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Abstract: Secret image sharing (SIS) is an important application of the traditional secret sharing
scheme, which has become popular in recent years. In an SIS scheme, a confidential image is
encrypted into a group of shadows. Any set of shadows that reaches the threshold can reconstruct
the image; otherwise, nothing can be recovered at all. In most existing SIS schemes, the threshold on
shadows for image reconstruction is fixed. However, in this work, we consider more complicated
cases of SIS, such that the threshold is changeable according to the security environment. In this paper,
we construct a (k ↔ h, n) threshold-changeable SIS (TCSIS) scheme using a bivariate polynomial,
which provides h − k + 1 possible thresholds, k, k + 1, . . ., h. During image reconstruction, each
participant can update their shadow according to the current threshold T based only on their initial
shadow. Unlike previous TCSIS schemes, the proposed scheme achieves unconditional security and
can overcome the information disclosure problem caused by homomorphism.

Keywords: secret sharing scheme; secret image sharing; threshold changeable; bivariate polynomial

MSC: 94A62

1. Introduction

The issue of image security has become important in recent years—for instance, in
image steganography [1,2] and verification of visual consistency of images [3]. Secret image
sharing (SIS) is also an important topic in image security, which is meant to protect confi-
dential images among multiple participants. Most SIS schemes satisfy a (k, n) threshold,
such that an image is encrypted into n shadows: k or more shadows can reconstruct the
image, but less than k shadows can do nothing. There are two main approaches for SIS:
visual cryptography-based SIS schemes [4–6] and polynomial-based SIS schemes [7–9].
Visual cryptography-based SIS uses the human visual system to recover an image, but the
shadow size is greatly expanded from the original image, and the reconstructed image
is of diminished quality; polynomial-based SIS is capable of recovering an image loss-
lessly, and the shadow size is reduced from the original image, but the computation for
image reconstruction is more complicated than in visual cryptography-based SIS. Many
research topics concerning SIS exist, such as progressive SIS [10–12], SIS with essential
shadows [13,14], and SIS with authentication [15]. When an image has a huge number of
pixels, the computations in shadow generation or image reconstruction may cause high
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time complexity. One can use the method of compressive sensing [16,17] to reduce image
size, so that the time complexity for an SIS scheme can be reduced.

Most existing SIS schemes consider a single security policy, and the threshold k for
image reconstruction is fixed. However, the security environment for image reconstruction
is probably changeable in real applications; therefore, it is more reasonable to design SIS
schemes with the capability of threshold changeability. The considerations for threshold
changeability include: (1) the security level of a secret image may change; (2) the number
of total participants may vary; (3) the power of adversaries may increase; (4) information
disclosure may be caused by some malicious participants. Discussion on changing thresh-
olds in traditional secret sharing [18–20] has already been presented, which proves the
necessity for threshold changeability in SIS. However, SIS and traditional secret sharing are
different. The studies on threshold-changeable secret sharing could not be directly copied
into TCSIS. In fact, the discussion on TCSIS is insufficient in the literature. Two TCSIS
schemes [21,22] have been constructed. In the first TCSIS scheme [21], there are N possible
thresholds T1, T2, . . ., TN , but extra two-variable one-way functions are included for image
reconstruction. The computational complexity is high, and the security is based on the
assumption of one-way functions. It is unconditionally secure. The other TCSIS scheme [22]
has reduced computational complexity, but it has only three possible thresholds (k

′
, k, k

′′
).

In addition, it requires the dealer to be involved in shadow updating, and it suffers from
the problem of information leakage.

In this paper, we construct a (k ↔ h, n) TCSIS scheme which provides h − k + 1
possible thresholds, (k, k + 1, .., h − 1, h). The shadows are encrypted using a bivariate
polynomial, and the participant only keeps one initial shadow from the dealer. During
image reconstruction, the dealer or another trusted party chooses a threshold T from
{k, k + 1, . . ., h} according to the current security requirement; then, each participant can
update their shadow according to threshold T. In addition, the process of shadow updating
is only based on the initial shadow. The dealer does not need to participate in this process.
All the computations in the proposed scheme are polynomial, making them highly efficient.

