their studies. For example, analysis of
fractal–fractional differential equations can be seen in [47]. Another application of FFM
operator to reaction-diffusion model was reported in [48]. Numerical solutions of the
fractal–fractional Benjamin–Bona–Mahony equations can be read in [49]. Now, we are in
the position of modelling the system (1) using the abovementioned derivative. So, we have

∃FFM
0 Dα,β

t S(t) = BP(t)S(t)− AP(t)− 10BS(t) + 10A,

∃FFM
0 Dα,β

t E(t) = S2(t)− CT(t)S(t),

∃FFM
0 Dα,β

t I(t) = T2(t)− P(t)T(t)− 10T(t),

(7)
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with P(0) = P0, T(0) = T0 and S(0) = S0. The rest of this numerical study contains
5 sections. Section 2 is dedicated to provide the existence and uniqueness of the results for
the designed model. After that, stability analysis can be seen Section 3. Numerical results
are provided in Section 4 and numerical discussion can be found in Section 5. Finally, we
present the conclusion of this numerical research in Section 6.

2. Existence and Uniqueness Results

Now, we show the solution for system (2) using fixed-point theorem. Consider system
(2) as 

∃ABR
0 Dα

t P(t) = βtβ−1Q(t, P, T, S)
∃ABR

0 Dα
t T(t) = βtβ−1 W(t, P, T, S)

∃ABR
0 Dα

t S(t) = βtβ−1E(t, P, T, S),
(8)

with 
Q(t, P, T, S) = BP(t)S(t)− AP(t)− 10BS(t) + 10A
W(t, P, T, S) = S2(t)− CT(t)S(t),
M(t, P, T, S) = T2(t)− P(t)T(t)− 10T(t),

(9)

Now, (8) can be written as:{
∃ABR

0 Dα
t G(t) = βtβ−1 J(t, G(t)),

G(0) = G0
(10)

Substituting ∃ABR
0 Dtα by ∃ABC

0 Dαβ
t and employing fractional integral, we obtain

G(t) = G(0) +
βtβ−1(1− α)

AB(α)
Λ(t, G(t)) +

αβ

AB(α)Γ(α)

∫ t

0
λβ−1(t− λ)β−1Λ(λ, G(λ))dλ,

where

G(t) =


P(t)
T(t)
S(t)

, G(0) =


P(0)
T(0)
S(0)

, J(t, Ξ(t)) =


Q(t, P, T, S)
W(t, P, T, S)
M(t, P, T, S)

Due to existence hypothesis, a Banach space X = Y × Y × Y × Y is assigned, where
Y = C[0,T]using

‖Ξ‖ = max
t∈[0,T

|P(t) + T(t) + S(t)|,

Assign L : B→ B as:

L(G)(t) = G(0) +
βtβ−1(1− α)

AB(α)
J(t, G(t)) +

αβ

AB(α)Γ(α)

∫ t

0
(t− λ)β−1Λ(λ, G(λ))dλ (11)

Imposing Lipschitz condition J(t, Ξ(t)) as:

• For G ∈X, ∃ constants GJ > 0 and MΛ such that

|J(t, G(t))| ≤ GJ |G(t)|+ MJ , (12)

• For each G, Ḡ ∈X, ∃ a constant LJ > 0 such that

|J(t, G(t))− J(t, G(t))| ≤ LJ |G(t)− G(t)|, (13)

Theorem 1. Consider relation (12) works. Suppose J : [0,T]×X → R be a continuous. So, the
presented system has solution.

Proof. We confirm L expressed via (11) is continuous. Because Λ is continuous, L is continuous.
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Consider H = {G ∈X : ‖G‖ ≤ R, R > 0}. For each G ∈X, we own

‖L(G)‖ = max
t∈[0,T]

|G(0) +
βtβ−1(1− α)

AB(α)
JαβAB(α)Γ(α)

∫ t

0
λβ−1(t− λ)β−1 J(λ, G(λ))dλ| ≤ G(0)+

βTβ−1(1− α)

AB(α)
(G‖G‖+ MJ)

+ max
t∈[0,T]

αβ

AB(α)Γ(α)

∫ t

0
λβ−1|J(λ, G(λ))|dλ ≤ G(0) +

βTβ−1(1− α)

AB(α)
(G‖Θ‖+ MJ)