The rest of this paper is organized as follows. In next section, some preliminaries
are prepared which include the Thien–Lin polynomial-based (k, n) SIS and some results
of previous TCSIS. Our proposed scheme is described in Section 3 together with the
corresponding theoretical proofs. Comparisons between the proposed scheme and previous
TCSIS schemes and experimental results are shown in Section 4. The conclusions of our
work are presented in Section 5.

2. Related Works

In this section, we briefly introduce some related studies about TCSIS, which relate to
polynomial-based SIS, the model of TCSIS, and one previous TCSIS.

2.1. Polynomial Based SIS

The model of (k, n) SIS consists of two phases, which can be shown as follows.

Model of SIS
Shadow Encryption Phase

1 A dealer encrypts a confidential image O into shadows S1, S2, . . ., Sn.
2 Each shadow Si is sent to participant Pi through a secure channel.

Image Reconstruction Phase
Any set of k or more participants can reconstruct the image O; less than k participants

cannot get any information on the image at all.

In 2002, Thien and Lin proposed a polynomial based (k, n) threshold SIS scheme [7],
which was the foundation for later polynomial based SIS schemes. All existing TCSIS
schemes were based on the Thien–Lin polynomial-based SIS, and our work is also inspired
by their work. Therefore, it is necessary to give a description of their work.
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Scheme 1: Thien–Lin (k, n) SIS
Shadow Encryption Phase:
Input: image O, Output: n shadows S1, S2, . . ., Sn

1 The dealer divides O into l-non-overlapping k-pixel groups, G1, G2, . . ., Gl .
2 For k pixels pj,0, pj,1, . . ., pj,k−1 in each group Gj, j ∈ [1, l], the dealer builds a k − 1

degree polynomial f j(x) = pj,0 + pj,1x + pj,2x2 + . . .,+pj,k−1xk−1.
3 The dealer computes n sub-shadows, sj,1 = f j(1), sj,2 = f j(2), . . ., sj,n = f j(n), j ∈

[1, l].
4 The dealer outputs n shadows Si = s1,i ‖ s2,i ‖, . . ., ‖ sl,i, i = 1, 2, . . ., n.

Image Reconstruction Phase:
Input: m shadows S1, S2, . . ., Sm.(m ≥ k). Outputs: secret image O.

1 Reconstructing f j(x) from s1,j, s2,j, . . ., sm,j, j ∈ [1, l] using Lagrange interpolation:

f j(x) =
m

∑
i=1

[si,j ×
m

∏
w=1,w 6=i

x− w
i− w

]; (1)

then the block Gj is recovered from all k coefficients in f j(x).
2 Output: O = G1 ‖ G2 ‖, . . ., ‖ Gl .

2.2. Results on TCSIS

In this section, we give a model of TCSIS, and then describe some results on previous
TCSIS schemes.

The model TCSIS scheme consists of two phases: shadow encryption phase and image
reconstruction phase, which have the following steps.

Model of TCSIS
Shadow Encryption Phase

1 A dealer encrypts a confidential image O into initial shadows S1, S2, . . ., Sn.
2 Each initial shadow Si is sent to participant Pi through secure channel.

Image Reconstruction Phase

1 A threshold T is selected from the set of all possible thresholds T1, T2, . . ., Td.
2 Each participant Pi updates the shadow according to current threshold T.
3 Any group of participants that satisfy the access structure can reconstruct the image

O using updated shadows.

The difference between the SIS model and the TCSIS model is that during the the
image reconstruction phase, each participant needs to update the shadow according to the
current threshold T.

The scheme in [21] is a polynomial scheme that satisfies the model of TCSIS; however,
some one-way functions were adopted in [21] to change the threshold. Therefore, the
security of [21] is based on the security assumptions of those one-way functions, and the
computational complexity is much higher than the computations in polynomial interpola-
tion. Recently, Liu et al. proposed a (k

′
, k, k

′′
) TCSIS [22] that can reduce the computational

complexity of [21]. However, there are only three available thresholds in [22], and the dealer
has to involve one in shadow updating. In addition, information leakage can occur in [22]
due to the property of homomorphism. Since the scheme in [22] is more representative
than the scheme in [21], we give a description of the scheme in [22] in the following.
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Scheme 2: Liu et al.’s (k
′
, k, k

′′
) TCSIS [22]

Shadow Encryption Phase:

1 The dealer D divides an image O into l non-overlapping k
′

pixel blocks, G1, G2, . . ., Gl .
2 For k

′
pixels pj,0, pj,1, . . ., pj,k′−1 in each block Gj, j ∈ [1, l], D generates a k

′ − 1 degree

polynomial f j(x) = pj,0 + pj,1x + pj,2x2 + . . .,+pj,k′−1xk
′−1.

3 D selects randomly k− k
′

integers wk′ , wk′+1, . . ., wk−1, and generates a k− 1 degree

polynomials F
′
(x) = wk′ x

k
′
+ wk′+1xk

′
+1 + . . . + wk−1xk−1. In addition, D randomly

selects k
′′ − k integers rk, rk+1, . . ., rk′′−1 and generates a polynomial: F

′′
(x) = rkxk +

rk+1xk+1 + . . . + rk′′−1xk
′′−1.

3 Let Fj(x) = f j(x)+ F
′
(x). D computes n sub-shadows sj,1 = Fj(1), sj,2 = Fj(2), . . ., sj,n =

Fj(n), j ∈ [1, l], and the initial shadow Si of Pi is Si = s1,i ‖ s2,i ‖, . . ., ‖ sl,i, i = 1, 2, . . ., n.

Image Decryption Phase:
D chooses a threshold from {k′ , k, k

′′} and publishes it to all participants.

1 If the threshold is k, k or more initial shadows can reconstruct l polynomials Fj(x), j =
1, 2, . . ., l. k

′
pixel block Gj is made up of the first k

′
coefficients in Fj(x), and thus the

image O = G1||G2||. . .||Gl can be recovered.
2 If the threshold is k

′
, D publishes the information of ei = F

′
(i), i = 1, 2, . . ., n to all

participants. Each participant Pi updates its shadow by: Sk
′

i = Li(Si) = Si − ei. Here
the operation of Si − ei is defined as:Si − ei = (s1,i − ei)||(s2,i − ei)||. . .||(sl,i − ei). Let

P
′
= {Sk

′

i |i = 1, 2, . . ., n}. The threshold of all updated shadows in P
′

is decreased to
k
′

from k.
3 If the threshold is k

′′
, D publishes the information of mi = F

′′
(i), i = 1, 2, . . ., n.

Each participant Pi updates their shadow by Sk
′′

i = Hi(Si) = Si + mi. Here the
operation of Si + mi is defined as: Si + mi = (s1,i + mi)||(s2,i + mi)||. . .||(sl,i + mi).

Let P
′′
= {Sk

′′

i |i = 1, 2, . . ., n}. The threshold of all updated shadows in P
′′

is increased
to k

′′
from k.

Here we omit the process of image reconstruction with the threshold k
′

and k
′′
. The

details can be found in reference [22].

3. Proposed Scheme
3.1. Design Motivation

In real applications, security conditions are probably changeable after the dealer sends
shadows in an SIS scheme to all participants. For instance, (1) the security level of a
secret image may change; (2) the number of total participants may vary; (3) the power of
adversaries may increase; (4) information disclosure may be caused by some malicious
participants. A wide variety of emergencies can affect security requirements. In this work,
we assume there are multiple security levels for image reconstruction. For instance, a
confidential image should be reconstructed immediately due to emergency cases, such
as in medical or traffic settings. However, if the number of available participants did not
satisfy the access structure for image reconstruction, it would cause losses, even loss of life.
Therefore, an SIS scheme with the capability of changing its threshold is more reasonable,
since it can reconstruct images under multiple security levels. The design concept of our
work can be seen in Figure 1, and the flow chart of our scheme is shown in Figure 2.
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Figure 1. Thresholds for different schemes: (a) (k, n) SIS scheme; (b) (k↔ h, n) TCSIS scheme.
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T
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M>=T

Figure 2. Flow chart of the proposed TCSIS.