+
αβ

AB(α)Γ(α)
(G‖Θ‖+ MJ)Tα+β−1H(α, β) ≤ R,

Then L is limited, which H(α, β) indicates function of beta. For equicontinuity L, we
consider t1 ≤ t2 ≤ T. Thus, take

|L(G)(t2)−L(G)(t1)| = |
βtβ−1

2 (1− α)

AB(α)
J(t2, Ξ(t2)) +

αβ

AB(α)Γ(α)

∫ t2

0
λβ−1(t2 − λ)β−1 J(λ, G(λ))dλ

−
βtβ−1

1 (1− α)

AB(α)
J(t1, G(t2)) +

αβ

AB(α)Γ(α)

∫ t1

0
λβ−1(t1 − λ)β−1 J(λ, G(λ))dλ|

≤
βtβ−1

2 (1− α)

AB(α)
(GΛ|G(k)|+ MJ) +

αβ

AB(α)Γ(α)
(G|G(t)|+ MJ)t

α+β−1
2 H(α, β)

−
βtβ−1

1 (1− α)

AB(α)
(GJ |G(t)|+ MJ)−

αβ

AB(α)Γ(α)
(G|G(t)|+ MJ)t

α+β−1
1 H(α, β),

when t1 → t2, then |L(G)(t2)−L(G)(t1)| → 0. As a result, we have

‖L(G)(t2)−L(G)(t1)‖ → 0, ast1 → t2

Hence L is equicontinuous. Then, via the Arzela–Ascoli theorem, it is continuous.
So, via Schauder’s fixed-point result, the existence of solutions for the presented system
is approved.

Theorem 2. Consider (13) works and by ρ < 1, which

ρ =

(
βTβ−1(1− α)

AB(α)
+

αβ

AB(α)Γ(α)
Tα+β−1H(α, β)

)
GΛ,

So, the existence of solutions for the given model is supported.

Proof. For G, G ∈X, we own

‖L(G)−L(G)‖ = max
t∈[0,T]

∣∣∣ βtβ−1(1− α)

AB(α)
(

J(t, G(t))− J(t, G(t))
)

+
γβ

AB(α)Γ(α)

∫ t

0
λβ−1(t− λ)β−1dλ

[
J(λ, G(λ))− J(λ, G(λ))

]∣∣∣
≤
[(

βTβ−1(1− α)

AB(α)
+

αβ

AB(α)Γ(α)
Tα+β−1H(α, β)

)]
‖G− G ≤ ρ‖G− G‖,

Therefore, L is a contraction. Then, via the Banach contraction principle, the per-
formed system has solution.

3. Ulam–Hyres Stability

Now, we prove the Ulam–Hyres stability for the offered system.
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Definition 4. The offered system is Ulam–Hyres stable if ∃ℵα,β ≥ 0 for ε > 0 and for
G ∈ C([0,T,R) works ∣∣∣∃FFM

0 Dα,β
t G(t)− J(t, G(t))

∣∣∣ ≤ ε, t ∈ [0,T],

and there is solution Ω ∈ C([0,T],R) which

|G(t)−Ω(t)| ≤ ℵα,βε, t ∈ [0,T],

We consider a tiny disturbance b ∈ C[0,T] which Φ(0) = 0. Consider

• |b(t)| ≤ ε, f orε > 0 ,

• ∃FFM
0 Dα,β

t G(t) = J(t, G(t)) + b(t)

Lemma 1. The solution for the disturbed system

∃FFM
0 Dα,β

t G(t) = J(t, G(t)) + b(t), G(0) = G0,

accomplish following relation∣∣∣G(t)−
(

G(0) +
βtβ−1(1− α)

AB(α)
J(t, G(t)) +

αβ

AB(α)Γ(α)

∫ t

0
λβ−1(t− λ)β−1 J(λ, G(λ))dλ

)∣∣∣ ≤ xα,βε

where xα,β = βTβ−1(1−α)
AB(α) + αβ

AB(α)Γ(α)T
α+β−1H(α, β).

Proof. The proof is clear; thus, we disregard it.

Lemma 2. Using (13) solutions of the considered system is Ulam–Hyres stable regardingaccomplish
following relation ρ < 1.