3.2. TCSIS Using a Bivariate Polynomial

The previous TCSIS schemes [21,22] were based on univariate polynomials. Differently
from their works, the proposed (k↔ h, n) TCSIS is based on a bivariate polynomial, and
it can provide h − k + 1 available thresholds {k, k + 1, . . ., h}. The advantages of our
scheme are that the dealer does not need to be involved in shadow updating, and that it is
unconditionally secure. Similarly to the previous TCSIS schemes, the proposed scheme also
divides an image into non-overlapping blocks, and each block includes kh pixels. During
shadow encryption phase, each block is encrypted into shadows using the same algorithm.
During the image reconstruction phase, all blocks are recovered from their shadows using
same algorithm. When all blocks are recovered, the image is reconstructed accordingly.
Therefore, for simplicity and readability, we use a kh-pixels block G instead of an image, as
follows.
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Scheme 3: (k↔ h, n) TCSIS
Shadow Encryption Phase:

1 Suppose pi,j, i = 0, 1, . . ., k− 1, j = 0, 1, . . ., h− 1 are kh pixels in G,D builds a bivariate
polynomial:

F(x, y) =


p0,0 + p0,1y+, . . .,+p0,h−1yh−1,
p1,0x + p1,1xy+, . . .,+p1,h−1xyh−1,
. . .
pk−1,0xk−1 + pk−1,1xk−1y+, . . .,+pk−1,h−1xk−1yh−1

(2)

2 D computes fi(y) = F(i, y), gi(x) = F(x, i). The initial shadow si for Pi is si =
( fi(y), gi(x)).

Image Reconstruction Phase:

1 Select a threshold T from the set {k, k + 1, . . ., h}.
(a) If current threshold is T = k, each participant Pi updates their shadow by

sk
i = fi(y).

(b) If the current threshold is T = h, each participant Pi updates its shadow by
sh

i = gi(x).
(c) If the current threshold T satisfies k < T < h, the participants select h − T

integers e1, e2, . . ., eh−T other than 1, 2, . . ., n. Each participant Pi computes
fi(e1), fi(e2), . . ., fi(eh−T), and the updated shadow sT

i is
sT

i = (sh
i , ( fi(e1), fi(e2), . . ., fi(eh−T)).

2 Any group of T participants can reconstruct all kh pixels in G using Lagrange interpo-
lation.

Scheme 3 describes the algorithms for updating shadows according to different thresh-
olds, but the methods for image reconstruction using updated shadows are not given. In
the following three theorems, we will prove that the updated shadows are consistent with
the current threshold. This is also a proof of the security of our scheme. The methods of
image reconstruction using these updated shadows are also described in these theorems.

Theorem 1. The threshold T for updated shadows sk
1, sk

2, . . .sk
n on G is T = k.

Proof. According to Scheme 3, the updated shadow in sk
i for G is sk

i = fi(y) = F(i, y).
F(x, y) in Equation (2) can be rewritten as:

F(x, y) = u0(x) + u1(x)y + u2(x)y2+, . . .,+uh−1(x)yh−1 (3)

where u0(x), u1(x), . . ., uh−1(x) are all k− 1 degree univariate polynomials. Suppose that

sk
i = F(i, y) = bi,0 + bi,1y+, . . ., bi,h−1yh−1, i = 1, 2, . . ., n (4)

Comparing Equation (3) with Equation (4), we can observe that (b1,0, b2,0, . . ., bn,0)
are interpolations on u0(x) that bi,0 = u0(i), i = 1, 2, . . ., n. Since u0(x) is k − 1 degree
polynomial, the threshold of (b1,0, b2,0, . . ., bn,0) to reconstruct u0(x) is k, and the recon-
struction can be executed using Lagrange interpolation, Equation (1). As each bi,0 comes
from sub-shadow sk

i , the threshold on (sk
1, sk

2, . . ., sk
n) for u0(x) is k. By the same way, the

threshold for the other polynomials u1(x), u2(x), . . ., uh−1(x) on (sk
1, sk

2, . . ., sk
n) is also k. In

summary, the threshold for the kh pixel block G from (sk
1, sk

2, . . ., sk
n) is T = k.

Theorem 2. The threshold T for updated shadows sh
1, sh

2, . . ., sh
n is T = h.
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Proof. The updated shadow sh
i for G is sh

i = gi(x) = F(x, i). F(x, y) in Equation (2) can be
rewritten as:

F(x, y) = v0(y) + v1(y)x + v2(y)x2+, . . .,+vk−1(y)xk−1 (5)

where v0(y), v1(y), . . ., vk−1(y) are all h− 1 degree univariate polynomials. Suppose that

sh
i = F(x, i) = ci,0 + ci,1x+, . . ., ci,k−1xk−1, i = 1, 2, . . ., n (6)

Comparing Equation (5) with Equation (6), we can observe that (c1,0, c2,0, . . ., cn,0)
are interpolations on v0(y) that ci,0 = v0(i), i = 1, 2, . . ., n. Since v0(y) is h − 1 degree
polynomial, the threshold of (c1,0, c2,0, . . ., cn,0) to reconstruct v0(y) is h, and the reconstruc-
tion can be executed using Lagrange interpolation, Equation (1). As each ci,0 comes from
sub-shadow sh

i,1, the threshold on (sh
1,1, sh

2,1, . . ., sh
n,1) for v0(y) is h. By the same way, the

threshold for the other polynomials v1(y), v2(y), . . ., vk−1(y) on (sh
1, sh

2, . . ., sh
n) is also h. In

summary the threshold for the kh pixel block G from (sh
1, sh

2, . . ., sh
n) is T = h.

Theorem 3. The threshold on updated shadows (sT
1 , sT

2 , . . ., sT
n ) when k < T < h is T.

Proof. The updated shadow sT
i for G is sT

i = (sh
i , fi(e1), fi(e2), . . ., fi(eh−T)). Without loss

of generality, suppose sT
1 , sT

2 , . . ., sT
T are the T updated shadows on G. First we prove that

G can be reconstructed by these T updated shadows. As fi(ej) = F(i, ej) = gej(i), fi(ej)

can be seen seen as one interpolation on gej(x) = F(x, ej). On the other hand, T > k and
gej(x) is of degree k− 1; thus, gej(x) can be reconstructed from fi(ej), i = 1, 2, . . ., T, these T
updated shadows. As a result, F(x, e1), F(x, e2), . . ., F(x, eh−T) can be reconstructed from T
updated shadows sT

1 , sT
2 , . . ., sT

T . According to Equation (5), F(x, ej), j = 1, 2, . . ., h− T can
be presented as:

F(x, ej) = v0(ej) + v1(ej)x + v2(ej)x2+, . . .,+vk−1(ej)xk−1 (7)

Therefore, h− T extra interpolations can be obtained on each polynomial in v0(y),
v1(y), . . . , vk−1(y). On the other hand, other T interpolations can be obtained from
sh

1, sh
2, . . ., sh

T . There are in total h− T + T = h interpolations for each polynomial v0(y),
v1(y), . . . , vk−1(y). Since these polynomials v0(y), v1(y), . . ., vk−1(y) are all of degree h− 1,
they can be reconstructed. Thus, the bivariate polynomial F(x, y) can be reconstructed cor-
respondingly. When there are T− 1 or less updated shadows, at most T− 1+ h− T = h− 1
interpolations can be gathered on v0(y), v1(y), . . ., vk−1(y). F(x, y) cannot be reconstructed.
In summary, the threshold for the kh pixel block G from (sT

1 , sT
2 , . . ., sk

n) when k < T < h
is T.

4. Results and Discussion

In this section, we use examples and experimental results to show the performance
of the proposed scheme, and then compare the proposed scheme and previous TCSIS
schemes.

Suppose the image is O = (97, 46, 253, 12, 165, 19, 247, 251, 214, 142, 191, 180, 210, 172, 152).
We construct a proposed (3↔ 5, 7) TCSIS scheme for this image. Our proposed scheme is
based on the computation of a GF(P): P = 251 and P = 28 are adopted in our examples.
When using P = 251, all pixels that larger than 250 are transformed to 250 instead, and the
computation is over mod(251); therefore, the reconstructed image is of lower quality than
the original image. When using P = 28, no distortion would be caused from reconstructed
image, but each pixel would need to be transferred into a polynomial, and the computa-
tion would be over mod(x8 + x4 + x3 + x + 1), which is much more complicated than the
computation in mod(251).

Example 1. Proposed (3↔ 5, 7) TCSIS on O over GF(251).



Mathematics 2022, 10, 710 8 of 11

First the original image O is transformed into image O
′
, where the pixels larger than

250 are transformed to 250. Then we get

O
′
= (97, 46, 250, 12, 165, 19, 247, 250, 214, 142, 191, 180, 210, 172, 152).

Next, a bivariate F(x, y) with degree 2 on x and degree 4 on y is constructed based
on O

′
.