Proof. Suppose we have unique solution as Ω ∈X, and consider Ξ ∈X as the solution of
the presented model, therefore

|G(t)−Ω(t)| =
∣∣∣G(t)−

[
Ω(0) +

βtβ−1(1− α)

AB(α)
J(t, Ω(t)) +

αβ

AB(α)Γ(α)

∫ t

0
λβ−1(t− λ)β−1 J(λ, Ω(λ))dλ

]∣∣∣
≤
∣∣∣G(t)−

[
G(0) +

βtβ−1(1− α)

AB(α)
J(t, G(t)) +

αβ

AB(α)Γ(α)

∫ t

0
λβ−1(t− λ)β−1 J(λ, G(λ))dλ

]∣∣∣
+
∣∣∣G(0) +

βtβ−1(1− α)

AB(α)
J(t, G(t)) +

αβ

AB(α)Γ(α)

∫ t

0
λβ−1(t− λ)β−1 J(λ, G(λ))dλ

∣∣∣
−
∣∣∣Ω(0) +

βtβ−1(1− α)

AB(α)
J(t, Ω(t)) +

αβ

AB(α)Γ(α)

∫ t

0
λβ−1(t− λ)β−1 J(λ, Ω(λ))dλ

∣∣∣
≤ xα,βε +

(
βTβ−1(1− α)

AB(α)
+

αβ

AB(α)Γ(α)
Tα+β−1H(α, β)

)
LJ |G(t)−Ω(t)|

≤ xα,βε + ρ|G(k)−Ω(k)|,

So, we have
‖G−Ω‖ ≤ xα,βε + ρ‖G−Ω‖.

Or
‖G−Ω‖ ≤ ℵα,βε,

which ℵα,β =
xα,β
1−ρ . So, the current system’s solution is Ulam–Hyres stable.
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4. Numerical Results and Simulations

We consider the fractal–fractional SEIR system as:

∃FFM
a Dα,β

t P(t) = BP(t)S(t)− AP(t)− 10BS(t) + 10A, (14)

∃FFM
a Dα,β

t T(t) = S2(t)− CT(t)S(t), (15)

∃FFM
a Dα,β

t S(t) = T2(t)− P(t)T(t)− 10T(t), (16)

We rewrite the model (11)–(13) as

AB(α)
1− α

d
dt

∫ t

0
P(τ)Eα

(
−α

1− α
(t− τ)α

)
dτ = βtβ−1(BP(t)S(t)− AP(t)− 10BS(t) + 10A),

AB(α)
1− α

d
dt

∫ t

0
T(τ)Eα

(
−α

1− α
(t− τ)α

)
dτ = βtβ−1

(
S2(t)− CT(t)S(t)

)
,

AB(α)
1− α

d
dt

∫ t

0
S(τ)Eα

(
−α

1− α
(t− τ)α

)
dτ = βtβ−1(T2(t)− P(t)T(t)− 10T(t)),

Taking

D1(t, P, T, S) = BP(t)S(t)− AP(t)− 10BS(t) + 10A,

E1(t, P, T, S) = S2(t)− CT(t)S(t),

F1(t, P, T, S) = T2(t)− P(t)T(t)− 10T(t),

We have

AB(α)
1− α

d
dk

∫ t

0
P(τ)Eα

(
−α

1− α
(t− τ)α

)
dτ = D1(t, P, T, S),

AB(α)
1− α

d
dt

∫ t

0
T(τ)Eα

(
−α

1− α
(t− τ)α

)
dτ = E1(t, P, T, S),

AB(α)
1− α

d
dt

∫ t

0
S(τ)Eα

(
−α

1− α
(t− τ)α

)
dτ = F1(t, P, T, S),

Now we use the AB integral on the above system, so we have

P(t)− P(0) =
1− α

AB(α)
D1(t, P, T, S) +

α

AB(α)Γ(α)

∫ t

0
(t− τ)α−1D1(τ, P, T, S)dτ,

T(t)− T(0) =
1− α

AB(α)
E1(t, P, T, S) +

α

AB(α)Γ(α)

∫ t

0
(t− τ)α−1E1(τ, P, T, S)dτ,

S(t)− S(0) =
1− α

AB(α)
F1(t, SP, T, S) +

α

AB(α)Γ(α)