F(x, y) =


97 + 46y + 250y2 + 12y3 + 165y4,
19x + 247xy + 250xy2 + 214xy3 + 142xy4,
191x2 + 180x2y + 210x2y2 + 172x2y3 + 152x2y4

(8)

Then the dealer computes fi(y) = F(i, y), gi(x) = F(x, i), i = 1, 2, . . ., 7 over GF(251).
The initial shadow Si = ( fi(y), gi(x)) is sent to each participant Pi, i = 1, 2, . . ., 7 confiden-
tially. The initial shadows S1,S2, . . .,S7 are listed in Equation (9).

S1 : f1(y) = 56 + 222y + 208y2 + 147y3 + 208y4, g1(x) = 68 + 119x + 152x2

S2 : f2(y) = 146 + 5y + 84y2 + 124y3 + 53y4, g2(x) = 160 + 226x + 179x2

S3 : f3(y) = 116 + 148y + 129y2 + 194y3 + 202y4, g3(x) = 110 + 210x + 250x2

S4 : f4(y) = 217 + 149y + 92y2 + 106y3 + 153y4, g4(x) = 101 + 86x + 226x2

S5 : f5(y) = 198 + 8y + 224y2 + 111y3 + 157y4, g5(x) = 9 + 14x + 102x2

S6 : f6(y) = 59 + 227y + 23y2 + 209y3 + 214y4, g6(x) = 156 + 48x + 7x2

S7 : f7(y) = 51 + 53y + 242y2 + 149y3 + 73y4, g7(x) = 55 + 136x + 204x2

(9)

During image reconstruction, suppose the threshold is T, and P1, P2, . . ., PT are in-
volved.

1. If T = 3, P1, P2, P3 publishes S3
i = fi(y), i = 1, 2, 3, all coefficients in F(x, y) can be

computed using Lagrange interpolation according to Theorem 1. Then the image O
′

can be reconstructed.
2. If T = 4, P1, P2, P3, P4 publish S4

i = gi(x)|| fi(e1), i = 1, 2, 3, 4. Here e1 = 8. The inter-
polation polynomial on fi(e1), i = 1, 2, 3, 4 is ge1(x) = F(x, e1) = 167 + 120x + 86x2

for Example 1. Then, all coefficients in F(x, y) can be computed using the Lagrange
interpolation according to Theorem 3. Then the image O

′
can be reconstructed.

3. If T = 5, P1 − P5, publish S5
i = gi(x), i = 1, 2, . . ., 5. All coefficients in F(x, y) can be

computed using Lagrange interpolation according to Theorem 1. Then the image O
′

can be reconstructed.

Example 2. Proposed (3↔ 5, 7) TCSIS on O over GF(28).

A bivariate F(x, y) with degree 2 on x and degree 4 on y is constructed based on O as
follows.

F(x, y) =


97 + 46y + 253y2 + 12y3 + 165y4,
19x + 247xy + 251xy2 + 214xy3 + 142xy4,
191x2 + 180x2y + 210x2y2 + 172x2y3 + 152x2y4

(10)

Then the dealer computes fi(y) = F(i, y), gi(x) = F(x, i), i = 1, 2, . . ., 7 over GF(28).
The initial shadow Si = ( fi(y), gi(x)) is sent to each participant Pi, i = 1, 2, . . ., 7 confiden-
tially. The initial shadows S1,S2, . . .,S7 are listed in Equation (11).

S1 : f1(y) = 205 + 109y + 212y2 + 118y3 + 179y4, g1(x) = 27 + 71x + 237x2

S2 : f2(y) = 141 + 61y + 117y2 + 61y3 + 244y4, g2(x) = 58 + 245x + 253x2

S3 : f3(y) = 33 + 126y + 92y2 + 71y3 + 226y4, g3(x) = 104 + 99x + 106x2

S4 : f4(y) = 40 + 106y + 179y2 + 87y3 + 232y4, g4(x) = 168 + 119x + 50x2

S5 : f5(y) = 132 + 41y + 154y2 + 45y3 + 254y4, g5(x) = 34 + 153x + 200x2

S6 : f6(y) = 196 + 121y + 59y2 + 102y3 + 185y4, g6(x) = 168 + 219x + 2x2

S7 : f7(y) = 104 + 58y + 18y2 + 28y3 + 175y4, g7(x) = 10 + 247x + 61x2

(11)
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The reconstructions with different thresholds are similar to those in Example 1. Here
we only emphasize that when the threshold is T = 4, the participants can decide on e1 = 8,
and compute ge1(x) = 13 + 248x + 98x2 in GF(28), which is different from the ge1(x) in
Example 1.

The following Figure 3 shows the experimental results of the proposed (5↔ 7, 9) over
GF(251), where the original image and initial shadows are included.

Next we give comparisons between the proposed TCSIS and the previous two TCSIS
schemes [21,22] in detail. First we illustrate the information disclosure problem of
the scheme in [22]. The initial shadows Si for each participant Pi in [22] are generated from
a k− 1 degree polynomial F∗i (x) = F(x) + fi(x), where F(x) is of degree k− 1, fi(x) is of
degree k

′ − 1, and fi(x) contains the pixels of secret image O. When the threshold is k
′
, each

participant Pi modifies its initial shadow by S
′
i = Si − F(i); thus, the threshold of updated

shadows is reduced to k
′

from k. However, any k
′

participants can recover a distortion
image without updating their shadows, based on the homm. Si − Sj is generated from
F∗i (x)− F∗j (x) = fi(x)− f j(x). Since fi(x)− f j(x) is of degree k

′ − 1, any k
′

participants
can recover fi(x)− f j(x). As a result, a distortion image can be recovered from the pixel
information in fi(x)− f j(x). The experimental results of information disclosure problem
in [22] are shown in Figure 4.

 original image

shadows

 original image

shadows

1 2 3

4

4

5

5

6

6

7

7 8

8 9

9

1 2 3

Figure 3. Original images and shadows using the proposed scheme.

The proposed TCSIS scheme generates initial shadows using bivariate polynomial
F(x, y), where image pixels are hidden in all coefficients in F(x, y). Thus, the proposed
scheme avoids the information disclosure problem in [22]. On the other hand, the the
scheme in [22] only provides three potential thresholds k

′
, k, k

′′
for low, medium, and high

security levels, whereas our scheme can provide h− k + 1 thresholds k, k + 1, k + 2, . . ., h to
satisfy more complicated security requirements. The scheme in [21] can also provide more
thresholds than the scheme in [22], but there are two weaknesses of the scheme in [21].
The dealer needs to publish certain information when changing a threshold; therefore,
the participation of dealer in this process would not only reduce the efficiency of image
reconstruction, but also risks information leakage from the communication between dealer
and participants. Such problems also exist for the scheme presented in [22]. The other
problem of the scheme in [21] is that the security is based on the security assumption
of two-variable one-way functions; it is not unconditionally secure. In addition, the
computation of one-way functions is much more complicated than the computation of
polynomial interpolation. A comparison between the proposed scheme and the previous
TCSIS schemes [21,22] is shown in Table 1.
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1a - 2a - 3a - 4a -

1b - 2b - 3b - 4b -

1c - 2c - 3c - 4c -

Figure 4. (a-1,b-1,c-1): original images, (a-2,b-2,c-2): quality lossy images with (k
′
= 2, k = 3),

(a-3,b-3,c-3): quality lossy images with (k
′
= 3, k = 4), (a-4,b-4,c-4): quality lossy images with

(k
′
= 4, k = 5).

Table 1. A comparison of the three TCSIS schemes.

Schemes Thresholds Changing Threshold Security Level Main Computation Shadow Size

Scheme [22] k
′
, k, k

′′
Dealer involves Unconditional Polynomial interpolation 1

k′

Scheme [21] T1, T2, . . ., TN Dealer involves Conditional One way function N
TN

Proposed scheme k, k + 1, . . ., h Without dealer Unconditional Polynomial interpolation k+h
kh

5. Conclusions

In this paper, we constructed a (k↔ h, n) TCSIS scheme based on a bivariate polyno-
mial that provides h− k + 1 potential thresholds. During image reconstruction, participants
can modify their initial shadows to adjust the threshold from {k, k + 1, . . ., h}. Compared
with previous TCSIS schemes, our scheme has the following advantages:

1. Our scheme provides more thresholds than the scheme in [22].
2. Our scheme does not require the dealer’s involvement in changing the threshold,

reducing its computational cost compared to the schemes in [21,22] and reducing the
risk of information leakage.

3. Our scheme does not adopt one-way functions; it achieves unconditional security.
4. The computation is only based on polynomial interpolation, making it more efficient

than the first scheme [21].
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