∫ t

0
(t− τ)α−1F1(τ, P, T, S)dτ,

By discretizing at tn+1 we obtain

Pn+1 = P0 +
1− α

AB(α)
D1(tn+1, Pn, Tn, Sn) +

α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − τ)α−1D1(τ, P, T, S)dτ,

Tn+1 = T0 +
1− α

AB(α)
E1(tn+1, Pn, Tn, Sn) +

α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − τ)α−1E1(τ, P, T, S)dτ,

Sn+1 = S0 +
1− α

AB(α)
F1(tn+1, Pn, Tn, Sn) +

α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − τ)α−1F1(τ, P, T, S)dτ,

Which results in
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Pn+1 = P0 +
1− α

AB(α)
D1(tn+1, Pn, Tn, Sn)

+
α

AB(α)Γ(α)

n

∑
s=0

[
hαD1(ts, Pn, Tn, Sn)

Γ(α + 2)
((n + 1− s)α(n− s + 2 + α)− (n− s)α(n− s + 2 + α))

]
− α

AB(α)

n

∑
s=0

[
hαD1(ts−1, Pn−1, Tn−1, Sn−1)

Γ(α + 2)

(
(n + 1− s)α+1 − (n− s)α(n− s + 1 + α)

)]
,

Tn+1 = T0 +
1− α

AB(α)
E1(tn+1, Pn, Tn, Sn)

+
α

AB(α)Γ(α)

n

∑
s=0

[
hαE1(ts, Pn, Tn, Sn)

Γ(α + 2)
((n + 1− s)α(n− s + 2 + α)− (n− s)α(n− s + 2 + α))

]
− α

AB(α)

n

∑
s=0

[
hαE1(ts−1, Pn−1, Tn−1, Sn−1)

Γ(α + 2)

(
(n + 1− s)α+1 − (n− s)α(n− s + 1 + α)

)]
,

Sn+1 = S0 +
1− α

AB(α)
F1(tn+1, Pn, Tn, Sn)

+
α

AB(α)Γ(α)

n

∑
s=0

[
hαF1(ts, Pn, Tn, Sn)

Γ(α + 2)
((n + 1− s)α(n− s + 2 + α)− (n− s)α(n− s + 2 + α))

]
− α

AB(α)

n

∑
s=0

[
hαF1(ts−1, Pn−1, Tn−1, Sn−1)

Γ(α + 2)

(
(n + 1− s)α+1 − (n− s)α(n− s + 1 + α)

)]
,

5. Numerical Experiments

Now, we are going to show the application of the derived numerical scheme in Section 4.
We consider two cases containing different fractal, fractional, and initial conditions (ICs)
to achieve this aim. The parameters of the studied model are chosen as A = 2, B = 25
and C = 10. For the first case we consider P(0) = 1, T(0) = 1 and S(0) = 1(t) and
β = 0.7, 0.8, 0.9 and β = 1 are selected as the fractal orders. In this case, we consider
α = 0.99 as the fractional order. Figures related to this case can be found in Figures 1–3.
Figure 1 shows the approximate solutions of the state variables. 2D diagrams showing
the numerical results can be seen in Figure 3. Furthermore, the chaotic behaviour of the
approximate results can be observed in Figure 3.

For the second case, we hold A = 1.5, B = 18, C = 10, P(0) = 1, T(0) = 1 and S(0) = 1
and β = 0.65, 0.75, 0.85 and β = 0.95 are picked as the fractal orders. We take α = 1 as
the fractional order to see how the behaviours of numerical solutions change. Similar to
the first case, Figures reporting the numerical results are shown in Figures 4–6. Figure 4 is
responsible to reveal the approximate results of the state variables under the chosen initial
conditions. 2D diagrams displaying the results can be viewed in Figure 5. Furthermore,
the chaotic performance of the approximate results can be seen in Figure 6. The provided
Figures reveals the changes which have occurred by altering the fractal–fractional orders
and initial conditions.
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6. Conclusions

During this study, we designed the fractal–fractional order model of the the circum-
scribed self-excited spherical attractor by employing an ABC fractal–fractional operator.
Furthermore, Schauder’s and Banach’s fixed-point theorems were applied to display the
existence of solutions for the suggested dynamical system. We discovered the solutions
of Ulam–Hyres stability for the system using nonlinear functional analysis. Moreover, to
obtain the approximate solutions of the considered problem and to see how the solutions
behave, we employed the effective algorithm under various amounts of fractal and frac-
tional orders. We plotted the graphs of solutions for each case to show how the results
change under different conditions.
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